

DOI: 10.2478/s12175-010-0005-y Math. Slovaca **60** (2010), No. 2, 189–194

ON LATTICE EMBEDDINGS OF A LATTICE INTO ITS INTERVALS

Ján Jakubík

(Communicated by Jiří Rachůnek)

ABSTRACT. In connection with his investigation of convexities generated by fractal lattices, Czédli formulated a conjecture concerning lattice embeddings of a lattice into its intervals. In the present note we modify the conditions from Czédli's conjecture; we consider only intervals having more than two elements. Further, we prove the validity of Czédli's conjecture.

©2010 Mathematical Institute Slovak Academy of Sciences

1. Introduction

In connection with his investigation of convexities generated by fractal lattices, Czédli [1] expressed a conjecture concerning the existence of a bounded lattice L such that certain conditions dealing with lattice embeddings of L into intervals of L are satisfied.

Let C be the class of all lattices L having the least element 0_L and the greatest element 1_L with $L \neq \{0_L, 1_L\}$ such that whenever [x, y] is an interval of L with $[x, y] \neq L$ and $\operatorname{card}[x, y] \geq 2$, then

- (i) there exists a lattice embedding $\varphi_1 \colon L \to [x,y]$ with $\varphi_1(0_L) = x$ and $\varphi_1(1_L) = y$;
- (ii) there exists a lattice embedding $\varphi_2 \colon [x,y] \to L$ with $\varphi_2(x) = 0_L$ and $\varphi_2(y) = 1_L$;

2000 Mathematics Subject Classification: Primary 06D35; Secondary 06F15.

Keywords: bounded lattice, lattice embedding, lexicographic product, homogeneous Boolean algebra.

by the Slovak Research and Development Agency under the contract No. APVV-0071-06 and partially supported by the Slovak Academy of Sciences via the project Center of Excellence – Physics of Information (grant I/2/2005).

Supported by VEGA Agency grant 2/7141/27,

JÁN JAKUBÍK

(iii) there exists and interval $[x_1, y_1]$ in L with $card[x_1, y_1] \ge 2$ such that this interval is not isomorphic to L.

Czédli conjectured that the class \mathcal{C} is nonempty. We prove that there exists an infinite set of mutually non-isomorphic lattices which belong to the class \mathcal{C} .

Further, we will deal with a class C_1 of lattices which is defined in the same way as the class C with the distinction that instead of the relation $\operatorname{card}[x,y] \geq 2$ we consider now the relation $\operatorname{card}[x,y] > 2$; next, we assume that the condition (iii) is replaced by the condition

(iv) if [x, y] is an interval in L with $x \neq y$ then this interval fails to be isomorphic to L.

We denote by C_{11} the class of all lattices $L \in C_1$ such that L is a chain.

We prove that there exists a proper class of mutually non-isomorphic lattices belonging to C_{11} . Hence, in particular, the class C_1 is nonempty.

Dealing with C_{11} we use lexicographic products of linearly ordered sets.

From the fact that $\mathcal{C} \neq \emptyset$ we cannot immediately conclude that the class \mathcal{C}_1 is nonempty (since the condition (iv) is essentially stronger than the condition (ii)).

The notion of convexity of lattices is due to Fried (cf. [2]); convexities of lattices have been dealt with in [3] and [4].

2. The class \mathcal{C}_{11}

Let Q be the set of all rationals with the natural linear order and let $Q_0 = [-1, 1]$ be the interval of Q. Each subset of a linearly ordered set is linearly ordered by the induced order.

Let α be an infinite cardinal and let β be the first ordinal with card $\beta = \alpha$. Then we have $\cos \beta = \beta$, where $\cos \beta$ is the cofinality of β . The collection of all ordinals having this property is a proper class. For each $i \in \beta$ let $Q_i = Q_0$. We denote by H the lexicographic product of the system $(Q_i)_{i \in \beta}$. The elements of H are written in the form $x = (x_i)_{i \in \beta}$ with $x_i \in Q_i$ for each $i \in \beta$.

Let L_{β} be the set of all $x \in H$ such that there exists an index $i(x) \in \beta$ having the property that $x_i = x_{i(x)}$ for each $i \in \beta$ with i > i(x). Then we have

(1) card $L_{\beta} = \operatorname{card} \beta$.

We say that L_{β} is a restricted lexicographic product of the system $(Q_i)_{i \in I}$. Let $i_1 \in \beta$ and $t \in L_{\beta}$. We denote

$$L_{\beta}(i_1,t) = \{x \in L_{\beta} : x_i = t_i \text{ for each } i \in \beta \text{ with } i \leq i_1\}.$$

From the relation $cof \beta = \beta$ we obtain:

ON LATTICE EMBEDDINGS OF A LATTICE INTO ITS INTERVALS

Lemma 2.1. $L_{\beta}(i_1, t) \simeq L_{\beta}$ for each $i_1 \in \beta$ and each $t \in L_{\beta}$.

Let u and v be elements of L_{β} such that

$$u_{i_1} < t_{i_1} < v_{i_1}$$

$$u_i = t_i = v_i$$
 for each $i < i_1$.

Then we have:

Lemma 2.2. $u < x < v \text{ for each } x \in L_{\beta}(i_1, t).$

We consider two distinct elements p and q which do not belong to L_{β} . We put

$$L^0_\beta = \{p, q\} \cup L_\beta.$$

We define a binary relation $<_0$ on the set L^0_β as follows:

- (i) we put $p <_0 q$ and $p <_0 x$, $x <_0 q$ for each $x \in L_\beta$;
- (ii) for $x, y \in L_{\beta}$, the relation $x <_0 y$ is equivalent with x < y.

Hence L^0_{β} turns out to be a chain with the least element p and the greatest element q.

We denote by p_0 the element of L_{β} such that $(p_0)_i = -1$ for each $i \in I$. Similarly, q_0 is defined to be the element of L_{β} with $(q_0)_i = 1$ for each $i \in I$. Thus p_0 is the least element of L_{β} and q_0 is the greatest element of L_{β} . From this and from the definition of $<_0$ we obtain:

Lemma 2.3. The intervals $[p, p_0]$ and $[q_0, q]$ of the linearly ordered set L^0_β are prime intervals.

Lemma 2.4. Let $x, y \in L_{\beta}$, x < y. Then there is $z \in L_{\beta}$ with x < z < y.

Proof. There exists $i_0 \in \beta$ such that $x_{i_0} < y_{i_0}$ and $x_i = y_i$ for each $i \in \beta$ with $i < i_0$. Further, there is $t \in Q_{i_0}$ such that $x_{i_0} < t < y_{i_0}$. Also, there exists $z \in L_\beta$ with $z_{i_0} = t$, $z_i = x_i$ for $i < i_0$. Then x < z < y.

We verified that if [x, y] is an interval in L_{β} , then it cannot be a prime interval. As a consequence we obtain:

LEMMA 2.5. Let [x,y] be an interval in $L^0_{\beta}, [x,y] \neq L^0_{\beta}$. Then [x,y] fails to be isomorphic to L^0_{β} .

LEMMA 2.6. Let [x,y] be an interval in L^0_β with $\operatorname{card}[x,y] > 2$. Then there exists a lattice embedding $\varphi_1 \colon L^0_\beta \to [x,y]$ such that $\varphi_1(p) = x$ and $\varphi_1(q) = y$.

JÁN JAKUBÍK

Proof. From the relation $\operatorname{card}[x,y] > 2$ we conclude that there exist $z, z' \in [x,y]$ with $z,z' \in L_{\beta}, z < z', z,z' \notin \{p_0,q_0\}.$

There is $i_0 \in \beta$ such that $z_{i_0} < z'_{i_0}$ and $z_i = z'_i$ for $i < i_0$. Further, there is $c \in Q_{i_0}$ with $z_{i_0} < c < z'_{i_0}$. Also, there exists $t \in L_{\beta}$ such that $t_{i_0} = c$ and $t_i = z_i$ for $i < i_0$. Then z < t < z', whence $t \in [x, y]$.

Moreover, according to Lemma 2.2, we have $L_{\beta}(i_0, t) \subseteq [x, y]$.

According to Lemma 2.1 there exists an isomorphism φ of L_{β} onto $L_{\beta}(i_0, t)$. Let us consider a mapping $\varphi_1 \colon L_{\beta}^0 \to [x, y]$ which is defined as follows: we put $\varphi_1(p) = x$, $\varphi_1(q) = y$ and $\varphi_1(s) = \varphi(s)$ for each $s \in L_{\beta}$. Then applying Lemma 2.1 again we conclude that φ_1 has the desired properties.

LEMMA 2.7. Let [x,y] be an interval in L^0_β with $\operatorname{card}[x,y] > 2$. Then there exists a lattice embedding $\varphi_2 \colon [x,y] \to L^0_\beta$ such that $\varphi_2(x) = p$ and $\varphi_2(y) = q$.

Proof. As $[x,y] \subseteq L_s^0$, it suffices to put $\varphi_2(x) = p$, $\varphi_2(y) = q$ and $\varphi_2(z) = z$ for all $z \in [x,y]$, $z \notin \{x,y\}$.

In view of Lemmas 2.5, 2.6 and 2.7 we obtain:

Lemma 2.8. The linearly ordered set L^0_β belongs to the class C_{11} .

If α' is an infinite cardinal with $\alpha' \neq \alpha$ and if β' is defined analogously as β above, $L^0_{\beta'}$ is not isomorphic to L^0_{β} . Thus we have:

Theorem 2.9. There exists a proper class of mutually non-isomorphic lattices belonging to C_{11} .

3. On Czédli's conjecture

We recall some definitions (cf. [1], [2]).

Let L be a bounded lattice. If for each $a_1 < b_1 \in L$ and each $a_2 < b_2 \in L$ there is a lattice embedding $\psi \colon [a_1,b_1] \to [a_2,b_2]$ with $\psi(a_1)=a_2$ and $\psi(b_1)=b_2$ then we say that L is a quasi-fractal lattice or shortly a quasi-fractal. If L is isomorphic to each of its nontrivial intervals then L will be called a fractal lattice or a fractal.

Czédli [1] expressed the conjecture that there exists a quasi-fractal lattice which fails to be fractal.

Let C be as in Section 1. It is easy to verify that for a lattice L the following conditions are equivalent:

- (i) L belongs to the class C;
- (ii) L is a quasi-fractal and it fails to be a fractal.

ON LATTICE EMBEDDINGS OF A LATTICE INTO ITS INTERVALS

We denote by \mathbb{R} the system of all real numbers with the usual linear order. Each nonempty subset of \mathbb{R} is considered to be linearly ordered under the order induced from \mathbb{R} .

Let $a, b \in \mathbb{R}$, a < b. Further, let $x_i \in [a, b]$ (i = 0, 1, 2, ..., n + 1) where $a = x_0 < x_1 < x_2 < \cdots < x_n < x_{n+1} = b$. We put

$$L_0(n) = [a, b] \setminus \{x_0, x_1, \dots, x_{n+1}\}, \qquad L(n) = [a, b] \setminus \{x_1, x_2, \dots, x_n\}.$$

(For any sets A and B we denote by $A \setminus B$ the set of all elements of A which do not belong to B.)

If a', b' belong to L(n), then we have to distinguish between the interval [a', b'] in \mathbb{R} and the interval in L(n) having the endpoints a' and b'; the latter will be denoted by $[a', b']_{L(n)}$. Evidently, $[a', b']_{L(n)} = [a', b'] \cap L(n)$ and $[a', b']_{L(n)} = [a', b']$ iff $x_i \notin [a', b']$ for each $i \in \{1, \ldots, n\}$.

The validity of the following lemma is obvious.

LEMMA 3.1. Let $a_1, b_1 \in L(n)$, $a_1 < b_1$ and let $[a_1, b_1]_{L(n)} = [a_1, b_1]$. Then there exists a lattice embedding φ of $L_0(n)$ into $[a_1, b_1]$.

LEMMA 3.2. Let $x, y \in L(n)$, x < y. Then there exists a lattice embedding ψ_1 of L(n) into the interval $[x, y]_{L(n)}$ with $\psi_1(a) = x$, $\psi_1(b) = y$.

Proof. It is easy to see that there exist $a_1, b_1 \in L(n)$ such that $x \leq a_1 < b \leq y$, $[a_1, b_1]_{L(n)} = [a_1, b_1]$. Now it suffices to put $\psi_1(a) = x$, $\psi_1(b) = y$ and $\psi_1(t) = \varphi(t)$ for $t \in L_0(n)$, where φ is as in Lemma 3.1.

Lemma 3.3. Let $x, y \in L(n)$, x < y. Then there exists a lattice embedding ψ_2 of $[x, y]_{L(n)}$ into L(n) such that $\psi_2(x) = a$, $\psi_2(y) = b$.

Proof. As $[x,y]_{L(n)} \subseteq L(n)$, it suffices to put $\psi_2(x) = a$, $\psi_2(y) = b$, $\psi_2(z) = z$ for all $z \in L(n)$ with x < z < y.

In view of Lemma 3.2 and Lemma 3.3 we conclude:

Lemma 3.4. L(n) is a quasi-fractal lattice.

Again, let $[a_1, b_1]$ be as in Lemma 3.1. Hence $[a_1, b_1] = [a_1, b_1]_{L(n)}$. The lattice $[a_1, b_1]$ is complete. On the other hand, the lattice L(n) fails to be complete for $n \ge 1$. Thus $[a_1, b_1]$ is not isomorphic to L(n). We obtain:

Lemma 3.5. L(n) fails to be a fractal lattice.

If m and n are distinct positive integers, then L(m) is not isomorphic to L(n). Thus according to Lemma 3.4 and Lemma 3.5 we have:

JÁN JAKUBÍK

Theorem 3.6. There exists an infinite set of mutually nonisomorphic chains such that

- (i) each of these chains is a quasi-fractal but it fails to be a fractal;
- (ii) each of these chains is a subset of \mathbb{R} .

The following questions remain open:

- a) Does there exist a proper class of mutually nonisomorphic chains belonging to the class C?
- b) Does there exist a denumerable lattice belonging to the class C?

Acknowledgement. The author is indebted to the referee for valuable suggestions and remarks.

REFERENCES

- [1] CZÉDLI, G.: Some varieties and convexities generated by fractal lattices, Algebra Universalis **60** (2009), 107–124.
- [2] E. Fried's Problem Raised in the Problem Session, General Algebra. Proc. Conf. Krems (R. Mlitz, ed.), North Holland, Amsterdam-New York-Tokyo-Oxford, 1990.
- [3] JAKUBÍK, J.: On convexities of lattices, Czechoslovak Math. J. 42 (1992), 325-330.
- [4] LIHOVÁ, J: On convexities of lattices, Publ. Math. Debrecen 72 (2008), 35–43.

Received 1. 2. 2008 Accepted 30. 4. 2008 Mathematical Institute Slovak Academy of Sciences Grešákova 6 SK-040 01 Košice SLOVAKIA

E-mail: kstefan@saske.sk