

DOI: 10.2478/s12175-010-0004-z Math. Slovaca **60** (2010), No. 2, 179–188

ON IDEMPOTENT MODIFICATIONS OF GENERALIZED MV-ALGEBRAS

Ján Jakubík

(Communicated by Jiří Rachůnek)

ABSTRACT. The notion of idempotent modification of an algebra was introduced by Ježek; he proved that the idempotent modification of a group is always subdirectly irreducible. In the present note we show that the idempotent modification of a generalized MV-algebra having more than two elements is directly irreducible if and only if there exists an element in $\mathcal A$ which fails to be boolean. Some further results on idempotent modifications are also proved.

©2010 Mathematical Institute Slovak Academy of Sciences

1. Introduction

The notion of idempotent modification \mathcal{A}' of an algebra \mathcal{A} was introduced in [8]. It is defined as follows.

Assume that $\mathcal{A} = (A; F)$ is an algebra with the underlying set A and with the set F of basic operations. The underlying set of \mathcal{A}' is equal to A; the system F' of basic operations of \mathcal{A}' consists of operations f', where $f \in F$ and

- 1) if f is a nulary or a unary operation, then f' = f;
- 2) if f is an n-ary operation with n > 1 and if $a_1, a_2, \ldots, a_n \in A$, then

$$f'(a_1, a_2, ..., a_n) = \begin{cases} a_1 & \text{if } a_1 = a_2 = \cdots = a_n \\ f(a_1, a_2, ..., a_n) & \text{otherwise.} \end{cases}$$

2000 Mathematics Subject Classification: Primary 06D35; Secondary 06F20. Keywords: generalized MV-algebra, lattice ordered group, direct irreducibility, subdirect irreducibility, boolean element.

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0071-06.

This work has been partially supported by the Slovak Academy of Sciences via the project Center of Excellence – Physics of Information (grant I/2/2005).

Supported by VEGA Agency grant 1/0539/08.

JÁN JAKUBÍK

The main result of [8] says that if \mathcal{V}_1 is the variety of all groups, and $G \in \mathcal{V}_1$, then G' is subdirectly irreducible.

It is also remarked in [8] that it would be interesting to find other varieties having the mentioned property.

In [7] it was shown that there exist infinitely many such varieties.

Let \mathcal{A} be an MV-algebra; a result concerning subdirect irreducibility of \mathcal{A}' was proved in [7].

In the present note we prove that the idempotent modification \mathcal{A}' of a generalized MV-algebra \mathcal{A} having more than two elements is directly irreducible if and only if there exists an element in \mathcal{A} which is not boolean.

We also show that if G is a lattice ordered group then G' is subdirectly irreducible. Some further results concerning idempotent modifications are also proved.

2. Preliminaries

The notion of generalized MV-algebra was introduced independently in [3], [4] and in [9] (in [3], [4] the term 'pseudo MV-algebra' was applied).

For a generalized MV-algebra \mathcal{A} we denote by A its underlying set. Using the operations of \mathcal{A} we can define a partial order \leq on the set A such that $(A; \leq)$ turns out to be a distributive lattice. Therefore, without loss of generality, the lattice operations \vee and \wedge can be included into the set of basic operations of \mathcal{A} .

In this sense, a generalized MV-algebra \mathcal{A} is considered as an algebra $\mathcal{A} = (A; \oplus, \neg, \sim, 0, 1, \vee, \wedge)$ of type (2,1,1,0,0,2,2) such that

- 1) the axioms (M1)–(M8) from [3] are satisfied;
- 2) for each $x, y \in A$, $x \wedge y = x$ iff $\neg x \oplus y = 1$;
- 3) $(A; \vee, \wedge)$ is a distributive lattice with the least element 0 and the greatest element 1.

(Cf. [3], [9].)

If the operation \oplus is commutative, then \mathcal{A} is an MV-algebra. (Cf. [2].)

For lattice ordered groups we apply the notation and terminology as in [5] with the distinction that the group operation is written additively; the commutativity of this operation is not assumed to be valid.

Let G be the lattice ordered group with a strong unit u and let A be the interval [0, u] of G. For $x, y \in A$ we put

$$x \oplus y = (x+y) \wedge u$$
, $\neg x = u - x$, $\sim x = -x + u$, $1 = u$.

Then $\mathcal{A}=(A;\oplus,\neg,\sim,0,1,\vee,\wedge)$ is a generalized MV-algebra; it will be denoted by $\Gamma(G,u)$.

ON IDEMPOTENT MODIFICATIONS OF GENERALIZED MV-ALGEBRAS

According to [2], for each generalized MV-algebra \mathcal{A} there exists a lattice ordered group G with a strong unit u such that $\mathcal{A} = \Gamma(G, u)$.

In what follows, when speaking about a generalized MV-algebra \mathcal{A} we always suppose that G and u are as above.

3. Direct products

Assume that \mathcal{B}_1 and \mathcal{B}_2 are algebras of the same type. The direct product $\mathcal{B}_1 \times \mathcal{B}_2$ is defined in the usual way.

An algebra \mathcal{B} is directly reducible if there exist algebras \mathcal{B}_1 and \mathcal{B}_2 such that

- 1) card $\mathcal{B}_1 > 1$ and card $\mathcal{B}_2 > 1$;
- 2) there exists an isomorphism $\varphi \colon \mathcal{B} \to \mathcal{B}_1 \times \mathcal{B}_2$.

In this case we say that φ determines a direct product decomposition of \mathcal{B} .

Direct product decompositions of generalized MV-algebras were investigated in [6].

In the present section we assume that

$$\mathcal{A} = (A; \oplus, \neg, \sim, 0, 1, \vee, \wedge)$$

is a generalized MV-algebra. We put $\ell(\mathcal{A}) = (A; \vee, \wedge)$ and we say that $\ell(\mathcal{A})$ is the *underlying lattice* of \mathcal{A} .

An element a of A is called *boolean* if it possesses a complement in the lattice $\ell(A)$.

Below we will apply the following fact (cf. [6]): If a is a boolean element and b is its complement, then $\varphi \colon A \to [0,a] \times [0,b]$ defined by $\varphi(x) = (x \wedge a, x \wedge b)$ is an isomorphism of $\mathcal{A} = (A, \oplus, \neg, \sim, 0, 1)$ onto the direct product of $([0,a], \oplus, \neg_a, \sim_a, 0, a)$ and $([0,b], \oplus, \neg_b, \sim_b, 0, b)$ where $\neg_p x = \neg x \wedge p$ and $\sim_p x = \sim x \wedge p$ (for $p \in \{a,b\}$).

We obviously have:

Lemma 3.1. Suppose that card A > 2 and that all elements of A are boolean. Then the algebra \mathcal{A}' is directly reducible.

Lemma 3.2. Assume that the algebra A' is directly reducible. Then card A > 2 and each element of A is boolean.

Proof. From the definition of direct reducibility we obtain that card A > 2. By way of contradiction, suppose there exists an element x in A such that x fails to be boolean.

In view of the assumption, there exist algebras

$$\mathcal{B}_i = (B_i; \oplus_i, \neg_i, \sim_i, 0_i, 1_i, \vee_i, \wedge_i) \qquad (i = 1, 2)$$

of type (2, 1, 1, 0, 0, 2, 2), and an isomorphism

$$\varphi \colon \mathcal{A}' \to \mathcal{B}_1 \times \mathcal{B}_2. \tag{1}$$

We have

$$\ell(\mathcal{A}') = (A; \vee, \wedge), \quad \ell(\mathcal{B}_i) = (B_i; \vee_i, \wedge_i) \qquad (i = 1, 2).$$

From (1) we obtain that φ determines a direct product decomposition

$$\varphi \colon \ell(\mathcal{A}') \to \ell(\mathcal{B}_1) \times \ell(\mathcal{B}_2).$$
 (2)

Since $\ell(\mathcal{A}') = \ell(\mathcal{A})$, the mapping φ also determines a direct product decomposition of $\ell(\mathcal{A})$.

Hence, applying the same argument as in the proof of Lemma 3.1 (based on [6]) we conclude that there exists a direct product decomposition

$$\varphi \colon \mathcal{A} \to \mathcal{A}_1 \times \mathcal{A}_2,$$
 (3)

where $\ell(\mathcal{A}_1) = \ell(\mathcal{B}_1)$ and $\ell(\mathcal{A}_2) = \ell(\mathcal{B}_2)$.

Let x be as above and $\varphi(x) = (x_1, x_2)$. If x_1 is boolean in \mathcal{A}_1 and x_2 is boolean in \mathcal{A}_2 , then according to (3) we get that x is boolean in \mathcal{A} , which is a contradiction. Thus without loss of generality we can suppose that x_1 fails to be boolean in \mathcal{B}_1 . This yields that $x_1 \oplus x_1 > x_1$.

We have card $B_2 > 1$, hence there exists $y_2 \in B_2$ with $y_2 \neq x_2$. Put $y = \varphi^{-1}(x_1, y_2)$. Then in view of (3),

$$\varphi(x \oplus y) = (x_1 \oplus x_1, x_2 \oplus y_2).$$

Since $x \neq y$, we get $x \oplus' y = x \oplus y$, whence

$$\varphi(x \oplus' y) = \varphi(x \oplus y).$$

At the same time, we can consider the direct product decomposition (1). We get

$$\varphi(x \oplus' x) = (x_1 \oplus_1 x_1, x_2 \oplus_2 x_2).$$

Since $x \oplus' x = x$, we obtain

$$x_1 \oplus_1 x_1 = x_1. \tag{4}$$

Further, in view of (1) we have

$$\varphi(x \oplus' y) = (x_1 \oplus_1 x_1, x_2 \oplus_2 y_2).$$

Hence according to (4),

$$\varphi(x \oplus' y) = (x_1, x_2 \oplus_2 y_2).$$

This yields $x_1 = x_1 \oplus x_1$; we arrived at a contradiction.

It is clear that if \mathcal{A} is a generalized MV-algebra with card $A \leq 2$, then all elements of A are boolean and the algebra \mathcal{A}' is directly irreducible.

THEOREM 3.3. Let A be a generalized MV-algebra with card A > 2. Then the following conditions are equivalent:

- (i) There exists an element in A which is not boolean.
- (ii) The algebra \mathcal{A}' is directly irreducible.

Proof. This is a consequence of 3.1 and 3.2.

4. Some further results

In the present section we deal with idempotent modifications of lattice ordered groups and of some algebras which are related to MV-algebras.

For any algebra $\mathcal C$ we denote by $\operatorname{con} \mathcal C$ the system of all congruence relations on $\mathcal C.$

From [8, Theorem 10] we immediately obtain:

PROPOSITION 4.1. Let $\mathcal{G} = (G; +, \vee, \wedge)$ be a lattice ordered group. Then its idempotent modification \mathcal{G}' is subdirectly irreducible.

In the remaining part of this section we assume that \mathcal{A} is an MV-algebra. We also suppose that G is a lattice ordered group with a strong unit u such that $\mathcal{A} = \Gamma(G, u)$ and that the lattice $\ell(\mathcal{A})$ is linearly ordered. Then the underlying lattice of G is linearly ordered as well.

PROPOSITION 4.2. (Cf. [7].) If A is semisimple, then the algebra A' is simple.

Let us consider the algebra $\mathcal{A}_0 = (A; \oplus, \vee, \wedge)$. We will deal with its idempotent modification $\mathcal{A}'_0 = (A; \oplus', \vee', \wedge')$. Since the operations \vee and \wedge are idempotent, \vee' and \wedge' coincide with \vee or \wedge , respectively.

We show that the result analogous to that in Proposition 4.2 does not in general hold for algebra \mathcal{A}'_0 . (Cf. Proposition 4.8 below.)

For $a \in A$ and $n \in \mathbb{N}$ we denote

$$na = a + \dots + a$$
 (n-times)
 $n \cdot a = a \oplus \dots \oplus a$ (n-times).

By applying the induction, we obtain:

Lemma 4.3. Let $a \in A$. Then $n \cdot a = (na) \wedge u$.

For $a, b \in A$ we put $a \ll b$ if na < b for each $n \in \mathbb{N}$. Further, let \overline{a} be the set of all $a_1 \in A$ such that neither $a \ll a_1$ nor $a_1 \ll a$ is valid. In other words, a_1 belongs to \overline{a} iff there are positive integers n_1 and n_2 such that $n_1a \geq a_1$ and $n_2a_1 \geq a$.

We set

$$S = \{ \overline{a} : a \in A \}.$$

If $a, b \in A$, a < b and $\overline{a} \neq \overline{b}$, then $a_1 < b_1$ for each $a_1 \in \overline{a}$ and $b_1 \in \overline{b}$. In such a case we put $\overline{a} < \overline{b}$. Thus the relation < determines a linear order on the set S. Clearly, $\overline{0} = \{0\}$.

The definition of semisimplicity yields:

Lemma 4.4. Assume that card $A \geq 2$. Then A is semisimple iff card S = 2.

Lemma 4.5. Let $a \in A$.

- (i) \overline{a} is a convex subset of $\ell(A)$;
- (ii) \overline{a} is a subalgebra of \mathcal{A}'_0 .

Proof. The assertion (i) is obvious; thus \overline{a} is closed with respect to the operations \vee and \wedge .

Let $n \in \mathbb{N}$. Put $b = na \wedge u$. Hence $b \geq a \wedge u = a$. For $n_1 \in \mathbb{N}$ with $n_1 > n$ we have $n_1 a \geq na \geq b$. Thus $b \in \overline{a}$.

Let $x, y \in \overline{a}$. If x = y, then $x \oplus' y = x$, hence $x \oplus' y \in \overline{a}$. Assume that $x \neq y$. Without loss of generality we can suppose that x < y. We get

$$x \oplus' y = x \oplus y = (x + y) \wedge u,$$

 $y \leq (x + y) \wedge u \leq 2y \wedge u.$

Since $2y \wedge u \in \overline{a}$, in view of (i) we obtain $x \oplus' y \in \overline{a}$.

Let $a \in A$. For $x, y \in A$ we put $x \rho^a y$ iff either

- (i) $\overline{x} = \overline{y}$ and $x \ge a, y \ge a$ or
- (ii) x = y.

Lemma 4.6. ρ^a is a congruence relation of the algebra \mathcal{A}'_0 .

Proof. In view of the assertion (i) of 4.5 we conclude that ρ^a is a congruence relation with respect to the operations \vee and \wedge . We have to verify that ρ^a is a congruence relation with respect to the operation \oplus' .

Let $x, y, z \in A$ and $x \rho^a y$. For verifying the validity of the relation $(x \oplus' z) \rho^a (y \oplus' z)$ it suffices to consider the case x < y. For $z \in \overline{x}$, the mentioned relation holds according to 4.5. Assume that z does not belong to \overline{x} . Hence $x \neq z \neq y$. Then

$$x \oplus' z = (x+z) \wedge u, \quad y \oplus' z = (y+z) \wedge u.$$

Since $x \ge a$ and $y \ge a$ we have $x \oplus' z \ge a$ and $y \oplus' z \ge a$. We distinguish two cases.

a) Assume that z < x. Then we also have z < y. Thus

$$x \le (x+z) \land u \le (x+y) \land u = x \oplus' y.$$

ON IDEMPOTENT MODIFICATIONS OF GENERALIZED MV-ALGEBRAS

In view of 4.5 we obtain $x \oplus' z \in \overline{x}$. Further,

$$y \leq (y+z) \wedge u \leq (y+x) \wedge u = x \oplus' y$$

whence $y \oplus' z \in \overline{y} = \overline{x}$ and so $(x \oplus' z) \rho^a (y \oplus' z)$.

b) Now assume that x < z. If $z \leq y$, then in view of 4.5(i) we would have $z \in \overline{x}$, which is a contradiction. Thus y < z. We also have $x \notin \overline{z}$, $y \notin \overline{z}$. Therefore by applying similar steps as in a) we obtain

$$x \oplus' z \in \overline{z}, \quad y \oplus' z \in \overline{z}.$$

Hence $(x \oplus' z) \rho^a (y \oplus' z)$.

PROPOSITION 4.7. Let A be a linearly ordered MV-algebra. Suppose that the corresponding set S has more than two elements. Then the algebra A'_0 is not simple.

Proof. This is a consequence of 4.6.

Let Z be the additive group of all integers with the natural linear order. Put u=2; then u is a strong unit of the linearly ordered group Z. Consider the MV-algebra $\mathcal{A}_1 = \Gamma(Z, u)$. Let \mathcal{A}_{10} be defined analogously as \mathcal{A}_0 above.

PROPOSITION 4.8. The idempotent modification \mathcal{A}'_{10} of \mathcal{A}_{10} is subdirectly reducible.

Proof. We denote by A_1 the underlying set of A_1 ; hence $A_1 = \{0, 1, 2\}$. Let us deal with the partitions

$$\rho_1^0 = \{\{0\}, \{1, 2\}\}, \quad \rho_2^0 = \{\{0, 1\}, \{2\}\}\$$

of the set A_1 . For $i \in \{1, 2\}$, let ρ_i be the equivalence relation corresponding to ρ_i^0 .

It is obvious that ρ_1 and ρ_2 are congruence relations with respect to the operations \vee' and \wedge' . For showing that ρ_1 is a congruence with respect to \oplus' we have to verify that for each $x \in A_1$, the relation $(x \oplus' 1) \rho_1 (x \oplus' 2)$ is valid. Put $f_1(x) = x \oplus' 1$, $f_2(x) = x \oplus' 2$. We get

$$f_1(0) = 1$$
, $f_2(0) = 2$, $f_1(1) = 1$, $f_2(1) = 2$, $f_1(2) = 2$,

as desired.

For considering the equivalence ρ_2 we denote $f_0(x) = x \oplus' 0$. We get $f_0(0) = 0$, $f_0(1) = 1$, $f_0(2) = 2$; in view of the values of f_1 we obtain that ρ_2 is a congruence relation with respect to the operation \oplus' .

Let ρ_{\min} be the least element of con \mathcal{A}'_{10} . Since $\rho_1 \neq \rho_{\min} \neq \rho_2$ and $\rho_1 \wedge \rho_2 = \rho_{\min}$ we conclude that \mathcal{A}'_{10} is subdirectly reducible.

Again, let \mathcal{A} be as above. We denote by A^0 the set $\{x \in A : x \neq u\}$; this set is partially ordered by the relation of partial order induced from $\ell(\mathcal{A})$.

JÁN JAKUBÍK

PROPOSITION 4.9. Let A be a linearly ordered MV-algebra. Assume that A^0 does not have the greatest element. Then the algebra A'_0 is subdirectly reducible.

Proof. For each $a \in A^0$ with $a \neq u$ we consider the congruence relation ρ^a on \mathcal{A}'_0 defined as above; then $\rho^a \neq \rho_{\min}$. Put

$$\bigwedge_{a \in A^0} \rho^a = \alpha.$$

It suffices to verify that $\alpha = \rho_{\min}$.

By way of contradiction, assume that $\alpha \neq \rho_{\min}$. Hence there exist $x, y \in A$ such that x < y and $x \alpha y$. If y = u, then there is $y' \in A$ with x < y' < y. We get $x \alpha y'$. Thus without loss of generality we can suppose that both x and y belong to A^0 .

There exists $a_1 \in A^0$ with $x < a_1$ and $y < a_1$. In view of the definition of ρ^{a_1} , the relation $x \rho^{a_1} y$ fails to be valid. Thus the relation $x \alpha y$ does not hold; we arrived at a contradiction.

LEMMA 4.10. Let $x, y \in A$, 0 < x < y. Assume that ρ is a congruence relation of \mathcal{A}'_0 such that $x \rho y$. Then for each $n \in \mathbb{N}$, $n \cdot y \rho y$.

Proof. If $2 \cdot y = y$, then clearly $n \cdot y = y$ for each $n \in \mathbb{N}$. Hence it suffices to consider the case $2 \cdot y \neq y$. In this case we have $y < n \cdot y$ for each $n \in \mathbb{N}$, n > 1.

In view of $x \rho y$ we get $(x \oplus' x) \rho (x \oplus' y)$, thus $x \rho (x \oplus y)$. This yields

$$(x \oplus' y) \rho ((x \oplus y) \oplus' y).$$

We put

$$(x \oplus y) \oplus' y = t.$$

By calculating t we must distinguish the cases $x \oplus y = y$ and $x \oplus y \neq y$.

First assume that $x \oplus y = y$ is valid. We get

$$(x+y) \wedge u = y.$$

Since $\ell(A)$ is linearly ordered, we obtain that $\ell(G)$ is linearly ordered as well and thus the elements x + y and u are comparable in G.

If $x + y \ge u$, then $(x + y) \land u = u$, whence y = u and so $2 \cdot y = y$, which is a contradiction.

If x + y < u, then $(x + y) \wedge u = x + y$, hence x + y = y and so x = 0; again, we arrived at a contradiction.

Therefore we must have $x \oplus y \neq y$. Thus

$$t = (x \oplus y) \oplus y = x \oplus (y \oplus y) = x \oplus 2 \cdot y \ge 2 \cdot y > y.$$

We obtain $y \rho (2 \cdot y)$.

ON IDEMPOTENT MODIFICATIONS OF GENERALIZED MV-ALGEBRAS

Assume that n is a positive integer, $n \ge 2$, and that $y \rho(n \cdot y)$. Then $(y \oplus' y) \rho(y \oplus' (n \cdot y))$. Since $y \ne n \cdot y$, we get

$$y \oplus' (n \cdot y) = y \oplus (n \cdot y) = (n+1) \cdot y$$

thus $y \rho (n+1) \cdot y$. Therefore $(n \cdot y) \rho y$ for each $n \in \mathbb{N}$.

Now let us suppose that the set A^0 has a greatest element which will be denoted by a_0 . If p and q are elements of A such that the interval [p,q] is a two-element set, then we express this fact by writing $p \prec q$.

Thus $a_0 \prec u$. From this we immediately obtain that for each $x \in A^0$ there exists a uniquely determined element $x' \in A$ such that $x \prec x'$.

Lemma 4.11. Let card A > 3. Assume that $\rho_{\min} \neq \rho \in \text{con } \mathcal{A}'_0$. Then $a_0 \rho u$.

Proof. Since $\rho \neq \rho_{\min}$ there exist $x, y \in A$ such that x < y and $x \rho y$. Further, there exists a uniquely determined element $v \in A$ with v + y = u.

If v = 0, then y = u whence $x \le a_0 < y$ and then $a_0 \rho u$. Assume that $v \ne 0$; then v > 0.

a) Suppose that $x \neq v \neq y$. Then $x + v \in A$, hence

$$x + v = x \oplus v = x \oplus' v, \quad x + v < y + v,$$

 $u = y + v = y \oplus v = y \oplus' v.$

thus $(x+v) \rho u$. Further, $x+v \leq a_0 < u$. This yields $a_0 \rho u$.

b) Suppose that y = v. Then u = 2y. If x = 0 and $x \prec y$, then $y \prec u$, whence card A = 3, which is a contradiction; thus there exists $z \in A$ with 0 < z < y. In such a case we can take the element z instead of x. Thus without loss of generality we can assume that 0 < x.

For each $t \in A$ we put $\overline{t} = \{t_1 \in A : t_1 \rho t\}$.

First, suppose that there exists a positive integer n_0 such that $n_0 y \ge u$. Then in view of 4.3 we have $n_0 \cdot y = u$. According to 4.10, $n \cdot y \in \overline{y}$ for each $n \in \mathbb{N}$. Thus $u \in \overline{y}$ and also $a_0 \in \overline{y}$. Hence $a_0 \rho u$.

Further, suppose that ny < u for each positive integer n. Then $n \cdot y = ny$ for each $n \in \mathbb{N}$, hence $n_1 \cdot y \neq n_2 \cdot y$ whenever n_1 and n_2 are distinct elements of \mathbb{N} . Also, all $n \cdot y$ belong to \overline{y} . For each $n \in \mathbb{N}$ there is a uniquely determined element v_n of A such that $n \cdot y + v_n = u$. If $n_1, n_2 \in \mathbb{N}$, $n_1 \neq n_2$, then $v_{n_1} \neq v_{n_2}$. Thus there is $n_1 \in \mathbb{N}$ such that $v_{n_1} \neq x$ and $v_{n_1} \neq n_1 \cdot y$. Now let us consider the pair $(x, n_1 \cdot y)$ instead of the pair (x, y). According to a) we then conclude that $a_0 \rho u$.

c) Suppose that x = v. We can apply the same argument concerning n_0 and n_1 as in b). Again, we obtain the relation $a_0 \rho u$.

JÁN JAKUBÍK

PROPOSITION 4.12. Let A be a linearly ordered MV-algebra. Assume that the set A^0 has a greatest element.

- (i) If card A = 3, then the algebra \mathcal{A}'_0 is subdirectly reducible.
- (ii) If card $A \neq 3$, then the algebra \mathcal{A}'_0 is subdirectly irreducible.

Proof. If card A=3, then $\mathcal{A}\simeq\mathcal{A}_1$, where \mathcal{A}_1 is as in Proposition 4.8; hence (i) is valid.

The assertion (ii) is a consequence of Lemma 4.11.

REFERENCES

- [1] CIGNOLI, R.—D' OTTAVIANO, M. I.—MUNDICI, D.: Foundations of Many-valued Reasoning, Kluwer Academic Publ., Dordrecht, 2000.
- [2] DVUREČENSKIJ, A.: Pseudo MV-algebras are intervals in ℓ-groups, J. Aust. Math. Soc. Ser. A 72 (2002), 427–445.
- [3] GEORGESCU, G.—IORGULESCU, A.: Pseudo MV-algebras: a noncommutative extension of MV-algebras. In: Proc. IV. Internat. Symp. Econ. Inf., Printing House, Bucharest, 1999, pp. 961–968.
- [4] GEORGESCU, G.—IORGULESCU, A.: Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95–135.
- [5] GLASS, A. M. W.: Partially Ordered Groups, World Scientific, Singapore-New Jersey-London-Hong Kong, 1999.
- [6] JAKUBÍK, J.: Direct product decompositions of pseudo MV-algebras, Arch. Math. (Brno) **37** (2001), 131–142.
- [7] JAKUBÍK, J.: On idempotent modifications of MV-algebras, Czechoslovak Math. J. 57 (2007), 243–252.
- [8] JEŽEK, J.: A note on idempotent modifications of groups, Czechoslovak Math. J. 54 (2004), 229–231.
- [9] RACHŮNEK, J.: A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255–273.

Received 21. 4. 2008 Accepted 13. 6. 2008 Mathematical Institute
Slovak Academy of Sciences
Grešákova 6
SK-040 01 Košice
SLOVAKIA

E-mail: kstefan@saske.sk