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VARIATIONAL MEASURES AND

THE KURZWEIL-HENSTOCK INTEGRAL

Štefan Schwabik

(Communicated by Pavel Kostyrko )

ABSTRACT. For a given continuous function F on a compact interval E in the

set R of reals the problem is how to describe the “total change” of F on a set

M ⊂ E. Full variational measures WF (M) and VF (M) (see Section 2) in the

sense presented by B. S. Thomson are introduced in this work to this aim. They

are generated by two slightly different interval functions, namely the oscillation

of F over an interval and the value of the additive interval function generated by

F , respectively. They coincide with the concept of classical total variation if M

is an interval and they are zero if on the set M the function F is of negligible

variation.

The Kurzweil-Henstock integration is shortly described and some of its prop-

erties are studied using the variational measure WF (M) for the indefinite integral

F of an integrable function f .
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1. Notations, divisions, tags, gauges

Let −∞ < a < b < ∞ and let the compact interval E = [a, b] be fixed in

the sequel. The topology on E is induced by the usual topology on the set R of

reals.

We denote by Int(M ) the interior of a set M ⊂ E and M denotes the closure

of a set M ⊂ E.
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In the next I and J always denote closed subintervals of E. The set of all

closed subintervals of J will be denoted by Sub(J). The empty set ∅ is also

assumed to belong to Sub(J).

If I is nonempty, then by l(I), r(I) we denote the left, right endpoint of I,

respectively.

The number |I| = r(I) − l(I) is the length of I.

For the purposes of this paper a mapping T from a set Γ into a set M will be

sometimes called a system of elements of M .

The notation T = {Vj : j ∈ Γ} means that T (j) = Vj ∈ M for j ∈ Γ. A

system {Vj : j ∈ Γ} of elements of M is called finite if Γ is finite. The usual

use of this are mostly the cases Γ = N or Γ = Nk where N is the set of natural

numbers and Nk = {j ∈ N : j ≤ k}.
When we will deal with a system of elements belonging to Sub(E), we will

speak simply about a system (of intervals).

The set of all finite unions of closed subintervals of E (i.e. unions of elements

of all finite systems) is denoted by Alg(E).

The set Alg(E) is closed with respect to finite unions and intersections. Any

set M ∈ Alg(E) is the union of elements of a finite system {Ij : j ∈ Γ}, where
Ij ∩ Ik = ∅ for j �= k. If M ∈ Alg(E), then clearly also E \M ∈ Alg(E).

A division is a finite system D = {Ij : j ∈ Γ} of intervals, where Int (Ij) ∩ Ik
= ∅ for j �= k. This means that the elements of a division do not overlap.

For a given set M ⊂ E the division D is called a division in M if M ⊃ ⋃
j∈Γ

Ij

D is called a division of M if M =
⋃
j∈Γ

Ij ; and the division D covers M if

M ⊂ ⋃
j∈Γ

Ij .

A division of M exists if and only if M ∈ Alg(E).

A map τ from Sub(E) into E is called a tag if τ(I) ∈ I for I ∈ Dom(τ). In

the sequel only tags of this sort will be used.

A tagged system is a pair (D, τ), where D = {Ij : j ∈ Γ} is a system and τ

is a tag defined on the range of D, i.e. on all Ij , j ∈ Γ. In this case we write

usually τj instead of τ(Ij).

The tagged system (D, τ) is called M -tagged for some set M ⊂ E if τj ∈ M

for j ∈ Γ.

Given a function f : E → R and a set M ⊂ E we denote

|f |M = sup
x∈M

|f(x)|.

A gauge is any function on E with values in the set R+ of positive reals. The

set of all gauges is denoted by ∆(E).
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For δ1, δ2 ∈ ∆(E) we write δ1 ≤ δ2 if δ1(x) ≤ δ2(x) for x ∈ E. In this way a

partial ordering in ∆(E) is defined and any finite set in ∆(E) has an infimum

with respect to this ordering.

If δ ∈ ∆(E), then a tagged system (D, τ), where D = {Ij : j ∈ Γ}, is called
δ-fine if |Ij | < δ(τj) for j ∈ Γ.

If δ1, δ2 ∈ ∆(E), δ1 ≤ δ2, then every δ1-fine tagged system is also δ2-fine.

Remark� Let us note that for a given M ⊂ E and a gauge δ ∈ ∆(E) in some

situations it can be helpful to use divisions D = {Ij : j ∈ Γ} with the property

|Ij | ≤ |δ|Ij∩M , j ∈ Γ,

instead of δ-fine M -tagged divisions. Let us call divisions of this type δ-fine and

M -related.

If {Ij : j ∈ Γ} is δ-fine and M -related and Ij ∩ M = ∅ then |δ|Ij∩M = 0.

Hence |Ij | = 0 and the element Ij of the division D = {Ij : j ∈ Γ} can be

neglected in many of the considerations.

If (D, τ) = ({Ij : j ∈ Γ}, τ) is an M -tagged δ-fine system then τ(Ij) = τj ∈
M ∩ Ij and |Ij | ≤ δ(τj) ≤ |δ|Ij∩M and D = {Ij : j ∈ Γ} is δ-fine and M -related.

If, conversely, D = {Ij : j ∈ Γ} is δ-fine and M -related then it need not be

possible to find τj ∈ M ∩ Ij for j ∈ Γ such that |Ij | ≤ δ(τj).

The following crucial statement is known as Cousin’s lemma (see e.g. [5, 3.4

Lemma] or any other relevant text on Kurzweil-Henstock integration).

����������� 1.1� To any δ ∈ ∆(E) and I ∈ Sub(E) there exists a δ-fine

division of I.

Cousin’s lemma can be used in many different ways. We shall use the following

statements.

	
��� 1.2� Let I ∈ Sub(E) and let A be a closed subset of I. Then to every

δ ∈ ∆(E) there is a δ-fine A-tagged division in I which covers A.

P r o o f. Denote dist(x,A) the distance of a point x ∈ R from the set A. Let us

set

η(x) =

{
min{δ(x), 12 dist(x,A)} for x ∈ I \A,
δ(x) for x ∈ A ∪ (E \ I).

It is easy to see that η ∈ ∆(E). Let ({Ij : j ∈ Φ}, τ) be an η-fine division

of I (it exists by Proposition 1.1) and set Γ = {j ∈ Φ : τj ∈ A}. Then

({Ij : j ∈ Γ}, τ) is a δ-fine A-tagged division which covers A. This follows

from the definition of η for x /∈ A because for the tag τj /∈ A the corresponding

interval Ij does not intersect A by the definition of the gauge η. �
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��� 1.3� Let A be a closed subset of E, δ ∈ ∆(E) and let ({Ij : j ∈ Γ}, τ)
be a δ-fine A-tagged division.

Then there exists a set Φ ⊃ Γ a tag σ and a σ-fine A-tagged division ({Ij :

j ∈ Φ}, σ) such that σj = τj for j ∈ Γ and

A ⊂ Int
( ⋂

j∈Φ

Ij

)
.

P r o o f. Let E \ ⋃
j∈Γ

Ij =
⋃

k∈Ψ

Uk where {Uk : k ∈ Ψ} is a pairwise disjoint finite

system of closed intervals.

For any k ∈ Ψ let ({Ij : j ∈ Γk}, τ (k)) be a δ-fine A-tagged division in Uk

which covers A∩Uk. Now it suffices to set Φ = Γ∪
( ⋂

k∈Ψ

Γk

)
and σ(Ij) = τ(Ij)

for j ∈ Γ and σ(Ij) = τ (k)(Ij) for j ∈ Γk. �

Remark� Lemma 1.3 means that any δ-fine A-tagged division can be extended

to a δ-fine A-tagged division which covers a closed set A ⊂ E.

2. The function W

Assume that F : E → R is a real function defined on E. For I ∈ Sub(E)

define the usual interval function

F [I] = F (r(I))− F (l(I)).

Let us denote by C(E) the set of all continuous real-valued functions on E.

The oscillation of F ∈ C(E) on an interval I ∈ Sub(E) is defined in the usual

way by

ω(F, I) = sup{|F (x)− F (y)| : x, y ∈ I} = sup{|F [J ]| : J ∈ Sub(I)}.
The following simple properties of the oscillation of a function may be men-

tioned:

ω(F, I) ≥ 0, (2.1)

ω(F, I) = 0 ⇐⇒ F is constant on I, (2.2)

ω(αF, I) = |α|ω(F, I) for α ∈ R, (2.3)

ω

(∑
j∈Φ

Fj , I

)
≤

∑
j∈Φ

ω(Fj , I) if Φ is finite, (2.4)

ω
(
F,

⋃
j∈Φ

Ij

)
≤

∑
j∈Φ

ω(F, Ij) if Φ is finite and
⋃
j∈Φ

Ij ∈ Sub (E). (2.5)
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�������� 2.1� For F ∈ C(E) and a division D = {Ij : j ∈ Γ} let us set

Ω(F,D) =
∑
j∈Γ

ω(F, Ij)

and

A(F,D) =
∑
j∈Γ

|F [Ij ]|.

If F ∈ C(E) and M ⊂ E then for any δ ∈ ∆(E) set

Wδ(F,M ) = sup{Ω(F,D) : D is δ-fine,M -tagged}
and

Vδ(F,M ) = sup{A(F,D) : D is δ-fine,M -tagged}
and put

WF (M ) = inf{Wδ(F,M ) : δ ∈ ∆(E)}, (2.6)

VF (M ) = inf{Vδ(F,M ) : δ ∈ ∆(E)}, (2.7)

Let us note that if δ1, δ2 ∈ ∆(E), δ1 ≤ δ2 then Wδ1(F,M ) ≤ Wδ2(F,M ) and

Vδ1(F,M ) ≤ Vδ2(F,M ).

Therefore in the definition of WF (M ) and VF (M ) it suffices to take into

account gauges which are less than some fixed gauge δ0 only.

If D = {Ij : j ∈ Γ} is a division then

|F [Ij ]| ≤ ω(F, Ij) for j ∈ Γ.

Therefore

A(F,D) ≤ Ω(F,D)

and

VF (M ) ≤ WF (M ) (2.8)

Let us recall the notion V (F, I) of total variation of a function F over I ∈
Sub(E) which is defined by

V (F, I) = sup

{∑
j∈Γ

|F [Ij ]| : {Ij : j ∈ Γ} is a division of I

}
. (2.9)

Note that V (F, I) = 0 for I ∈ Sub(E) if and only if the function F is constant

on I and that V (F, I) = VF (I) for I ∈ Sub(E).

First let us show that in the simple situation of an interval I ∈ Sub(E) the

values WF (I) and VF (I) have the classical meaning of the total variation of F

over I.

	
��� 2.2� Let F ∈ C(E) and I ∈ Sub(E). Then

WF (I) = VF (I) = V (F, I). (2.10)
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P r o o f. Assume that ε > 0 is given.

Since F is uniformly continuous on E there is a σ > 0 such that |F [J ]| < 1
2ε

provided J ⊂ E and |J | ≤ σ.

If δ(x) = σ for x ∈ E then for any δ-fine I-tagged division {Ij : j ∈ Γ} we

have Ω(F,D) =
∑
j∈Γ

ω(F, Ij) =
∑
j∈Γ

|F [Jj ]| where Jj ∈ Sub(Ij), j ∈ Γ, is such

that |F [Jj ]| = ω(F, Ij).

Define Γ1 = {j ∈ Γ : Ij ⊂ I} and Γ2 = Γ \ Γ1. Since I is an interval, the set

Γ2 consists of at most two elements. Hence

Ω(F,D) =
∑
j∈Γ

|F [Jj ]| =
∑
j∈Γ1

|F [Jj ]|+
∑
j∈Γ2

|F [Jj ]| < V (F, I) + ε

and therefore also

WF (I) ≤ V (F, I) + ε

and

WF (I) ≤ V (F, I) (2.11)

since ε > 0 can be taken arbitrarily small.

Further let {Ij : j ∈ Nk} be a division of I, for which

V (F, I) <

k∑
j=1

|F [Ij ]|+ ε

2
.

Let δ ∈ ∆(E) be arbitrary and let Dj = {Jj
i : i ∈ Φj} be a δ-fine division of Ij .

Then

|F [Ij ]| ≤
∑
i∈Φj

|F [Jj
i ]|

and

V (F, I) <
ε

2
+

k∑
j=1

∑
i∈Φj

|F [Jj
i ]|.

Let us set D = {Jj
i : j = 1, . . . , k, i ∈ Φj}. Then D is a δ-fine division of I and

therefore
k∑

j=1

∑
i∈Φj

|F [Jj
i ]| ≤ Vδ(F, I).

This yields then V (F, I) < ε
2 + Vδ(F, I) and also V (F, I) < ε + VF (I), i.e. we

get

V (F, I) ≤ VF (I).

736



VARIATIONAL MEASURES AND THE KURZWEIL-HENSTOCK INTEGRAL

Using (2.8), (2.11) we obtain

VF (I) ≤ WF (I) ≤ V (F, I) ≤ VF (I)

and this finishes the proof. �

The following simple assertion will be also useful.

	
��� 2.3� Let F ∈ C(E), I ∈ Sub(E) and τ ∈ I.

Then there exists J ∈ Sub(I) such that τ ∈ J and

ω(F, I) ≤ 2|F [J ]|.
P r o o f. Since F ∈ C(E), there is Ĩ ∈ Sub(I) such that |F [Ĩ]| = ω(F, I).

If τ ∈ Ĩ, then we may take J = Ĩ.

If τ /∈ Ĩ, then we have two intervals J1, J2 ∈ Sub(I), where the endpoints of

J1 are τ and l(Ĩ) and J2, where the endpoints of J2 are τ and r(Ĩ). We have

evidently ω(F, I) ≤ |F [J1]| + |F [J2]|. To get the statement we put J = J1 if

|F [J1]| ≥ |F [J2]| or J = J2 if |F [J1]| < |F [J2]|. �

��������� 2.4� Assume that F ∈ C(E). If M ⊂ E then

VF (M ) ≤ WF (M ) ≤ 2VF (M ).

(This implies e.g. that VF (M ) = 0 if and only if WF (M ) = 0.)

Given a function F ∈ C(E) by WF (M ) and VF (M ) two set functions are

given. Using the terms presented by B . S . T h om s o n in [10] we identify

WF (M ) and VF (M ) as the full variational measures generated by the continuous

interval functions given for I ∈ Sub(E) by ω(F, I), F [I], respectively.

By [10, Theorem 3.7], WF (·) and VF (·) are metric outer measures. This means

that the following holds.

����������� 2.5� Assume that F ∈ C(E).

1. If M,M1,M2,M3, . . . is a sequence of sets in E for which M ⊂
∞⋃
i=1

Mi

then

WF (M ) ≤
∞∑
i=1

WF (Mi)

and

VF (M ) ≤
∞∑
i=1

VF (Mi).

2. If M1,M2 ⊂ E are such that there are open sets G1, G2 with M1 ⊂ G1,

M2 ⊂ G2 and G1 ∩G2 = ∅, then
WF (M1) +WF (M2) = WF (M1 ∪M2)
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and

VF (M1) + VF (M2) = VF (M1 ∪M2).

From the second part of this proposition we obtain immediately the following.

��������� 2.6� If F ∈ C(E) and A1, A2 ⊂ E are closed sets with A1∩A2 = ∅,
then

WF (A1 ∪ A2) = WF (A1) +WF (A2)

and

VF (A1 ∪A2) = VF (A1) + VF (A2)

Since ω(F, I) and F [I] are continuous interval functions for the case F ∈
C(E), by [10, Theorem 3.10], the outer measures WF (·) and VF (·) have the

increasing sets property presented in the following statement.

����������� 2.7� If F ∈ C(E) and Mi is a sequence of sets with Mi ⊂ Mi+1

then

WF

( ∞⋂
i=1

Mi

)
= lim

n→+∞WF (Mn)

and similarly

VF

( ∞⋂
i=1

Mi

)
= lim

n→+∞
VF (Mn).

Let us recall another known concept.



�������� 2.8� Let F ∈ C(E) and M ⊂ E. The function F is called to be of

negligible variation on the set M if for any ε > 0 there is a δ ∈ ∆(E) such that∣∣∣∑
j∈Γ

F [Ij ]
∣∣∣ < ε (2.12)

for any δ-fine M -tagged division ({Ij : j ∈ Γ}, τ).
Remark� Let us mention that if M is countable then every F ∈ C(E) is of

negligible variation on M .

It is easy to see that the notion of negligible variation on a set M for a function

F ∈ C(E) remains unchanged if (2.12) is replaced by∑
j∈Γ

|F [Ij ]| < ε

in Definition 3.8.

The next statement indicates where the function WF might be important. It

shows that the concept of negligible variation can be characterized by WF .
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��� 2.9� Let F ∈ C(E) and M ⊂ E. Then F is of negligible variation on

M if and only if WF (M ) = VF (M ) = 0.

P r o o f. Let ε > 0 be given and let δ ∈ ∆(E) be such that (2.12) is satisfied in

the case that F is of negligible variation on M .

Assume that ({Ij : j ∈ Γ}, τ) is a δ-fine M -tagged division and let Γ+ = {j ∈
Γ : F [Ij ] ≥ 0} and Γ− = Γ\Γ+. Then ({Ij : j ∈ Γ+}, τ) and ({Ij : j ∈ Γ−}, τ)
are again δ-fine M -tagged divisions and this implies that∑

j∈Γ

|F [Ij ]| =
∑
j∈Γ+

F [Ij ]−
∑
j∈Γ−

F [Ij ] < 2ε

holds. By Lemma 2.3 for any j ∈ Γ there is an interval Jj for which τj ∈ Jj ⊂ Ij
and ω(F, Ij) ≤ 2|F [Jj ]| for j ∈ Γ. Hence∑

j∈Γ

ω(F, Ij) ≤ 2
∑
j∈Γ

|F [Jj ]| < 4ε,

because ({Jj : j ∈ Γ}, τ) is also a δ-fine M -tagged division. The last inequality

gives Wδ(F,M ) ≤ 4ε and this yields WF (M ) ≤ 4ε for any ε > 0. Hence

WF (M ) = 0.

If WF (M ) = 0 then by definition to every ε > 0 there is a δ ∈ ∆(E) such that

Wδ(F,M ) < ε. Hence for every δ-fine M -tagged division D = ({Ij : j ∈ Γ}, τ)
we have Ω(F,D) < ε and this yields the other implication because |F [Ij ]| ≤
ω(F, Ij) for every j ∈ Γ.

The quantity VF (M ) appears in the result simply by using Corollary 2.4. �

The basic properties of the function W are summarized in the following state-

ment.

��
��
� 2.10� Let F, Fj ∈ C(E) and M,Mj ⊂ E, j ∈ N.

Then

0 ≤ WF (M1) ≤ WF (M2) if M1 ⊂ M2, (2.13)

WF

( ⋂
j∈Φ

Mj

)
≤

∑
j∈Φ

WF (Mj) if Φ is at most countable , (2.14)

W (αF, I) = |α|WF (I) for α ∈ R, (2.15)

W ∑
j∈Φ

Fj
(M ) ≤

∑
j∈Φ

WFj
(M ) if Φ is finite. (2.16)

P r o o f. The items (2.13), (2.14), (2.16) are easy to prove. (2.14) follows from

Proposition 2.5. �
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Remark� The problem under what conditions the equality holds in (2.14), i.e.

when

WF

( ⋂
j∈Φ

Mj

)
=

∑
j∈Φ

WF (Mj)

if Φ is at most countable, will be important. We give a result of this type in

Theorem 2.14 below.

For a given set M ⊂ E denote by µ(M ) the Lebesgue measure of M .



�������� 2.11� By C∗(E) we denote the set of all continuous functions on

E which are of negligible variation on sets of Lebesgue measure zero, i.e.

C∗(E) = {F ∈ C(E) : WF (N) = 0 whenever µ(N) = 0}. (2.17)

(See Lemma 2.9.)

It should be mentioned that functions F ∈ C∗(E) are called in the literature

also functions satisfying the strong Luzin condition on E (see e.g. [7, Defini-

tion 4.1.1]).

If E = [0, 1] and F : E → R is the well known Cantor function (cf. [3,

Theorem 1.21]) then F ∈ C(E) but F /∈ C∗(E).

The following well known assertion will be also needed in the sequel.

����������� 2.12� Let M be a (Lebesgue) measurable subset of E. Then there

exists a sequence {Aj : j ∈ N} of closed sets, for which Aj ⊂ Aj+1 ⊂ M for

j ∈ N and

µ
(
M \

∞⋃
j=1

Aj

)
= 0. (2.18)

This statement means that there is an Fσ set F such that F ⊂ M and

µ(M \ F ) = 0. (See e.g. [3, Theorem 1.12].)

	
��� 2.13� Let F ∈ C∗(E), M a measurable subset of E and assume that

{Aj , j ∈ N} is a sequence of closed sets, for which Aj ⊂ Aj+1 ⊂ M for j ∈ N

and

µ
(
M \

∞⋃
j=1

Aj

)
= 0.

Then

WF (M ) = lim
j→∞

WF (Aj).
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P r o o f. Clearly

M =
(
M \

∞⋃
j=1

Aj

)
∪

∞⋃
j=1

Aj .

Since F ∈ C∗(E), we have WF

(
M \

∞⋃
j=1

Aj

)
= 0. This yields by (2.14) in

Theorem 2.10 and by Proposition 2.7

WF (M ) ≤ WF

(
M \

∞⋃
j=1

Aj

)
+WF

( ∞⋂
j=1

Aj

)

= WF

( ∞⋂
j=1

Aj

)
= lim

j→∞
WF (Aj).

On the other hand, by (2.13) in Theorem 2.10 we have

WF (Aj) ≤ WF (Aj+1) ≤ WF (M )

for every j ∈ N and therefore

lim
j→∞

WF (Aj) ≤ WF (M ).

This together with the previous inequality gives the statement of the lemma. �

��
��
� 2.14� Assume that F ∈ C∗(E) and that {Mk : k ∈ N} is a sequence

of measurable subsets of E.

If Mk ∩Mn = ∅ for k �= n, then

WF

( ∞⋂
k=1

Mk

)
=

∞∑
k=1

WF (Mk).

P r o o f. Let Mk ∩Mn = ∅ for k, n ∈ N and k �= n.

First let us show that

WF (M1 ∪M2) = WF (M1) +WF (M2)

holds.

If {Aj : j ∈ N} and {Bj : j ∈ N} are sequences of closed sets such that

Aj ⊂ Aj+1 ⊂ M1, Bj ⊂ Bj+1 ⊂ M2 for j ∈ N and

µ
(
M1 \

∞⋃
j=1

Aj

)
= 0, µ

(
M2 \

∞⋃
j=1

Bj

)
= 0,

(cf. Proposition 2.12) then by Lemma 2.13 we have

WF (M1) = lim
j→∞

WF (Aj), WF (M2) = lim
j→∞

WF (Bj).
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Further clearly

µ
(
(M1 ∪M2) \

∞⋃
j=1

(Aj ∪Bj)
)
= 0

and again by Lemma 2.13 we get

WF (M1 ∪M2) = lim
j→∞

WF (Aj ∪ Bj)

= lim
j→∞

WF (Aj) + lim
j→∞

WF (Bj)WF (M1) +WF (M2)

because

WF (Aj ∪Bj) = WF (Aj) +WF (Bj)

for every j ∈ N by Corollary 3.6.

This easily implies that

WF

( n⋂
k=1

Mk

)
=

n∑
k=1

WF (Mk)

holds for every n ∈ N. By (2.13) we have

WF

( n⋂
k=1

Mk

)
≤ WF

( ∞⋂
k=1

Mk

)
for every n ∈ N and therefore

∞∑
k=1

WF (Mk) ≤ WF

( ∞⋂
k=1

Mk

)
.

From (2.14) in Theorem 2.10 we have

WF

( ∞⋂
k=1

Mk

)
≤

∞∑
k=1

WF (Mk)

and the assertion follows. �

Theorem 2.14 shows that if F ∈ C∗(E) then the variational measure WF (·)
generated by F is countably additive on the σ-algebra of measurable subsets

of E.

3. The Kurzweil-Henstock integral K

Let us start with the basic definition of the integral.
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�������� 3.1� K denotes the set of all pairs (f, γ), where f is a function on

E and γ ∈ R, for which to any ε > 0 there exists a gauge δ such that∣∣∣∑
j∈Γ

f(τj)
∣∣∣Ij | − γ| < ε

for any δ-fine division ({Ij : j ∈ Γ}, τ) of the interval E.

The value γ ∈ R is called the Kurzweil-Henstock integral of f over E and it

will be denoted by K(f) or (K)
∫
E

f .

K is in fact a mapping from a set of functions on E into R (a functional).

Denote by Dom(K) the set of all f for which the functional K is defined.

If f ∈ Dom(K) then f is called K-integrable over E.

Denote the characteristic function of a set M ⊂ E by χ(M ), i.e. χ(M ) = 1

on M and χ(M ) = 0 on E \M .

The characteristic function of the empty set ∅ may be denoted simply by 0 if

no confusion can arise.

If the product f · χ(M ) belongs to Dom(K), then K(f,M ) (or (K)
∫
M

f)

denotes the value of the functional K on f · χ(M ), i.e. K(f,M ) = K(f · χ(M ))

and of course K(f, E) = K(f).



�������� 3.2� If f ∈ Dom(K), then a function F : E → R is called a K-pri-

mitive (or the indefinite K-integral) to f provided

F [I] = K(f, I)

holds for every I ∈ Sub(E).

Now we present a collection of basic properties of the Kurzweil-Henstock

integral which will be used in the framework of this paper and in subsequent

work.

����������� 3.3�

0 ∈ Dom(K) and K(0) = 0. (3.1)

If c ∈ [a, b] = E and I1 = [a, c], I2 = [c, b] then f ∈ Dom(K) if and only if

f · χ(I1), f · χ(I2) ∈ Dom(K) and

K(f) = K(f, I1) +K(f, I2). (3.2)

If f = 0 almost everywhere (with respect to the Lebesgue measure) then

f ∈ Dom(K) and K(f) = 0. (3.3)

If f ∈ Dom(K) and F is a K-primitive to f then F ∈ C∗(E). (3.4)
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If f ∈ Dom(K) then f is (Lebesgue) measurable. (3.5)

K is a linear functional, i.e. if f, g ∈ Dom(K) and α, β ∈ R then αf + βg ∈
Dom(K) and

K(αf + βg) = αK(f) + βK(g). (3.6)

P r o o f. The properties (3.1), (3.2) and (3.6) are easy to prove.

In [3, Theorem 9.5] it is shown that (3.3) holds.

In [7, Theorem 3.9.2] it is proved that a K-primitive function F to f ∈
Dom(K) is continuous and of negligible variation on sets of zero (Lebesgue)

measure and this means that (3.4) is satisfied (cf. Definition 2.11).

The Lebesgue measurability of every f ∈ Dom(K) is proved e.g. in [3, Theo-

rem 9.12]). �

Let us mention that a K-primitive function to f ∈ Dom(K) always exists

(e.g. F (x) = K(f, [a, x]) for x ∈ E = [a, b] is a K-primitive to f) and it is

determined uniquely up to a constant.

If M ∈ Alg(E) and {Ij : j ∈ Γ} is a division of M , then f ·χ(M ) ∈ Dom(K)

if and only if f · χ(Ij) ∈ Dom(K) for all j ∈ Γ and

K(f,M ) =
∑
j∈Γ

K(f, Ij).

In connection with the property (3.4) from Proposition 3.3 the following beau-

tiful descriptive characterization of the Kurzweil-Henstock integral presented by

B o n g i o r n o , D i P i a z z a an S k v o r t s o v in [1, Theorem 3] should be

mentioned.

��
��
� 3.4� A function F : E → R is a K-primitive function to some

f : E → R if and only if F ∈ C∗(E).

In other words the class of all functions F : E → R which are K-primitive to

some f coincides with the class of all F ∈ C(E) for which WF (N) = 0 if N ⊂ E

and µ(N) = 0.

For more detail see [1] and also [8], [9].

From G o r d o n ’s book [3] it is known that a function F : E → R is K-pri-

mitive to some f : E → R if and only if F is an ACG∗ function on E. This leads

immediately to the conclusion of [1, Theorem 4] which says that the class of all

ACG∗ functions on E coincides with the class C∗(E) of functions satisfying the

strong Luzin condition.

Similar problems are dealt with also in the posthumous paper [2] of V a s i l e

E n e in connection with an older result of J a r n ı́ k and K u r z w e i l from [4].
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The following assertion known as the Saks-Henstock lemma plays an impor-

tant role in the theory (see e.g. [3, Lemma 9.11], [5, Lemma 5.3], etc.).

����������� 3.5� Let f ∈ Dom(K). Then to any ε > 0 there is a gauge δ such

that for any δ-fine tagged division ({Ij : j ∈ Γ}, τ) in E the inequality∣∣∣∑
j∈Γ

f(τj)|Ij | −K
(
f,

⋃
j∈Γ

Ij

)∣∣∣ < ε (3.7)

holds.

In other words (F being the K-primitive to f) we have∣∣∣∑
j∈Γ

f(τj)
∣∣∣Ij | −∑

j∈Γ

F [Ij ]| < ε. (3.8)

In [3, Theorem 9.21] the following is presented.

��
��
� 3.6 (Hake)� Let f : E → R be given. Suppose that f · χ([c, d]) ∈
Dom(K) for each [c, d] ⊂ E, a < c < d < b. If K(f, [c, d]) has a finite limit as

c → a+ and d → b− then f ∈ Dom(K) and

K(f) = lim
c→a+, d→b−

K(f, [c, d]).

Now we give another property of the Kurzweil-Henstock integral.

	
��� 3.7� Assume that f ∈ Dom(K) and let F be its K-primitive function.

Then

WF (M ) ≤ 2|E||f |M (3.9)

holds for M ⊂ E.

P r o o f. Let ε > 0 be given. Let δ ∈ ∆(E) be such that (3.8) holds. Assume

that ({Ij : j ∈ Γ}, τ) is a δ-fine M -tagged division and let Jj ⊂ Ij be such that

τj ∈ Jj and ω(F, Ij) ≤ 2|F [Jj ]| for j ∈ Γ (see Lemma 2.3).

Assume that Γ1 = {j ∈ Γ : F [Jj ] ≥ 0} and set Γ2 = Γ \ Γ1. Evidently

({Ij : j ∈ Γ1}, τ) and ({Ij : j ∈ Γ2}, τ) are δ-fine divisions in E.

We have∑
j∈Γ

ω(F, Ij) ≤ 2
∑
j∈Γ

|F [Jj ]| = 2
∣∣∣∑
j∈Γ1

F [Jj ]
∣∣∣+ 2

∣∣∣∑
j∈Γ2

F [Jj ]
∣∣∣

and by (3.8)∑
j∈Γ1

|F [Jj ]| =
∑
j∈Γ1

F [Jj ] =
∑
j∈Γ1

f(τj)|Jj |+
∑
j∈Γ1

(F [Jj ]− f(τj)|Jj |)

≤
∣∣∣∑
j∈Γ1

f(τj)|Jj |
∣∣∣+ ∣∣∣∑

j∈Γ1

(F [Jj ]− f(τj)|Jj |)
∣∣∣ < ∑

j∈Γ1

|f(τj)|Jj |+ ε.
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ŠTEFAN SCHWABIK

Similarly∑
j∈Γ2

|F [Jj ]| = −
∑
j∈Γ2

F [Jj ] =
∑
j∈Γ2

f(τj)|Jj | −
∑
j∈Γ2

(F [Jj ]− f(τj)|Jj |)

≤
∣∣∣∑
j∈Γ2

f(τj)|Jj |
∣∣∣+ ∣∣∣∑

j∈Γ2

(F [Jj ]− f(τj)|Jj |)
∣∣∣ < ∑

j∈Γ1

|f(τj)||Jj |+ ε.

Therefore ∑
j∈Γ

ω(F, Ij) < 2
∑
j∈Γ

|f(τj)||Jj |+ 4ε

≤ 2|f |M
∑
j∈Γ

|Jj |+ 4ε ≤ 2|f |M |E| + 4ε

and

Wδ(F,M ) < 2|f |M |E| + 4ε.

Hence

WF (M ) < 2|f |M |E|+ 4ε

for every ε > 0 and this implies (3.9). �



�������� 3.8� If I ∈ Sub(E) and A ⊂ E is closed then Comp(I, A) denotes

the set of all (maximal and nonempty) connected components of the set I \A.
The set Comp(I, A) is always at most countable and any element

U ∈ Comp(I, A)

is an interval, i.e. U ∈ Sub(E).

	
��� 3.9� Let A ⊂ E be a closed set, f, F : E → R.

Assume that

1) f = 0 on A,

2) for every [c, d] ⊂ U ∈ Comp(E,A) we have f · χ([c, d]) ∈ Dom(K) and

K(f, [c, d]) = F (d)− F (c),

3) F ∈ C(E),

4) WF (A) = 0.

Then f ∈ Dom(K) and F is a K-primitive to f .

P r o o f. By 4) to any ε > 0 there is a δ0 ∈ ∆(E) such that

Ω(F,D) =
∑
j∈Γ

ω(F, Ij) < ε
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for every δ0-fine A-tagged division ({Ij : j ∈ Γ}, τ). Therefore∣∣∣∑
j∈Γ

F [Ij ]
∣∣∣ ≤ ∑

j∈Γ

|F [Ij ]| ≤
∑
j∈Γ

ω(F, Ij) < ε

for every δ0-fine A-tagged division ({Ij : j ∈ Γ}, τ).
The conditions 2) and 3) together with Hake’s Theorem 3.6 yield

f · χ(U) ∈ Dom(K)

for every U ∈ Comp(E,A) and

K(f, U) = F [U ] = F (r(U ))− F (l(U))

by the continuity of F which is required by 3).

Comp(E,A) is at most countable, Comp(E,A) = {Uj : j ∈ N}, because A is

closed.

Since f · χ(Uj) ∈ Dom(K) for every j ∈ N and K(f, I) = F [I] for every

I ∈ Sub(Uj), there is a δj ∈ ∆(Uj) such that∣∣∣∑
l∈Γj

(f(τl)|Il| − F [Il])
∣∣∣ < ε

2j

holds for every δj-fine division ({Il : l ∈ Γj}, τ) in Uj, j ∈ N. This follows from

the Saks-Henstock lemma 3.5.

Define

δ(t) =

{
min{δj(t), 12 dist(t, A)} for t ∈ Uj, j ∈ N,

δ0(t) for t ∈ A.

Clearly δ ∈ ∆(E). Assume that ({Jk : k ∈ Φ}, τ) is a δ-fine division of E.

Denote Γ0 = {k ∈ Φ : τk ∈ A}, Γj = {k ∈ Φ : τk ∈ Uj}. By the definition of

δ ∈ ∆(E) we have Jk ⊂ Uj for k ∈ Γj and∣∣∣∑
k∈Φ

f(τk)
∣∣∣Jk| − F [E]| =

∣∣∣∑
k∈Φ

(f(τk)|Jk| − F [Jk])
∣∣∣

≤
∣∣∣∑
k∈Γ0

F [Jk]
∣∣∣+∑

j∈N

∣∣∣∑
k∈Γj

(f(τk)|Jk| − F [Jk])
∣∣∣

< ε+
∑
j∈N

ε

2j
= 2ε.

Hence f ∈ Dom(K) and K(f) = F [E].

If I ∈ Sub(E) then the same procedure can be used for the interval I and the

closed set A∩ I ⊂ E to show that f ·χ([I]) ∈ Dom(K) and that K(f, I) = F [I].

This yields the statement. �
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��������� 3.10� Let A ⊂ E be a closed set, f, F : E → R.

Assume that

1) f = 0 on A,

2) for every interval I = [c, d] ⊂ U ∈ Comp(E,A) we have f ·χ(I) ∈ Dom(K)

and

K(f, I) = F [I] = F (d)− F (c),

3) F ∈ C(E).

Then f ∈ Dom(K) and F is a K-primitive to f if and only if WF (A) = 0.

P r o o f. Lemma 3.9 gives one of the implications and therefore it suffices to

show that if f ∈ Dom(K) and F is a K-primitive to f then WF (A) = 0. But

this is clear by (3.9) from Lemma 3.7 because by 1) we have |f |A = 0. �

��
��
� 3.11� Let A ⊂ E be a closed set, g, F : E → R.

Assume that

1) g · χ(A) ∈ Dom(K),

2) for every interval I ⊂ U ∈ Comp(E,A) we have g · χ(I) ∈ Dom(K) and

K(g, I) = F [I],

3) F ∈ C(E).

Then g ∈ Dom(K) and

K(g) = K(g, A) + F [E] = K(g, A) + F (b)− F (a)

if and only if WF (A) = 0.

P r o o f. Let us set f = g − g · χ(A). Then clearly f = 0 on A and f = g on

every U ∈ Comp(E,A). By 2) we obtain that f · χ(I) ∈ Dom(K) for every

I ⊂ U ∈ Comp(E,A) and

K(f, I) = F [I].

This together with 3) implies by Corollary 3.10 that f ∈ Dom(K) if and only

if WF (A) = 0 and F is a K-primitive to f . This implies also K(f) = F [E].

By (3.6) and by the definition of f we obtain g ∈ Dom(K) if and only if

WF (A) = 0 and

K(g) = K(g · χ(A)) +K(f) = K(g, A) + F [E].

The theorem is proved. �
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Remark� Let us mention that if G is a K-primitive to g ·χ(A) ∈ Dom(K), then

G+ F is a K-primitive to g.

In other words, if WF (A) = 0 then the function

K(g · χ(A), [a, x]) + F (x)− F (a), x ∈ E

is a K-primitive to g.

In [7, Theorem 3.4.1] the following statement was proved.

��
��
� 3.12� If g is K-integrable over I ∈ Sub(E) and G is its K-primitive

then |g| is K-integrable over I if and only if V (G, I) < ∞ and

V (G, I) = K(|g|, I).
In this situation we have G ∈ C(E) and using Lemma 2.2 we get the following.

	
��� 3.13� If g is K-integrable over I ∈ Sub(E) and G is its K-primitive

then |g| is K-integrable over I if and only if W (G, I) < ∞ and

WG(I) = K(|g|, I)
in this case.

	
��� 3.14� Let M ⊂ E and assume that f, g = f · χ(M ) ∈ Dom(K) with

F,G being their K-primitives, then

WF (M ) = WG(M ) (3.10)

P r o o f. Since f − g ∈ Dom(K) and F − G is a K-primitive to f − g we have

by (3.9) in Lemma 3.7

WF−G(M ) ≤ 2|E||f − g|M = 0.

Hence by (2.14) from Theorem 2.10 we get

WF (M ) = WF−G+G(M ) ≤ WF−G(M ) +WG(M ) = WG(M ).

Similarly also WG(M ) ≤ WF (M ) and (3.10) holds. �

	
��� 3.15� Assume that f ∈ Dom(K) with F being its K-primitive, M ⊂ E

(Lebesgue) measurable and g = |f | · χ(M ) ∈ Dom(K) with the K-primitive G.

Then

WF (M ) = K(|f |,M ) = K(g). (3.11)

P r o o f. By (3.5) f is measurable and therefore f · χ(M ) is measurable as well.

Since |f · χ(M )| = |f | · χ(M ) ∈ Dom(K) we have f · χ(M ) ∈ Dom(K) (see

e.g. [7, Theorem 3.11.2]).

Hence by Lemma 3.14 we have WF (M ) = WG(M ).
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Since M ⊂ E we have WG(M ) ≤ WG(E) by (2.13) and on the other hand by

(2.14) we get

WG(E) ≤ WG(M ) +WG(E \M ) = WG(M )

because by Lemma 3.7 we have WG(E \ M ) ≤ 2|E||g|E\M = 0. This yields

WG(M ) = WG(E) and therefore

WF (M ) = WG(E).

By Lemma 3.13 we have

WG(E) = K(g) = K(|f | · χ(M )) = K(|f |,M )

because g = |g| and (3.11) is proved. �

For f ∈ Dom(K), M ⊂ E measurable, denote

K(|f |,M ) = K(|f |,M ) if |f | · χ(M ) ∈ Dom(K),

K(|f |,M ) = ∞ otherwise.

Using Lemma 3.15 we have

WF (M ) ≤ K(|f |,M ) (3.12)

for every f ∈ Dom(K) with F being its K-primitive.

����������� 3.16� If f ∈ Dom(K), F a K-primitive to f and M ⊂ E mea-

surable, then

WF (M ) = K(|f |,M ). (3.13)

P r o o f. Since (3.12) holds, the equality (3.13) is valid for the case when WF (M )

= ∞.

Assume that WF (M ) < ∞. By (3.12) for proving (3.13) it suffices to show

that

K(|f |,M ) ≤ WF (M ). (3.14)

Denote g = |f | · χ(M ) and assume that ε > 0 is given.

Since f ∈ Dom(K), by the Saks-Henstock lemma (Proposition 3.5) there is a

δ1 ∈ ∆(E) such that ∣∣∣∑
j∈Γ

(f(τj)|Ij | − F [Ij ])
∣∣∣ < ε (3.15)

for any δ1-fine division ({Ij , j ∈ Γ}, τ) in E. By the definition of WF (M ) assume

further that δ2 ∈ ∆(E) is such that∑
j∈Γ

ω(F, Ij) < WF (M ) + ε (3.16)
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for every δ2-fine M -tagged division ({Ij : j ∈ Γ}, τ) in E and put

δ = min{δ1, δ2}.
Let ({Ij : j ∈ Γ}, τ) be an arbitrary δ-fine division in E. Denote Γ̃ = {j ∈ Γ :

g(τj) �= 0}. For j ∈ Γ̃ we have clearly τj ∈ M and {Ij , j ∈ Γ̃} forms an M -tagged

division in E which is both δ1- and δ2-fine.

Then ∑
j∈Γ

g(τj)|Ij | =
∑
j∈Γ̃

g(τj)|Ij | =
∑
j∈Γ̃

f(τj)|Ij |

=
∑
j∈Γ+

f(τj)|Ij | −
∑
j∈Γ−

f(τj)|Ij |

where Γ+ = {j ∈ Γ̃ : f(τj) > 0}, Γ− = {j ∈ Γ̃ : f(τj) < 0}.
Hence by (3.15) and (3.16) we get∑

j∈Γ

g(τj)|Ij | ≤
∣∣∣ ∑
j∈Γ+

f(τj)|Ij | − F [Ij ]
∣∣∣+ ∣∣∣ ∑

j∈Γ−

f(τj)|Ij | − F [Ij ]
∣∣∣

+
∣∣∣ ∑
j∈Γ+

F [Ij ]
∣∣∣+ ∣∣∣ ∑

j∈Γ−

F [Ij ]
∣∣∣

< 2ε+
∑
j∈Γ̃

|F [Ij ]| ≤ 2ε+
∑
j∈Γ̃

ω(F, Ij) < WF (M ) + 3ε.

Since all the integral sums corresponding to the nonnegative function g = |f | ·
χ(M ) and to the δ1-fine tagged division ({Ij : j ∈ Γ}, τ) are bounded by

WF (M ) + 3ε we obtain that the integral K(g) = K(|f |,M ) exists and satisfies

the estimate

K(g) = K(|f |,M ) < WF (M ) + 3ε

for an arbitrary ε > 0. Hence

K(|f |,M ) ≤ WF (M )

and (3.14) holds. �
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