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VARIATIONAL MEASURES AND
THE KURZWEIL-HENSTOCK INTEGRAL

STEFAN SCHWABIK

(Communicated by Pavel Kostyrko)

ABSTRACT. For a given continuous function F' on a compact interval E in the
set R of reals the problem is how to describe the “total change” of F' on a set
M C E. Full variational measures Wgr (M) and Vrp(M) (see Section 2) in the
sense presented by B. S. Thomson are introduced in this work to this aim. They
are generated by two slightly different interval functions, namely the oscillation
of F' over an interval and the value of the additive interval function generated by
F, respectively. They coincide with the concept of classical total variation if M
is an interval and they are zero if on the set M the function F' is of negligible
variation.

The Kurzweil-Henstock integration is shortly described and some of its prop-
erties are studied using the variational measure Wg (M) for the indefinite integral
F of an integrable function f.
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1. Notations, divisions, tags, gauges

Let —00 < a < b < oo and let the compact interval E = [a,b] be fixed in
the sequel. The topology on F is induced by the usual topology on the set R of
reals.

We denote by Int(M) the interior of a set M C E and M denotes the closure
of aset M C E.
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In the next I and J always denote closed subintervals of E. The set of all
closed subintervals of J will be denoted by Sub(J). The empty set () is also
assumed to belong to Sub(J).

If I is nonempty, then by I(I), r(I) we denote the left, right endpoint of I,
respectively.

The number |I| = r(I) —I(I) is the length of I.

For the purposes of this paper a mapping 7" from a set ' into a set M will be
sometimes called a system of elements of M.

The notation 7' = {V; : j € I'} means that T'(j) =V, € M for j € I'. A
system {V; : j € I'} of elements of M is called finite if T' is finite. The usual
use of this are mostly the cases I' = N or I' = Ny where N is the set of natural
numbers and N, = {j e N: j < k}.

When we will deal with a system of elements belonging to Sub(E), we will
speak simply about a system (of intervals).

The set of all finite unions of closed subintervals of E (i.e. unions of elements
of all finite systems) is denoted by Alg(E).

The set Alg(F) is closed with respect to finite unions and intersections. Any
set M € Alg(E) is the union of elements of a finite system {I; : j € I'}, where
I;NI, =0 for j #k. If M € Alg(E), then clearly also E\ M € Alg(E).

A division is a finite system D = {I; : j € I'} of intervals, where Int (1;) N I},
= () for j # k. This means that the elements of a division do not overlap.

For a given set M C E the division D is called a division in M if M > |J I;

Jer
D is called a division of M if M = |J I;; and the division D covers M if
JET
M C U Ij.
Jer

A division of M exists if and only if M € Alg(E).

A map 7 from Sub(FE) into E is called a tag if 7(I) € I for I € Dom(7). In
the sequel only tags of this sort will be used.

A tagged system is a pair (D, 7), where D = {I; : j € I'} is a system and 7
is a tag defined on the range of D, i.e. on all I;, j € I'. In this case we write
usually 7; instead of 7(1;).

The tagged system (D, 7) is called M -tagged for some set M C E if 7, € M
for j € T

Given a function f: £ — R and a set M C E we denote

|[flar = sup [f()].
zeM

A gauge is any function on E with values in the set R of positive reals. The
set of all gauges is denoted by A(E).
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For 01,02 € A(FE) we write §; < d3 if §1(z) < d2(x) for 2 € E. In this way a
partial ordering in A(F) is defined and any finite set in A(E) has an infimum
with respect to this ordering.

If § € A(E), then a tagged system (D, ), where D = {I; : j € I'}, is called
d-fine if |I;| < 6(7;) for j € I

If 01,02 € A(E), 01 < 62, then every d;-fine tagged system is also do-fine.

Remark. Let us note that for a given M C F and a gauge § € A(F) in some
situations it can be helpful to use divisions D = {I; : j € I'} with the property
|1;| < [0]1,nn1s Jjer,
instead of -fine M-tagged divisions. Let us call divisions of this type J-fine and

M -related.

If {I; : j € I'} is d-fine and M-related and I; N M = § then |§|;,~nn = 0.
Hence |I;| = 0 and the element I; of the division D = {I; : j € T'} can be
neglected in many of the considerations.

If (D,7)=({I;: jeT}, 7)is an M-tagged é-fine system then 7(I;) = 1; €
M N1 and |I;] < 6(7j) < [8|r;nm and D = {I; : j € I'} is 0-fine and M-related.

If, conversely, D = {I; : j € I'} is §-fine and M-related then it need not be
possible to find 7; € M N I; for j € I' such that |I;| < 6(7;).

The following crucial statement is known as Cousin’s lemma (see e.g. [5, 3.4
Lemmal or any other relevant text on Kurzweil-Henstock integration).

ProroOSITION 1.1. To any § € A(E) and I € Sub(FE) there exists a 0-fine
division of I.

Cousin’s lemma can be used in many different ways. We shall use the following
statements.

LEMMA 1.2. Let I € Sub(E) and let A be a closed subset of I. Then to every
0 € A(E) there is a 0-fine A-tagged division in I which covers A.

Proof. Denote dist(x, A) the distance of a point x € R from the set A. Let us
set
(z) = min{d(z), ; dist(z, A)} for z € I\ A,
T = 6(x) for z € AU(E\ ).

It is easy to see that n € A(E). Let ({I; : j € ®},7) be an n-fine division
of I (it exists by Proposition 1.1) and set I' = {j € ® : 7; € A}. Then
({f; : j € I'},7) is a é-fine A-tagged division which covers A. This follows
from the definition of n for ¢ A because for the tag 7; ¢ A the corresponding
interval I; does not intersect A by the definition of the gauge 7. O
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LEMMA 1.3. Let A be a closed subset of E, 6 € A(E) and let ({I; : j € T'},7)
be a 6-fine A-tagged division.

Then there exists a set & D T' a tag o and a o-fine A-tagged division ({I; :
j € ®},0) such that oj =7; for j € I' and

Aclnt(jfelfj).

Proof. Let E\ U I; = |J Ui where {Uy : k € U} is a pairwise disjoint finite
jer kew
system of closed intervals.

For any k € W let ({I; : j € Tx},7®) be a -fine A-tagged division in Uy,

which covers ANUj. Now it suffices to set ® =T'U ( N Fk> and o(I;) = 7(1;)
kew

for j € T and o(I;) = 7*)(1;) for j € Ty. O

Remark. Lemma 1.3 means that any d-fine A-tagged division can be extended
to a d-fine A-tagged division which covers a closed set A C E.

2. The function W

Assume that F': E — R is a real function defined on E. For I € Sub(FE)
define the usual interval function
F[I} = F(r(I)) = F>(I))-

Let us denote by C(E) the set of all continuous real-valued functions on E.
The oscillation of F' € C(E) on an interval I € Sub(FE) is defined in the usual
way by

w(F, I) =sup{|F(z) — F(y)|: z,y € I} =sup{|F[J]|: J € Sub(])}.

The following simple properties of the oscillation of a function may be men-
tioned:

w(F, 1) >0, (2.1)
w(F,I) =0 <= F is constant on I, (2.2)
w(aF, I) = |a|lw(F,I) for aeR, (2.3)
w(ZFj,I> ng(Fj,I) if @ is finite, (2.4)
= JED
w(F, U Ij) <Y W(F,I;) if ®isfinite and | ] I; € Sub (B).  (2.5)
jEP® jEP jed
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DEFINITION 2.1. For F' € C(F) and a division D = {I; : j € I'} let us set
QUF, D) =) w(F1;)
jer
and
A(F,D) =) |FIL]].
Jjer
If F e C(E) and M C E then for any 6 € A(E) set
Ws(F, M) = sup{Q(F, D) : D is d-fine, M-tagged}

and
Vs(F, M) = sup{A(F,D) : D is é-fine, M-tagged}
and put
Wp(M) =inf{Ws(F,M): § € A(E)}, (2.6)
Ve(M) =inf{V5(F,M) : § € A(E)}, (2.7)

Let us note that if §1,02 € A(E), 61 < 02 then Ws, (F, M) < W5, (F, M) and
Vs, (F, M) < Vs, (F, M).
Therefore in the definition of Wg(M) and Vr(M) it suffices to take into
account gauges which are less than some fixed gauge Jq only.
If D={I;: j €T} is a division then
\F[L]| <w(F,I;)  for jeT.
Therefore
A(F,D) < Q(F,D)
and
V(M) < Win(M) (2.8)

Let us recall the notion V(F,I) of total variation of a function F over I €
Sub(E) which is defined by

V(F,I) = Sup{z |F[L;]| - {I; : j €T} is a division of I}. (2.9)
jer
Note that V(F,I) = 0 for I € Sub(FE) if and only if the function F is constant
on I and that V(F,I) = Vp(I) for I € Sub(FE).
First let us show that in the simple situation of an interval I € Sub(E) the

values W (I) and Vg (I) have the classical meaning of the total variation of F’
over I.

LEMMA 2.2. Let F € C(E) and I € Sub(E). Then
Wgr(I)=Vp(I) =V (F,I). (2.10)
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Proof. Assume that € > 0 is given.

Since F' is uniformly continuous on E there is a o > 0 such that [F[J]| < je
provided J C E and |J| < 0.

If 6(z) = o for « € E then for any ¢-fine I-tagged division {I; : j € I'} we
have Q(F,D) = > w(F,I;) = > |F[J;]| where J; € Sub(l;), j € I, is such

jer jer

that |F'[J;]| = w(}?, 1;). ’

DefineI'y ={jeI': I C I} and I'; =T\ T. Since I is an interval, the set
I's consists of at most two elements. Hence

D) =Y [F[J]l= Y IFIJ)l+ Y IF] < V(FI) +

jer JET JET2

and therefore also
Wr(I) <V(F,I)+¢
and
Wgr(I) <V(F,I) (2.11)
since € > 0 can be taken arbitrarily small.
Further let {I; : j € Ni} be a division of I, for which

k
V(FI) <> |FIL]|+
j=1

Let § € A(E) be arbitrary and let D; = {J/ : i € ®;} be a d-fine division of I;.

Then
FlL) < Y |FLA)
Z‘G‘I)J'
and
€ k ;
J
V(FI) <, +;ZZ;F[JJ.

Let us set D = {Jf j=1,...,k, i€ ®;}. Then D is a -fine division of I and
therefore

Z > IFL < Vs(F ).

Jj=1i€d;
This yields then V(F,I) < 5 + V5(F,I) and also V(F,I) < € + Vr(I), i.e. we
get

V(F,I) < Vp(I).
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Using (2.8), (2.11) we obtain
Ve(I) < We(I) < V(F,I) < Ve(I)
and this finishes the proof. O

The following simple assertion will be also useful.
LEMMA 2.3. Let F € C(E), I € Sub(E) and 1 € 1.
Then there ezists J € Sub(I) such that 7 € J and
w(F,I) <2|F[J]|.
Proof. Since F' € C(FE), there is ZG Sub(I) such that |F[I]| = w(F, ).

If 7 € I, then we may take J = 1.
If 7 ¢ I, then we have two intervals Ji, J € Sub([), where the endpoints of

J1 are 7 and I(I) and Ja, where the endpoints of Jo are 7 and r(I). We have
evidently w(F,I) < |F[J1]| + |F[J2]|- To get the statement we put J = J; if
[FLA = [F[J2]| or J = Jy if [FL]| < [F[J2]]. O
COROLLARY 2.4. Assume that F' € C(FE). If M C E then

Ve(M) < Wrp(M) < 2Vp(M).
(This implies e.g. that V(M) = 0 if and only if Wg (M) =0.)

Given a function F' € C(F) by Wgr(M) and Vi(M) two set functions are
given. Using the terms presented by B. S. Thomson in [10] we identify
Wg (M) and Vr(M) as the full variational measures generated by the continuous
interval functions given for I € Sub(E) by w(F, I), F[I], respectively.

By [10, Theorem 3.7], Wg(-) and Vg (+) are metric outer measures. This means
that the following holds.
PROPOSITION 2.5. Assume that F € C(E).
1. If M, My, My, Ms, ... is a sequence of sets in E for which M C |J M;
i=1
then

Wr(M) < i Wr(M;)
and :1
Vir(M) < ZVF(Mi)~

2. If My, Ms C E are such that there are open sets G1,Go with My C Gy,
My C Gy and G1 NGy =0, then

WF(Ml) + WF(MQ) = WF(M1 U Mg)

737



STEFAN SCHWABIK

and
V(M) + V(M) = Vp(M; U Ms).

From the second part of this proposition we obtain immediately the following.

COROLLARY 2.6. If F € C(E) and A1, A2 C E are closed sets with Ay N Ay = (),
then

WF(Al U Ag) = WF(Al) + WF(AQ)
and

VF(A1 U AQ) =Vr(41) + Vr(As)

Since w(F,I) and F[I] are continuous interval functions for the case F €
C(FE), by [10, Theorem 3.10], the outer measures Wg(-) and Vg(:) have the
increasing sets property presented in the following statement.

PROPOSITION 2.7. If F € C(FE) and M; is a sequence of sets with M; C M;4+1
then

n—-+o0o

WF< ﬁ Mi> = lim Wp(M,)
and similarly -

VF( ﬁ Mi> = lim_Vi(M,).
=1

Let us recall another known concept.

DEFINITION 2.8. Let F' € C(F) and M C E. The function F is called to be of
negligible variation on the set M if for any £ > 0 there is a § € A(FE) such that

’Z F[Ij]‘ <e (2.12)
Jjer
for any d-fine M-tagged division ({I; : j € I'}, 7).
Remark. Let us mention that if M is countable then every F' € C(FE) is of
negligible variation on M.

It is easy to see that the notion of negligible variation on a set M for a function
F € C(F) remains unchanged if (2.12) is replaced by

M IF[L] <«

jerl
in Definition 3.8.

The next statement indicates where the function Wy might be important. It
shows that the concept of negligible variation can be characterized by Wg.
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LEMMA 2.9. Let F € C(E) and M C E. Then F is of negligible variation on
M if and only if Wp(M) = V(M) = 0.

Proof. Let ¢ > 0 be given and let 6 € A(E) be such that (2.12) is satisfied in
the case that F' is of negligible variation on M.

Assume that ({I; : j € I'},7) is a d-fine M-tagged division and let I'y = {j €
I': F[I;] >0}and ' =T'\I'y. Then ({I;: jel'y},7)and ({I;: jeI'_},7)
are again J-fine M-tagged divisions and this implies that

SIFILI =Y FlI] = ) FlI;] < 2
jer jery jer-

holds. By Lemma 2.3 for any j € I' there is an interval J; for which 7; € J; C I;
and w(F, I;) <2|F[J;]| for j € T'. Hence

S wR) <230 P[] < 4.

Jjer jer
because ({J; : j € I'}, 7) is also a d-fine M-tagged division. The last inequality
gives Ws(F, M) < 4e and this yields Wr(M) < 4e for any ¢ > 0. Hence
Wg(M) = 0.

If Wg(M) = 0 then by definition to every € > 0 there is a 6 € A(E) such that
Ws(F, M) < €. Hence for every é-fine M-tagged division D = ({I; : j € I'},7)
we have Q(F,D) < ¢ and this yields the other implication because |F'[[;]| <
w(F, I;) for every j € I

The quantity V(M) appears in the result simply by using Corollary 2.4. O

The basic properties of the function W are summarized in the following state-
ment.

THEOREM 2.10. Let F,F; € C(E) and M,M; C E, j € N.

Then
WF< ﬂ Mj> < Z Wr(M;) if ® is at most countable , (2.14)
Jjed jed
W(aF,I) = |a|Wr(I) for a€eR, (2.15)
Wy (M) <Y Wp (M) if @ is finite. (2.16)
je® jED

Proof. The items (2.13), (2.14), (2.16) are easy to prove. (2.14) follows from
Proposition 2.5. (]
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Remark. The problem under what conditions the equality holds in (2.14), i.e.
when

we( () M) = 3 we(a;)
jed je®
if ® is at most countable, will be important. We give a result of this type in
Theorem 2.14 below.

For a given set M C E denote by (M) the Lebesgue measure of M.

DEFINITION 2.11. By C*(E) we denote the set of all continuous functions on
FE which are of negligible variation on sets of Lebesgue measure zero, i.e.

C*(E)={F e C(F): Wg(N) =0 whenever u(N) = 0}. (2.17)

(See Lemma 2.9.)

It should be mentioned that functions F' € C*(E) are called in the literature
also functions satisfying the strong Luzin condition on E (see e.g. [7, Defini-
tion 4.1.1]).

If £ =[0,1] and F: E — R is the well known Cantor function (cf. [3,
Theorem 1.21]) then F' € C(E) but F ¢ C*(E).

The following well known assertion will be also needed in the sequel.

PROPOSITION 2.12. Let M be a (Lebesgue) measurable subset of E. Then there
exists a sequence {A; 1 j € N} of closed sets, for which A; C Aj41 C M for
j €N and

M(M\ [_j Aj) = 0. (2.18)

This statement means that there is an F, set I such that ' C M and
u(M\ F)=0. (See e.g. [3, Theorem 1.12].)

LEMMA 2.13. Let F € C*(E), M a measurable subset of E and assume that
{4;, j € N} is a sequence of closed sets, for which A; C Aj41 C M forj € N

and
j=1
Then

J—0o0
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Proof. Clearly
o0 o0
M = (M\UAj)uUAj.
j=1 j=1

Since F' € C*(E), we have Wp (M\ U Aj) = 0. This yields by (2.14) in
j=1

Theorem 2.10 and by Proposition 2.7

3

we) < we (WA U 4) + Wi () 4))

j=1 =1

= WF(]Q AJ) = ]15{.10 WF(AJ)

On the other hand, by (2.13) in Theorem 2.10 we have
Wr(4;) < Wp(Aj41) < Wp(M)

<
Il

for every j € N and therefore

Jj—oo
This together with the previous inequality gives the statement of the lemma. [J

THEOREM 2.14. Assume that F' € C*(E) and that {M} : k € N} is a sequence
of measurable subsets of F.

If Mi, " M,, =0 for k # n, then
WF( N Mk> =3 We(My).
k=1 k=1

Proof. Let MyNM, =0 for k,n € N and k # n.
First let us show that

WF(M1 U MQ) = WF(Ml) + WF(MQ)

holds.

If {4; : j € N} and {B; : j € N} are sequences of closed sets such that
Aj C A]‘+1 C Ml, B]‘ C Bj+1 C My fOI‘j € N and

p(M\ | 45) =0, w(mz\|JB) =0,
j=1 j=1
(cf. Proposition 2.12) then by Lemma 2.13 we have
WF(Ml) = hm WF(A]), WF(MQ) = hm WF(Bj).
j—o0 j—o0
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Further clearly

1
(MUM2 UAUB) 0

and again by Lemma 2.13 we get
WF(M1 U MQ) = hm WF(A] U B])
j—o0
= jlgrolo Wr(4;) + ]15210 Wg(Bj)Wg(My) + Wg(Mz)

because
Wr(A; U B;j) = Wrp(4;) + Wr(B;)
for every j € N by Corollary 3.6.
This easily implies that

WF( ﬁ Mk) = ;WF(M/C)

k=1

holds for every n € N. By (2.13) we have

WF(ﬁMk) < WF(ﬁMk)

for every n € N and therefore

iWF(Mk) < WF( ﬁ Mk)

k=1 k=1
From (2.14) in Theorem 2.10 we have

Wp(ﬁ1 My) < ;wF(Mk)

and the assertion follows. O

Theorem 2.14 shows that if F' € C*(F) then the variational measure Wg(-)
generated by F' is countably additive on the o-algebra of measurable subsets
of F.

3. The Kurzweil-Henstock integral K

Let us start with the basic definition of the integral.
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DEFINITION 3.1. K denotes the set of all pairs (f,~), where f is a function on
E and v € R, for which to any € > 0 there exists a gauge § such that

> |l =l <<

jer
for any o-fine division ({I; : j € I'}, 7) of the interval E.

The value v € R is called the Kurzweil-Henstock integral of f over E and it
will be denoted by K(f) or (K) [ f.
E

K is in fact a mapping from a set of functions on E into R (a functional).

Denote by Dom(K) the set of all f for which the functional K is defined.

If f € Dom(K) then f is called K -integrable over E.

Denote the characteristic function of a set M C E by x(M), i.e. x(M)=1
on M and x(M)=0on E\ M.

The characteristic function of the empty set ) may be denoted simply by 0 if
no confusion can arise.

If the product f - x(M) belongs to Dom(K), then K(f,M) (or (K) [ f)

M

denotes the value of the functional K on f-x(M), i.e. K(f,M) = ( X(M))
and of course K(f, E) = K(f).

DEFINITION 3.2. If f € Dom(K), then a function F': £ — R is called a K-pri-
mitive (or the indefinite K -integral) to f provided

FlIl = K(f,1)
holds for every I € Sub(FE).

Now we present a collection of basic properties of the Kurzweil-Henstock
integral which will be used in the framework of this paper and in subsequent
work.

ProprosiTION 3.3.

0 € Dom(K) and K(0)=0. (3.1)
If ¢c € [a,b] = E and I, = [a,c],Is = [c,b] then f € Dom(K) if and only if
f-x(I), [ - x(I2) € Dom(K) and

K(f)=K(f,I) + K(f, I2). (3.2)
If f =0 almost everywhere (with respect to the Lebesque measure) then
f €Dom(K) and K(f)=0. (3.3)

If feDom(K) and F is a K-primitive to f then F € C*(E). (3.4)
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If f € Dom(K) then f is (Lebesgue) measurable. (3.5)

K is a linear functional, i.e. if f,g € Dom(K) and o, B € R then af + Bg €
Dom(K) and

K(af + Bg) = aK(f) + BK(g)- (3.6)

Proof. The properties (3.1), (3.2) and (3.6) are easy to prove.

In [3, Theorem 9.5] it is shown that (3.3) holds.

In [7, Theorem 3.9.2] it is proved that a K-primitive function F to f €
Dom(K) is continuous and of negligible variation on sets of zero (Lebesgue)
measure and this means that (3.4) is satisfied (cf. Definition 2.11).

The Lebesgue measurability of every f € Dom(K) is proved e.g. in [3, Theo-
rem 9.12]). O

Let us mention that a K-primitive function to f € Dom(K) always exists
(e.g. F(x) = K(f,[a,z]) for x € E = [a,b] is a K-primitive to f) and it is
determined uniquely up to a constant.

If M € Alg(E) and {I; : j € I'} is a division of M, then f - x(M) € Dom(K)
if and only if f - x(I;) € Dom(K) for all j € I" and

K(faM) = ZK<f7]J)
jer
In connection with the property (3.4) from Proposition 3.3 the following beau-
tiful descriptive characterization of the Kurzweil-Henstock integral presented by
Bongiorno, Di Piazza an Skvortsov in [1, Theorem 3] should be
mentioned.

THEOREM 3.4. A function F: E — R is a K-primitive function to some
f: E— R if and only if F € C*(E).

In other words the class of all functions F': E — R which are K-primitive to
some f coincides with the class of all F € C(E) for which Wp(N) =0 if N C E
and p(N) = 0.

For more detail see [1] and also [8], [9].

From Gordon’s book [3] it is known that a function F': £ — R is K-pri-
mitive to some f: F — R if and only if F' is an ACG, function on F. This leads
immediately to the conclusion of [1, Theorem 4] which says that the class of all
ACG, functions on E coincides with the class C*(F) of functions satisfying the
strong Luzin condition.

Similar problems are dealt with also in the posthumous paper [2] of Vasile
Ene in connection with an older result of Jarnik and Kurzweil from [4].
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The following assertion known as the Saks-Henstock lemma plays an impor-
tant role in the theory (see e.g. [3, Lemma 9.11], [5, Lemma 5.3], etc.).

ProrosITION 3.5. Let f € Dom(K). Then to any ¢ > 0 there is a gauge § such
that for any 0-fine tagged division ({I; : j € T'},7) in E the inequality

]foj L] - K ( U )’<5 (3.7)

S

holds.
In other words (F being the K -primitive to f) we have
> s Ll = Y Pl < (3.8)
JET jer

In [3, Theorem 9.21] the following is presented.

THEOREM 3.6 (Hake). Let f: E — R be given. Suppose that f - x([e,d]) €
Dom(K) for each [c,d] C E, a <c<d<b. If K(f,[c,d]) has a finite limit as
¢ — a+ and d — b— then f € Dom(K) and

K(f)= lim K(f,[e,d]).

c—a+, d—b—

Now we give another property of the Kurzweil-Henstock integral.

LEMMA 3.7. Assume that f € Dom(K) and let F be its K-primitive function.
Then

W (M) < 2|E||f|m (3.9)
holds for M C E.

Proof. Let € > 0 be given. Let § € A(FE) be such that (3.8) holds. Assume
that ({I; : j € T'},7) is a é-fine M-tagged division and let J; C I, be such that
7; € Jj and w(F, I;) < 2|F[J;]| for j € ' (see Lemma 2.3).

Assume that I'y = {j € ' : F[J;] > 0} and set I'; = I" \ I';. Evidently
({Z;: jeT'y},7)and ({I; : j€T's}, 7) are §-fine divisions in E.

We have

S w(F 1) §2Z|F \—2‘21? ’—|—2’ZF ‘

JEr Jer Jjers
and by (3.8)
YIFI =D Fll =Y fmldil+ Y (F ;D)
Jjer Jjers Jjer Jjer
< |2 Fall| + | X2 (Rl = £l \)] < D Ul +e
FISI FISI J€ET1
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Similarly
IR ==Y Fl =Y fapldil = Y (FLL] = fr)1d50)
JE: JE2 JEr2 JE2
+ |22 (FL = FEILD| < X0 1F I +e.
JETS jeT2 Jjer
Therefore
S w(F L) <2 ()l J;] + 4e
JET jer
<2fln Y 1J;| +4e < 2/ f|m|E| + 4e
jer
and
Ws(F, M) < 2[f|m|E| + 4e.
Hence
Wr(M) <2[f|m|E| +4e
for every € > 0 and this implies (3.9). O

DEFINITION 3.8. If ] € Sub(F) and A C E is closed then Comp(/, A) denotes
the set of all (maximal and nonempty) connected components of the set I\ A.

The set Comp(I, A) is always at most countable and any element

U € Comp(I, A)

is an interval, i.e. U € Sub(FE).

LeEMMA 3.9. Let A C E be a closed set, f,F: E — R.
Assume that
1) f=0o0nA,
2) for every [c,d] C U € Comp(E, A) we have f - x([c,d]) € Dom(K) and

K(f7 [Cvd]) = F(d) _F(C)a

3) FeC(E),

4) Wp(A) =

0.

Then f € Dom(K) and F is a K-primitive to f.

Proof. By 4) to any € > 0 there is a dyp € A(F) such that
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for every dp-fine A-tagged division ({I; : j € I'}, 7). Therefore
S FILI < Y IR < Y w(F L) <<
Jjer jer Jjer
for every dp-fine A-tagged division ({I; : j € I'}, 7).
The conditions 2) and 3) together with Hake’s Theorem 3.6 yield
[ x(U) € Dom(K)
for every U € Comp(F, A) and
K(f,U) = F[U] = F(r(U)) = F(U))

by the continuity of F which is required by 3).

Comp(FE, A) is at most countable, Comp(E, A) = {U; : j € N}, because A is
closed.

Since f - x(U;) € Dom(K) for every j € N and K(f,I) = F[I] for every
I € Sub(Uj), there is a §; € A(Uj) such that

|S" (lnl - Fln)| <

ZEF]'

€
2J

holds for every ¢;-fine division ({I; : [ € I';},7) in Uj;, j € N. This follows from
the Saks-Henstock lemma 3.5.
Define
5(t) = min{é;(t), ; dist(t,A)} for t € U;, j €N,
RN for ¢t € A.

Clearly § € A(F). Assume that ({Jx : k € ®},7) is a 0-fine division of E.
Denote I'y ={k € ®: 7, € A}, I ={k € ®: 7, € U;}. By the definition of
d € A(E) we have J, C Uj for k € I'; and

|3 )|kl = FIE) = |3 (£l el = FL)|

ked® ked
<> P+ D0 | @l — FLa)
kel JEN kel
9
<e+ Z 0j = 2¢.
jEN

Hence f € Dom(K) and K(f) = F[E].

If I € Sub(F) then the same procedure can be used for the interval I and the
closed set ANI C E to show that f-x([/]) € Dom(K) and that K(f,I) = F[I].
This yields the statement. O
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COROLLARY 3.10. Let A C E be a closed set, f,F': E — R.

Assume that

1) f=0o0nA,
2) for every interval I = [¢,d] C U € Comp(F, A) we have f-x(I) € Dom(K)
and
K(f, 1) = F[I] = F(d) — F(c),
3) FeC(E).

Then f € Dom(K) and F is a K-primitive to f if and only if Wr(A) = 0.

Proof. Lemma 3.9 gives one of the implications and therefore it suffices to
show that if f € Dom(K) and F is a K-primitive to f then Wr(A) = 0. But
this is clear by (3.9) from Lemma 3.7 because by 1) we have |f|4 = 0. O

THEOREM 3.11. Let A C E be a closed set, g, F: E — R.

Assume that
1) g+ x(4) € Dom(K),
2) for every interval I C U € Comp(E, A) we have g - x(I) € Dom(K) and
K(g,I) = F[I],
3) FeC(E).
Then g € Dom(K) and
K(g) = K(g,A) + F[E] = K(g,A) + F(b) — F(a)
if and only if Wg(A) =0.
Proof. Let usset f = g—g-x(A). Then clearly f =0 on A and f = g on

every U € Comp(F, A). By 2) we obtain that f - x(I) € Dom(K) for every
I CcU € Comp(F, A) and

K(f,I) = F[I].

This together with 3) implies by Corollary 3.10 that f € Dom(K) if and only
if Wp(A) =0 and F is a K-primitive to f. This implies also K(f) = F[E].

By (3.6) and by the definition of f we obtain ¢ € Dom(K) if and only if
Wg(A) =0 and

K(g9) = K(g9-x(A)) + K(f) = K(g,A) + F[E].

The theorem is proved. O
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Remark. Let us mention that if G is a K-primitive to g-x(A) € Dom(K), then
G + F is a K-primitive to g.
In other words, if Wr(A) = 0 then the function

K(gX(A),[G,ZCD-FF(.I)—F(Q)’ rek
is a K-primitive to g.
In [7, Theorem 3.4.1] the following statement was proved.

THEOREM 3.12. If g is K-integrable over I € Sub(E) and G is its K-primitive
then |g| is K-integrable over I if and only if V(G,I) < oo and

V(G 1) = K(lg],1).
In this situation we have G € C(F) and using Lemma 2.2 we get the following.

LEMMA 3.13. If g is K-integrable over I € Sub(FE) and G is its K-primitive
then |g| is K-integrable over I if and only if W(G,I) < oo and

We(l) = K(|g],I)
in this case.

LEMMA 3.14. Let M C E and assume that f,g = f - x(M) € Dom(K) with
F, G being their K -primitives, then

Wg(M)=Wg(M) (3.10)
Proof. Since f — g € Dom(K) and F — G is a K-primitive to f — g we have
by (3.9) in Lemma 3.7
Wr-a(M) < 2|E||f = glm = 0.
Hence by (2.14) from Theorem 2.10 we get
Wrp(M)=Wp_gi¢(M) <Wp_g(M)+ Wg(M) =Wg(M).
Similarly also W (M) < Wg(M) and (3.10) holds. O

LEMMA 3.15. Assume that f € Dom(K) with F' being its K-primitive, M C E
(Lebesgue) measurable and g = |f| - x(M) € Dom(K) with the K-primitive G.
Then

Wp(M) = K(|f], M) = K(g). (3.11)

Proof. By (3.5) f is measurable and therefore f - x(M) is measurable as well.
Since |f - x(M)| = |f] - x(M) € Dom(K) we have f - x(M) € Dom(K) (see
e.g. [7, Theorem 3.11.2]).
Hence by Lemma 3.14 we have Wp(M) = Wg(M).
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Since M C E we have W (M) < Wg(E) by (2.13) and on the other hand by
(2.14) we get
We(E) < Wa(M)+We(E\ M) =Wg(M)
because by Lemma 3.7 we have Wg(E \ M) < 2|E||g|p\ps = 0. This yields
Wa (M) = Wg(F) and therefore
Wg(M) =Wa(E).
By Lemma 3.13 we have

Wa(E) = K(g) = K(|f| - x(M)) = K(|f], M)
because g = |g| and (3.11) is proved. O

For f € Dom(K), M C E measurable, denote
K(If, M) = K(|f|, M) if [f]-x(M) € Dom(K),
K(|f|,M) =00 otherwise.
Using Lemma 3.15 we have
Wp(M) < K(|f], M) (3.12)
for every f € Dom(K) with F' being its K-primitive.

ProrosiTION 3.16. If f € Dom(K), F a K-primitive to f and M C E mea-
surable, then
W (M) = K(If], M). (3.13)

Proof. Since (3.12) holds, the equality (3.13) is valid for the case when Wg (M)
= 00.
Assume that Wg(M) < co. By (3.12) for proving (3.13) it suffices to show
that
K(|f|, M) < Wp(M). (3.14)
Denote g = |f| - x(M) and assume that € > 0 is given.
Since f € Dom(K), by the Saks-Henstock lemma (Proposition 3.5) there is a
91 € A(F) such that
> = P < (3.15)
Jjer
for any d;-fine division ({;,j € I'}, 7) in E. By the definition of Wg (M) assume
further that d, € A(E) is such that

D w(F L) < Wp(M)+e (3.16)

jer
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for every do-fine M-tagged division ({I; : j € I'},7) in E and put
= min{él, (52}
Let ({I; : j € I'},7) be an arbitrary d-fine division in E. Denote Fr={jel:

g(1j) # 0}. For j € I we have clearly 7j € M and {I;,j € F} forms an M-tagged
division in E which is both §;- and d»-fine.

Then
S gL =Yg =" f(m)I]
Jer jer jer
= > fE)ILI= Y )]
jEF+ Jjelr_

where Ty = {j €T : f(r;) >0}, T_={jel: f(r;) <0}
Hence by (3.15) and (3.16) we get

S gL Y eIl - FI| + | Y £l - Flij

jer jery jer_
+| 2 Pl + | Pl
jery jger_
<2+ Y |FIL] €254 Y w(F ) < We(M) + 3e.
jer jer

Since all the integral sums corresponding to the nonnegative function g = |f| -
x(M) and to the d;-fine tagged division ({I; : j € I'},7) are bounded by
Wg (M) + 3¢ we obtain that the integral K(g) = K(|f|, M) exists and satisfies
the estimate

K(g) = K(|f, M) < Wp(M) + 3¢

for an arbitrary € > 0. Hence
K(|f], M) < Wp(M)
and (3.14) holds. d
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