

DOI: 10.2478/s12175-009-0158-8 Math. Slovaca **59** (2009), No. 6, 705-718

PSEUDO-RANK FUNCTIONS ON CERTAIN LATTICES

M. P. Wasadikar — S. K. Nimbhorkar

Dedicated to Prof. G. R. Shendge on the occasion of his 70th birthday (Communicated by Jiří Rachůnek)

ABSTRACT. Pseudo-rank functions on bounded lattices are introduced and their properties are studied. It is shown that if the set of all pseudo-rank functions on a Boolean lattice is nonempty then it is a Choquet simplex.

©2009 Mathematical Institute Slovak Academy of Sciences

1. Introduction

A real valued function D on a lattice L is called a dimension function, if the range of D has either an upper bound or a lower bound and for all $a, b \in L$, $D(a \lor b) + D(a \land b) = D(a) + D(b)$, see v on Ne u mann [12, p. 58]. The theory of dimension functions is studied in various structures. V on Ne u mann [12] introduced dimensionality in continuous geometries by using perspectivity, whereas I wamura [6] used the concept of a relation called the p-relation.

Kaplansky [7], Murray and von Neumann [11] and others have introduced dimensionality in rings of operators by using equivalence of projections. Maeda [10] generalized the work of von Neumann [12] and Kaplansky [7] for a certain class of lattices. At the same time Loomis [8] gave an abstract setting to the Murray, von Neumann dimension theory by using complete orthocomplemented lattices. Goodearl [3] developed the dimension theory for a certain class of modules. Von Neumann [12, p. 231] has introduced the concept of a rank-function on a regular ring, which generalizes

2000 Mathematics Subject Classification: Primary 06D99. Keywords: pseudo-rank function, bounded lattice.

the dimension function. Goodearl [2], [4] has introduced and developed the study of *pseudo-rank functions* on regular rings, which is a generalization of rank functions.

In this paper we introduce and study the concept of a pseudo-rank function on a bounded lattice L on the lines of G o o dearl [4]. In Section 2, we obtain some basic properties of pseudo-rank functions and the set of all pseudo-rank functions on L and show how new pseudo-rank functions can be constructed from some given ones. In Section 3 we consider the set $\mathbb{P}(L)$ of all pseudo-rank functions as a subset of the real vector space \mathbb{R}^L equipped with the product topology. It is proved that $\mathbb{P}(L)$ is a compact convex subset of \mathbb{R}^L . We also show that if L is a Boolean lattice with nonempty $\mathbb{P}(L)$ then the convex cone in \mathbb{R}^L with base $\mathbb{P}(L)$ is a lattice. A necessary and sufficient condition for two pseudo-rank functions to lie in disjoint faces of $\mathbb{P}(L)$ are given. Further it is shown that $\mathbb{P}(L)$ is a Choquet simplex.

2. Pseudo-rank functions

A lattice L is said to have the zero element, if there exists an element, denoted by 0, such that $0 \le x$ for all $x \in L$. L is said to have the unit element, if there exists an element, denoted by 1, such that $x \le 1$ for all $x \in L$. If L has both 0 and 1, then L is called a bounded lattice. A bounded lattice is called complemented if for any $a \in L$, there exists $b \in L$ such that $a \land b = 0$ and $a \lor b = 1$. Then b is called a complement of a. A distributive complemented lattice is called a Boolean lattice. We say that $x_1, \ldots, x_n \in L$ are completely orthogonal, if $x_i \land \bigvee_{j \ne i} x_j = 0$ for each i. The undefined terms are from $G \ r \ \ddot{a} \ t \ z \ e \ r \ [5]$ and $M \ a \ e \ d \ a$ and $M \ a \ e \ d \ a$ [9].

DEFINITION 1. A pseudo-rank function f on a bounded lattice L is a mapping $f: L \to [0, 1]$ such that

- (a) f(1) = 1.
- (b) $f(x) \le f(y)$ for all $x, y \in L$ such that $x \le y$.
- (c) $f(x \vee y) = f(x) + f(y)$ for all $x, y \in L$ with $x \wedge y = 0$.

Clearly, f(0) = 0 and $f(\bigvee_{i=1}^{n} x_i) = \sum_{i=1}^{n} f(x_i)$ whenever $x_1, \dots, x_n \in L$ are completely orthogonal.

A pseudo-rank function f with the property f(x) > 0, for $x \neq 0$ is called a rank function on L.

The following proposition is evident.

PROPOSITION 1. Let L be a bounded lattice and f be a pseudo-rank function on L. Suppose that $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_k\}$ are sets of completely orthogonal elements in L. If $x_1 \vee \cdots \vee x_n \leq y_1 \vee \cdots \vee y_k$, then $\sum_{i=1}^n f(x_i) \leq \sum_{i=1}^k f(y_i)$.

A lattice L is called relatively complemented, if for $a, b, c \in L$ with $a \in [b, c]$ there exists $d \in L$ such that $a \wedge d = b$ and $a \vee d = c$. Then d is called a relative complement of a in [b, c].

PROPOSITION 2. Let L be a relatively complemented bounded lattice and f be a pseudo-rank function on L. Suppose that $x_1, \ldots, x_n \in L$. Then $f(x_1 \vee \cdots \vee x_n) \leq \sum_{i=1}^k f(x_i)$.

Proof. We prove the proposition for n=2. Let a and b be relative complements of $x_1 \wedge x_2$ in $[0,x_1]$ and in $[0,x_2]$ respectively. Then $a \wedge b \leq x_1 \wedge x_2$. Taking meet with a, we get $a \wedge b = 0$. Also, $0 = a \wedge x_1 \wedge x_2 = a \wedge x_2$. Now, $f(x_1 \vee x_2) = f(a \vee (x_1 \wedge x_2) \vee x_2) = f(a \vee x_2) = f(a) + f(x_2) \leq f(x_1) + f(x_2)$. By using induction, we get the result.

Two elements $x, y \in L$ are called *perspective* (in notation $x \sim y$) if there exists $z \in L$ such that $x \wedge z = y \wedge z = 0$ and $x \vee z = y \vee z = 1$.

We note that if f is a pseudo-rank function on L, then $x \sim y$ implies f(x) = f(y). The proof of the following lemma is evident.

LEMMA 1. Let f be a pseudo-rank function on a bounded lattice L. Let $x \in L$ be such that $f(x) \neq 0$. Then the function P(y) = f(y)/f(x) defines a pseudo-rank function on (x].

An element x in a lattice L is called a dually distributive element, if $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ for all $y, z \in L$, see Grätzer [5, p. 181]. An element x in a bounded lattice L is called a central element, if there exist two lattices L_1 and L_2 and an isomorphism between L and the direct product L_1L_2 such that x corresponds to the element $[1_1, 0_2] \in L_1L_2$. It is known that $z \in L$ is a central element if and only if z is a neutral element having a complement (see Maeda and Maeda [9, Theorem 4.13]).

LEMMA 2. Let f be a pseudo-rank function on a bounded lattice L. Let $x \in L$, be a dually distributive element in L such that $f(x) \neq 0$. The function $Q(y) = f(x \wedge y)/f(x)$ defines a pseudo-rank function on L.

Proof. Clearly, $Q(1) = f(x \wedge 1)/f(x) = 1$. If $a, b \in L$ and $a \leq b$ then $x \wedge a \leq x \wedge b$ implies $Q(a) \leq Q(b)$. Moreover, if $a \wedge b = 0$ for some $a, b \in L$, then $f(a \vee b) = f(a) + f(b)$ and so $Q(a \vee b) = Q(a) + Q(b)$. Thus Q is a pseudo-rank function on L.

LEMMA 3. Let f be a pseudo-rank function on a bounded lattice L. Let $x \in L$, be a central element in L such that f(x) = 1. Then $f(x \wedge y) = f(y)$ for all $y \in L$.

Proof. Since x is a central element, there exists a complement x' of x. Clearly, $1 = f(1) = f(x \vee x') = f(x) + f(x') = 1 + f(x')$. Hence f(x') = 0. For any $y \in L$, $f(x' \wedge y) \leq f(x') = 0$. Hence $f(y) = f(y \wedge 1) = f[y \wedge (x \vee x')] = f[(y \wedge x) \vee (y \wedge x')] = f(y \wedge x) + f(y \wedge x') = f(y \wedge x)$.

Lemma 4. Let L be a bounded lattice and $\{x_1,\ldots,x_n\}$ be a set of completely orthogonal elements in L. Suppose I, J are nonempty subsets of $\{1,\ldots,n\}$. Let α_i and β_j be nonzero real numbers. For each $i \in I$ and $j \in J$, let P_i and Q_j be pseudo-rank functions on $(x_i]$ and $(x_j]$ respectively. If $\sum_{i \in I} \alpha_i P_i(x_i \wedge y) = \sum_{j \in J} \beta_j Q_j(x_j \wedge y)$ for every $y \in L$, then I = J, $\alpha_i = \beta_i$ and $P_i = Q_i$ for each i.

Proof. Let $t \in J$. Then using $x_j \wedge x_t = 0$ for $j \neq t$, $Q_j(0) = 0$ and $Q_j(x_j) = 1$, we get $\sum_{i \in I} \alpha_i P_i(x_i \wedge x_t) = \sum_{j \in J} \beta_j Q_j(x_j \wedge x_t) = \beta_t \neq 0$. Hence $P_s(x_s \wedge x_t) \neq 0$ for some $s \in I$. This implies $x_s \wedge x_t \neq 0$ and so s = t, i.e. $t \in I$. Thus $J \subseteq I$. Similarly we get $I \subseteq J$.

Given $s \in I$, $y \in (x_s]$, then using $x_i \wedge y = 0$ for $i \neq s$ we get, $\alpha_s P_s(y) = \sum_{i \in I} \alpha_i P_i(x_i \wedge y) = \sum_{j \in J} \beta_j Q_j(x_j \wedge y) = \beta_s Q_s(x_s \wedge y) = \beta_s Q_s(y)$. In particular, $\alpha_s = \alpha_s P_s(x_s) = \beta_s Q_s(x_s) = \beta_s$. Consequently, $P_s(y) = Q_s(y)$ for every $y \in (x_s]$. Thus $P_s = Q_s$.

Lemma 5. Let L be a bounded lattice and $\{x_1, \ldots, x_n\}$ be a set of completely orthogonal central elements in L. Suppose I, J are nonempty subsets of $\{1, \ldots, n\}$. Let α_i and β_j be nonzero real numbers. For each $i \in I$ and $j \in J$, let P_i and Q_j be pseudo-rank functions on L such that $P_i(x_i) = 1$ and $Q_j(x_j) = 1$. If $\sum_{i \in I} \alpha_i P_i(y) = \sum_{j \in J} \beta_j Q_j(y)$ for every $y \in L$, then I = J, $\alpha_i = \beta_i$ and $P_i = Q_i$ for each i.

Proof. Let $t \in J$. Then using Lemma 3 and $x_j \wedge x_t = 0$ for $j \neq t$ we get $Q_j(x_t) = Q_j(x_j \wedge x_t) = 0$. Hence $\sum_{i \in I} \alpha_i P_i(x_t) = \sum_{j \in J} \beta_j Q_j(x_t) = \beta_t Q_t(x_t) = 0$

 $\beta_t \neq 0$. Hence $P_s(x_t) \neq 0$ for some $s \in I$. This implies $x_s \wedge x_t \neq 0$ and so s = t, i.e. $t \in I$. Thus $J \subseteq I$. Similarly we get $I \subseteq J$.

Given $s \in I$, $y \in L$ we have by using Lemma 3, $\alpha_s P_s(y) = \alpha_s P_s(x_s \wedge y) = \sum_{i \in I} \alpha_i P_i(x_i \wedge x_s \wedge y) = \sum_{i \in I} \alpha_i P_i(x_s \wedge y) = \sum_{j \in J} \beta_j Q_j(x_s \wedge y) = \sum_{j \in J} \beta_j Q_j(x_j \wedge x_s \wedge y) = \beta_s Q_s(x_s \wedge y) = \beta_s Q_s(y)$. In particular, $\alpha_s = \alpha_s P_s(x_s) = \beta_s Q_s(x_s) = \beta_s$. Consequently, $P_s(y) = Q_s(y)$ for every $y \in L$. Thus $P_s = Q_s$.

Lemma 6. Let L be a bounded lattice and $\{x_1, \ldots, x_n\}$ be a set of completely orthogonal central elements in L. Let f be a pseudo-rank function on L such that $\sum_{i=1}^{n} f(x_i) = 1$ and $f(x_i) \neq 0$ for all i.

- (a) There exist unique pseudo-rank functions P_i on $(x_i]$ such that $f(y) = \sum_{i=1}^n f(x_i) P_i(x_i \wedge y)$ for all $y \in L$.
- (b) There exist unique pseudo-rank functions Q_i on L such that $Q_i(x_i) = 1$ and $f(y) = \sum_{i=1}^n f(x_i)Q_i(y)$ for all $y \in L$.

Proof. Since $\{x_1,\ldots,x_n\}$ is a set of completely orthogonal elements in L, $f(x_1\vee\cdots\vee x_n)=\sum\limits_{i=1}^n f(x_i)=1$. As x_1,\ldots,x_n are central elements, so is $x_1\vee\cdots\vee x_n$ and hence $f(y)=f((x_1\vee\cdots\vee x_n)\wedge y)$ for all $y\in L$ by Lemma 3. Clearly, the set $\{x_1\wedge y,\ldots,x_n\wedge y\}$ is a completely orthogonal subset of L. Hence $f(y)=f((x_1\wedge y)\vee\cdots\vee(x_n\wedge y))=\sum\limits_{i=1}^n f(x_i\wedge y)$.

- (a) For each i, by Lemma 1, $P_i(y) = f(y)/f(x_i)$ defines a pseudo-rank function P_i on $(x_i]$. Given any $y \in L$, we then have $f(x_i \wedge y) = f(x_i)P_i(x_i \wedge y)$ for each i. Hence $f(y) = \sum_{i=1}^n f(x_i)P(x_i \wedge y)$. Uniqueness follows from Lemma 4.
- (b) For each i, by Lemma 2, $Q_i(y) = f(x_i \wedge y)/f(x_i)$ defines a pseudo-rank function Q_i on L. We note that $Q_i(x_i) = 1$. Given any $y \in L$, we then have $f(x_i \wedge y) = f(x_i)Q_i(y)$ for all i. Hence $f(y) = \sum_{i=1}^n f(x_i)Q_i(y)$. Uniqueness follows from Lemma 5.

THEOREM 1. Let L be a bounded lattice and $\{x_1, \ldots, x_n\}$ be a set of completely orthogonal central elements in L such that $x_1 \vee \cdots \vee x_n = 1$.

(a) Suppose I is a nonempty subsets of $\{1, \ldots, n\}$. Let α_i be positive real numbers such that $\sum_{i \in I} \alpha_i = 1$. For each $i \in I$, let P_i be a pseudo-rank

function on $(x_i]$. Then $f(y) = \sum_{i \in I} \alpha_i P_i(x_i \wedge y)$ is a pseudo-rank function on L.

- (b) Let α_i , $1 \leq i \leq n$, be nonnegative real numbers such that $\sum_{i \in I} \alpha_i = 1$. For each $i \in I$, let P_i be a pseudo-rank function on $(x_i]$. Then $f(y) = \sum_{i=1}^{n} \alpha_i P_i(x_i \wedge y)$ is a pseudo-rank function on L.
- (c) Every pseudo-rank function on L may be uniquely obtained as in (a). Moreover, if there exists at least one pseudo-rank function on each $(x_i]$, then every pseudo-rank function on L may be obtained as in (b).

Proof. (a) and (b) follow immediately from the definition of a pseudo-rank function.

(c) Let f be a pseudo-rank function on L. Let I be the set of those $i \in \{1, \ldots, n\}$ for which $f(x_i) \neq 0$. Put $\alpha_i = f(x_i)$ for all $i \in I$. Then $\sum_{i \in I} \alpha_i = \sum_{i \in I} f(x_i) = f(x_1 \vee \cdots \vee x_n) = f(1) = 1$. By Lemma 6 there exist pseudo-rank functions P_i on $(x_i]$ for each $i \in I$ such that $f(x) = \sum_{i \in I} \alpha_i P_i(x_i \wedge y)$ for all $y \in L$. Thus f has a representation as in (a).

Suppose that there exists at least one pseudo-rank function on each $(x_i]$. Put $\alpha_i = f(x_i)$ for all i = 1, ..., n. For $i \in \{1, ..., n\} - I$, let P_i be any pseudo-rank function on $(x_i]$. Then $f(x) = \sum_{i \in I} \alpha_i P_i(x_i \wedge y) = \sum_{i=1}^n \alpha_i P_i(x_i \wedge y)$ for all $y \in L$, which represents f as in (b).

We recall some terms from Birkhoff [1, p. 5]. The *length* of a poset P is defined as the least upper bound of the lengths of the chains in P and it is denoted by l(P). If l(P) is finite, then the poset P is said to be of *finite length*. Let P be a poset of finite length with 0 and $a \in P$. The *height* of a, denoted by h(a), is defined as the least upper bound of all chains in [0, a].

It is known that in a modular lattice, $h(a \lor b) + h(a \land b) = h(a) + h(b)$.

COROLLARY 1. Let L be a modular lattice of finite length. Let x_i , $1 \le i \le n$, be completely orthogonal nonzero central elements in L such that $x_1 \lor \cdots \lor x_n = 1$. Let α_i , $1 \le i \le n$, be nonnegative real numbers such that $\sum \alpha_i = 1$. Then $f(y) = \sum_{i=1}^n \alpha_i [h(x_i \land y)/h(x_i)]$ defines a pseudo-rank function on L.

Proof. Clearly, for each $y \in L$, $h(x_i \wedge y) \leq h(x_i)$, so $f(y) \in [0,1]$. It is clear that f(1) = 1 and if $y, z \in L$, $y \leq z$ then $f(y) \leq f(z)$. Let $y, z \in L$, $y \wedge z = 0$.

Then using successively that x_i are central and L is modular of finite length, we have $f(y \vee z) = \sum_{i=1}^{n} \alpha_i h[x_i \wedge (y \vee z)]/h(x_i) = \sum_{i=1}^{n} \alpha_i h[(x_i \wedge y) \vee (x_i \wedge z)]/h(x_i) = \sum_{i=1}^{n} \alpha_i [h(x_i \wedge y) + h(x_i \wedge z)]/h(x_i) = f(y) + f(z).$

The proof of the following lemma follows from the definition of a pseudo-rank function.

LEMMA 7. Let L_1, L_2 be two bounded lattices, $f: L_1 \to L_2$ be a 0, 1-homomorphism. If g is a pseudo-rank function on L_2 , then $g \circ f$ is a pseudo-rank function on L_1 .

Lemma 8. Let f be a pseudo-rank function on a relatively complemented bounded lattice L. The set $A = \{x \in L : f(x) = 0\}$ is an ideal of L.

Proof. Since f(0) = 0, A is nonempty. Clearly, if $x \leq y$ and $y \in A$, then $x \in A$. Let $x, y \in A$. Then $f(x \vee y) \leq f(x) + f(y)$ shows that A is an ideal of L.

Lemma 9. If f, g are pseudo-rank functions on a complemented lattice L such that $f(x) \leq g(x)$ for all $x \in L$, then f = g.

Proof. If $f \neq g$, then f(x) < g(x) for some $x \in L$. We have $f(x') \leq g(x')$. Hence $1 = f(1) = f(x \vee x') = f(x) + f(x') < g(x) + g(x') = g(x \vee x') = g(1) = 1$, a contradiction.

Remark 1. Let L be a lattice with 0, I be a prime ideal of L. Then the mapping $\phi: L \to (L-I) \cup \{0\}$ defined by $\phi(x) = x$, if $x \notin I$ and $\phi(x) = 0$, if $x \in I$ is a meet-homomorphism.

LEMMA 10. Let f be a pseudo rank function on a relatively complemented bounded lattice L. Let I be a prime ideal of L, such that $I \subseteq \ker(f)$. Then there exists a unique pseudo-rank function g on $(L-I) \cup \{0\}$ such that $g \circ \phi = f$. Further g is a rank function iff $I = \ker(f)$.

Proof. Suppose $x, y \in L$ and $\phi(x) = \phi(y)$. We claim that f(x) = f(y). If $x, y \in I$, then $\phi(x) = \phi(y) = 0$ and f(x) = f(y) = 0. If $x, y \in L - I$, then $\phi(x) = \phi(y)$ implies x = y and f(x) = f(y). If $x \in I$ and $y \notin I$, then $\phi(x) = 0$ and $\phi(y) = y$. Hence $\phi(x) = \phi(y)$ implies y = 0 which contradicts $y \notin I$.

Define a map $g: (L-I) \cup \{0\} \to [0,1]$, by g(x) = f(x). As g(x) = f(x) for all $x \in L-I$, g is a rank function iff f(x) > 0 for all $x \in L-I$, which is equivalent to $I = \ker(f)$.

THEOREM 2. Let L be a modular lattice of finite length. Then the function N on L defined by N(x) = h(x)/h(1) is a pseudo-rank function on L, where h(x) denotes the height of x.

Proof. Clearly N(1)=1 and for $x,y\in L, x\leq y$ implies $N(x)\leq N(y)$. Let $x,y\in L$ be such that $x\wedge y=0$. Using L is modular we get $N(x\vee y)=h(x\vee y)/h(1)=[h(x)+h(y)]/h(1)=N(x)+N(y)$. Thus N is a pseudo-rank function on L.

3. Properties of the set of pseudo-rank functions

DEFINITION 2. For a bounded lattice L, we denote the set of all pseudo-rank functions on L by $\mathbb{P}(L)$ (this set might be empty). We consider it as a subset of the real vector space $\mathbb{R}^L = \{f: f: L \to \mathbb{R}\}$ equipped with the product topology.

We note that \mathbb{R}^L is a Hausdorff topological vector space. The topology on \mathbb{R}^L can be described in terms of convergence of nets. Given a net $\{f_i\}$ in \mathbb{R}^L , and some $f \in \mathbb{R}^L$, we have $f_i \to f$ if and only if $f_i(x) \to f(x)$ for all $x \in L$. A partial order can be defined on \mathbb{R}^L by $f \leq g$ iff for each $x \in L$, $f(x) \leq g(x)$.

DEFINITION 3. Let E be a real vector space. A convex combination of points $x_1, \ldots, x_n \in E$, is any linear combination of the form $\alpha_1 x_1 + \cdots + \alpha_n x_n$ such that $\alpha_i \in \mathbb{R}$, $\alpha_i \geq 0$, $\sum_{i=1}^n \alpha_i = 1$. A convex subset of E is any subset $K \subseteq E$ such that for $0 \leq \alpha \leq 1$, and any $x, y \in K$, $\alpha x + (1 - \alpha)y \in K$. A convex cone in E is a subset $C \subseteq E$, such that $0 \in C$ and $\alpha x + \beta y \in C$ for all $x, y \in C$ and nonnegative real numbers α and β . A convex cone C is called strict, if $C \cap (-C) = 0$. A subset C of C is called an affine subspace, if it is closed under linear combinations of the form $\sum_{i=1}^n \alpha_i x_i$, where $x_i \in A$ and $\sum \alpha_i = 1$. A hyperplane in C is an affine subspace of the form C is a convex C such that C is a convex C such that C is contained in a hyperplane not containing the origin and $C = \{\alpha x : x \in K \text{ and } \alpha \geq 0\}$.

PROPOSITION 3. For a bounded lattice L, the set $\mathbb{P}(L)$ is a compact convex subset of \mathbb{R}^L .

Proof. Clearly, $\mathbb{P}(L)$ is a convex set.

We note that $\mathbb{P}(L)$ is contained in $W = [0,1]^L$, which is compact by Tichonoff's theorem. Thus it is sufficient to show that $\mathbb{P}(L)$ is closed in W. Let N_i be a net in $\mathbb{P}(L)$, which converges to some $N \in W$. Since $N_i(1) \to N(1)$, we have N(1) = 1. For $x, y \in L$ with $x \leq y$, we have $N_i(x) \leq N_i(y)$ and so $N(x) \leq N(y)$. Similarly, if $x \wedge y = 0$, then $N(x \vee y) = N(x) + N(y)$. Thus $N \in \mathbb{P}(L)$, so $\mathbb{P}(L)$ is closed in W.

A convex subset F of a convex set K is called a *face* of K if for $x, y \in K$ and $0 < \alpha < 1$, $\alpha x + (1 - \alpha)y \in F$ implies $x, y \in F$.

LEMMA 11. Let L be a bounded lattice and $X \subseteq L$. Then the set $F = \{N \in \mathbb{P}(L) : N(x) = 0 \text{ for all } x \in X\}$ is a closed face of $\mathbb{P}(L)$.

Proof. Let N_i be a net in F converging to some $N \in \mathbb{P}(L)$. Clearly, for all $x \in L$, $N_i(x) = 0$ for each i and so N(x) = 0. Thus $N \in F$, i.e. F is a closed subset of $\mathbb{P}(L)$. If $0 < \alpha < 1$, then for any $P, Q \in F$, $[\alpha P + (1-\alpha)Q](x) = 0$. Thus F is convex. Suppose that for some α , $0 < \alpha < 1$, and for some $P, Q \in \mathbb{P}(L)$, $\alpha P + (1-\alpha)Q = N \in F$. For all $x \in X$, we have $P(x) \leq \alpha^{-1}([\alpha P + (1-\alpha)Q](x)) = \alpha^{-1}N(x) = 0$. Thus P(x) = 0, i.e. $P \in F$. Similarly, $Q \in F$. Therefore, F is a face of $\mathbb{P}(L)$.

A lattice L is called *irreducible* if 0 and 1 are the only central elements in L.

LEMMA 12. Let L be a relatively complemented bounded lattice. Let $f \in \mathbb{P}(L)$ be such that $\ker(f) = \{0\}$. If f is an extreme point of $\mathbb{P}(L)$ then L is an irreducible lattice.

Proof. Let $z \in L$ be a central element such that $z \neq 0$. By [9, Theorem 4.13, Remark 4.14], z has a complement z', which is also a central element. We have f(z) > 0, f(z') > 0 and f(z) + f(z') = 1. By Lemma 6, there exist pseudo-rank functions g_1 and g_2 on L such that $g_1(z) = 1$, $g_2(z') = 1$ and $f(y) = f(z)g_1(y) + f(z')g_2(y)$ for all $y \in L$. Since $g_1(z) = 1$ implies $g_1(z') = 0$, we get $g_1 \neq g_2$. Thus f is a convex combination of distinct pseudo-rank functions in $\mathbb{P}(L)$. This contradicts the assumption that f is an extreme point. \square

PROPOSITION 4. Let L be a relatively complemented bounded lattice such that $\mathbb{P}(L)$ is nonempty. Let V be a convex cone in \mathbb{R}^L with base $\mathbb{P}(L)$.

- (a) A mapping $f \in \mathbb{R}^L$ belongs to V if and only if $f \geq 0$, and f(x) = f(y) + f(z) for all $x, y, z \in L$ such that $x = y \vee z$ and $y \wedge z = 0$.
- (b) For $f, g \in V$, we have $f \leq g$ iff $g f \in V$.

Proof.

(a) If $f \in V$, then $f = \alpha N$ for some nonnegative real number α and for some $N \in \mathbb{P}(L)$. Clearly, $f \geq 0$. If $x, y, z \in L$, such that $x = y \vee z$ and $y \wedge z = 0$, then N(x) = N(y) + N(z) shows that f(x) = f(y) + f(z).

Conversely, suppose $f \geq 0$ and f(x) = f(y) + f(z), whenever $x = y \vee z$ and $y \wedge z = 0$. Let $a, b \in L$ with $a \leq b$ and z be the relative complement of a in [0, b]. Then f(b) = f(a) + f(z) shows that $f(a) \leq f(b)$. We note that $0 \leq f(x) \leq 1$ for all $x \in L$. Thus if f(1) = 0, then f = 0. In this case, f = 0N for any $N \in \mathbb{P}(L)$. Now suppose, f(1) > 0. Put N(x) = f(x)/f(1). Then N satisfies the properties of a pseudo-rank function on L and we have $f = f(1)N \in V$.

(b) If $g - f \in V$, then $g - f \ge 0$ and so $f \le g$. Conversely, suppose $f \le g$. We note that $g - f \ge 0$. Let $x, y \in L$ be such that $x \wedge y = 0$ Then by (a), $f(x \vee y) = f(x) + f(y)$ and $g(x \vee y) = g(x) + g(y)$. Hence $(g - f)(x \vee y) = (g - f)(x) + (g - f)(y)$. Hence $g - f \in V$.

The following proposition is from [4, p. 336].

PROPOSITION 5. Let K be a convex subset of a real vector space. Let $X \subseteq K$ and $x \in K$. Then x lies in the face generated by X in K iff there exists $y \in K$ and real number α , $0 < \alpha < 1$, such that $\alpha x + (1 - \alpha)y$ lies in the convex hull of X.

COROLLARY 2. Let L be a relatively complemented bounded lattice. Let $P \in \mathbb{P}(L)$, $X \subseteq \mathbb{P}(L)$. Then P lies in the face generated by X in $\mathbb{P}(L)$ iff $P \leq \alpha Q$ for some positive real number α and some Q in the convex hull of X.

Proof. Suppose that P lies in the face generated by X. Then by Proposition 5, there exists $P' \in \mathbb{P}(L)$, $\beta \in \mathbb{R}$, $0 < \beta < 1$, such that $Q = \beta P + (1 - \beta)P'$ belongs to the convex hull of X. Then $\beta P \leq Q$. Thus $P \leq \beta^{-1}Q$.

Conversely, suppose that $P \leq \alpha Q$ for some positive real number α and some Q in the convex hull of X. Since, P and αQ lie in the convex cone in \mathbb{R}^L , with base $\mathbb{P}(L)$, by Proposition 4, $\alpha Q - P$ lies in this cone also. Hence $\alpha Q - P = \beta P'$ for some $P' \in \mathbb{P}(L)$ and some nonnegative real number β . Then $P + \beta P' = \alpha Q$ and $1 + \beta = P(1) + \beta P'(1) = \alpha Q(1) = \alpha$. Hence $\gamma = \alpha^{-1}$ is a real number such that $0 < \gamma \leq 1$ and $\gamma P + (1 - \gamma)P' = Q$. Hence by Proposition 5, P lies in the face generated by X.

PROPOSITION 6. Let L be a Boolean lattice such that $\mathbb{P}(L)$ is nonempty. Let V be the convex cone in \mathbb{R}^L with base $\mathbb{P}(L)$. Then V is a lattice. For $f, g \in V$ and any $w \in L$, we have

- (a) $(f \wedge g)(w) = \inf \{ \sum \min\{f(a_i), g(a_i)\} : w = a_1 \vee \cdots \vee a_n, \text{ where } a_1, \ldots, a_n \}$ are completely orthogonal elements in $L \} = \inf \{ \sum_{i=1}^{2} \min\{f(a_i), g(a_i)\} : w = a_1 \vee a_2, \text{ where } a_1 \wedge a_2 = 0 \}.$
- (b) $(f \vee g)(w) = \inf \left\{ \sum \max\{f(a_i), g(a_i)\} : w = a_1 \vee \cdots \vee a_n, \text{ where } a_1, \ldots, a_n \right\}$ $are \text{ completely orthogonal elements in } L = \sup \left\{ \sum_{i=1}^{2} \max\{f(a_i), g(a_i)\} : w = a_1 \vee a_2, \text{ where } a_1 \wedge a_2 = 0 \right\}.$

Proof. For all $w \in L$, let $h_1(w) = \inf \left\{ \sum \min \{ f(a_i), g(a_i) \} : w = a_1 \vee \cdots \vee a_n \text{ where } a_1, \ldots, a_n \text{ are completely orthogonal elements in } L \right\}$ and $h_2(w) = \inf \left\{ \sum_{i=1}^2 \min \{ f(a_i), g(a_i) \} : w = a_1 \vee a_2, \text{ where } a_1 \wedge a_2 = 0 \right\}.$

We have $h_1(w) \leq h_2(w)$. If $w = a_1 \vee \cdots \vee a_n$, where a_1, \ldots, a_n are completely orthogonal elements in L, then we may renumber so that there is an index k with $f(a_i) \leq g(a_i)$ for all $i \leq k$ and $f(a_i) \geq g(a_i)$ for all i > k. Put $x = a_1 \vee \cdots \vee a_k$ and $y = a_{k+1} \vee \cdots \vee a_n$. By distributivity of L, $x \wedge y = 0$. Also $f(x) \leq g(x)$ and $f(y) \geq g(y)$. Hence $h_2(w) \leq \min\{f(x), g(x)\} + \min\{f(y), g(y)\} = f(x) + g(y) = \sum \min\{f(a_i), g(a_i)\}$. Thus $h_2(w) \leq h_1(w)$ and so $h_1 = h_2$.

Clearly, $h_1 \geq 0$ and $h_1 \leq f$, $h_1 \leq g$. Suppose, $k \in V$ and $k \leq f$, $k \leq g$. Then $k = \alpha r$ for some $\alpha \geq 0$ and for some pseudo-rank function r. Let $x \in L$ and $x = a_1 \vee \cdots \vee a_n$ where a_1, \ldots, a_n are completely orthogonal. Hence $k(x) = \alpha r(x) = \alpha \sum_{i=1}^n r(a_i) = \sum_{i=1}^n \alpha r(a_i) = \sum_{i=1}^n k(a_i) \leq \sum \min\{f(a_i), g(a_i)\}$. Thus $k(x) \leq h_1(x)$. Therefore $h_1 = f \wedge g$ if $h_1 \in V$.

To show that $h_1 \in V$, it is sufficient to show that $h_1(x) = h_1(y) + h_1(z)$ whenever, $x = y \lor z$ and $y \land z = 0$. By the definition of h_1 , it follows that for a given $\varepsilon > 0$, there exist completely orthogonal elements y_1, \ldots, y_n such that $y = y_1 \lor \cdots \lor y_n$ and $\sum \min\{f(y_i), g(y_i)\} < h_1(y) + \varepsilon/2$. Similarly, $\sum \min\{f(z_i), g(z_i)\} < h_1(z) + \varepsilon/2$ for some completely orthogonal elements z_1, \ldots, z_m satisfying $z = z_1 \lor \cdots \lor z_m$. Since $y \land z = 0$, it follows by distributivity of L that $y_1, \ldots, y_n, z_1, \ldots, z_m$ are completely orthogonal. Then $x = y_1 \lor \cdots \lor y_n \lor z_1 \lor \cdots \lor z_m$ shows that $h_1(x) < h_1(y) + h_1(z) + \varepsilon$. Hence $h_1(x) \le h_1(y) + h_1(z)$.

Let $x = x_1 \vee \cdots \vee x_n$ for some completely orthogonal elements x_1, \ldots, x_n and $x = y \vee z$ for some $y, z \in L$ with $y \wedge z = 0$. By distributivity of L, y = 0

 $y_1 \vee \cdots \vee y_n$ for completely orthogonal elements $y_i = x_i \wedge y$, $i = 1, \dots, n$. Similarly $z = z_1 \vee \cdots \vee z_n$ for completely orthogonal elements $z_i = x_i \wedge z$, $i = 1, \dots, n$ and $x_i = y_i \vee z_i$. Then $h_1(y) + h_1(z) \leq \sum \min\{f(y_i), g(y_i)\} + \sum \min\{f(z_i), g(z_i)\} = \sum \min\{f(y_i), g(y_i)\} + \min\{f(z_i), g(z_i)\} \leq \sum \min\{f(y_i) + f(z_i), g(y_i) + g(z_i)\} = \sum \min\{f(x_i), g(x_i)\}$. Therefore $h_1(y) + h_1(z) \leq h_1(x)$.

Thus $h_1(x) = h_1(y) + h_1(z)$ for all $x, y, z \in L$ with $x = y \vee z$. Since $h_1 \geq 0$, by Proposition 4, $h_1 \in V$.

Similarly, we can prove (b).

We now give a characterization for two elements $P, Q \in \mathbb{P}(L)$ to be in disjoint faces of $\mathbb{P}(L)$.

PROPOSITION 7. Let L be a Boolean lattice. Let $P, Q \in \mathbb{P}(L)$ and V be the convex cone in \mathbb{R}^L , with base $\mathbb{P}(L)$. Then the following statements are equivalent.

- (a) P and Q lie in disjoint faces of $\mathbb{P}(L)$.
- (b) $P \wedge Q = 0$ in V.
- (c) For any $x \in L$ and any positive real number ε , there exists a decomposition $x = y \lor z$, $y \land z = 0$ such that $P(y) + Q(z) < \varepsilon$.

Proof. Let F be the face generated by P in $\mathbb{P}(L)$ and let G be the face generated by Q in $\mathbb{P}(L)$.

(a) \Longrightarrow (b):

If $P \wedge Q \neq 0$, then $P \wedge Q = \alpha N$ for some $N \in \mathbb{P}(L)$ and some positive real number α . Then $N \leq \alpha^{-1}P$ and $N \leq \alpha^{-1}Q$. Hence by Corollary 2, $N \in F \cap G$, a contradiction.

(b) \Longrightarrow (a):

If there is some $N \in F \cap G$, then by Corollary 2, there exists a positive real number α such that $N \leq \alpha P$ and $N \leq \alpha Q$. Then we get $\alpha^{-1}N \in V$ such that $0 < \alpha^{-1}N \leq P \wedge Q$, which is impossible.

(b) \Longrightarrow (c):

If P(x) = 0 then we take y = x and z = 0. If Q(x) = 0, then take y = 0 and z = x. Suppose, P(x) > 0 and Q(x) > 0. Then by decreasing ε if necessary, we may also assume that $\varepsilon < P(x)$ and $\varepsilon < Q(x)$.

Since $(P \wedge Q)(x) = 0$, by Proposition 6, there exists a decomposition $x = y \vee z$ with $y \wedge z = 0$ such that $[\min\{P(y),Q(y)\}] + \min[\{P(z),Q(z)\}] < \varepsilon$. If $P(y) \leq Q(y)$ and $P(z) \leq Q(z)$, then it follows that $P(x) = P(y) + P(z) < \varepsilon < P(x)$, which is impossible. Similarly, we cannot have both $Q(y) \leq P(y)$ and $Q(z) \leq P(z)$. Thus by interchanging y and z if necessary, we may assume that P(y) < Q(y) and Q(z) < P(z). Hence $P(y) + Q(z) < \varepsilon$.

(c) \Longrightarrow (b): Follows from Proposition 6.

Definition 4. If A, B are convex subsets of a real vector space E, a mapping $f: A \to B$ is called an *affine map* if f preserves convex combinations. A simplex in a real vector space E is a convex subset $K \subseteq E$ such that K is affinely isomorphic to a base for a lattice cone in some real vector space. A *Choquet simplex* is a compact simplex in a locally convex, Hausdorff topological vector space.

THEOREM 3. If L is a Boolean lattice such that $\mathbb{P}(L)$ is nonempty, then $\mathbb{P}(L)$ is a Choquet simplex.

Proof. We know that \mathbb{R}^L is a locally convex, Hausdorff topological vector space. It follows from Proposition 3 that $\mathbb{P}(L)$ is a closed, convex subset of \mathbb{R}^L . Moreover, $\mathbb{P}(L)$ is contained in the closed hyperplane $\{f \in \mathbb{R}^L : f(1) = 1\}$, which misses the origin. Let V be the convex cone in \mathbb{R}^L , with base $\mathbb{P}(L)$, and let \leq_V be the partial order on \mathbb{R}^L induced by V. For any $f, g \in V$, Proposition 4 shows that $f \leq_V g$ iff $f \leq g$. Consequently, it follows from Proposition 6 that V is a lattice cone. Therefore $\mathbb{P}(L)$ is a base for a lattice cone. Therefore $\mathbb{P}(L)$ is a Choquet simplex.

Acknowledgement. The authors are grateful to the referee for valuable suggestions.

REFERENCES

- BIRKHOFF, G.: Lattice Theory. Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1979.
- [2] GOODEARL, K. R.: Simple regular rings and rank functions, Math. Ann. 214 (1975), 267–287.
- [3] GOODEARL, K. R.: Dimension theory for nonsingular injective modules. Mem. Amer. Math. Soc. 177 (1976).
- [4] GOODEARL, K. R.: Von Neumann Regular Rings, Pitman, London, 1979.
- [5] GRÄTZER, G.: General Lattice Theory, Birkhauser Verlag, Basel, 1998.
- [6] IWAMURA, T.: On continuous geometries II, J. Math. Soc. Japan 2 (1950), 148–164.
- [7] KAPLANSKY, I.: Projections in Banach algebras, Ann. of Math. (2) 53 (1951), 235–249.
- [8] LOOMIS, L. H.: The lattice theoretic background of operator algebras, Mem. Amer. Math. Soc. 18 (1955).
- [9] MAEDA, F.—MAEDA, S.: Theory of symmetric lattices, Springer Verlag, Berlin, 1970.
- [10] MAEDA, S.: Dimension functions on certain general lattices, J. Sci. Hiroshima Univ. 19 (1955), 211–237.

M. P. WASADIKAR — S. K. NIMBHORKAR

- [11] MURRAY, F. J.—VON NEUMANN, J.: On rings of operators, Ann. of Math. 37 (1936), 116–229.
- [12] VON NEUMANN, J.: Continuous Geometry, Princeton University Press, Princeton, 1960.

Received 30. 10. 2007 Accepted 5. 6. 2008 Department of Mathematics Dr. B. A. M. University Aurangabad 431004 INDIA

 $\begin{tabular}{ll} E-mail: wasadikar@yahoo.com \\ nimbhorkar@yahoo.com \end{tabular}$