

DOI: 10.2478/s12175-009-0151-2 Math. Slovaca **59** (2009), No. 5, 611-626

ON THE REGULARIZATION OF SINGULAR c-OPTIMAL DESIGNS

Luc Pronzato

This paper is dedicated to Andrej Pázman on the occasion of his 70th birthday

(Communicated by Gejza Wimmer)

ABSTRACT. We consider the design of c-optimal experiments for the estimation of a scalar function $h(\theta)$ of the parameters θ in a nonlinear regression model. A c-optimal design ξ^* may be singular, and we derive conditions ensuring the asymptotic normality of the Least-Squares estimator of $h(\theta)$ for a singular design over a finite space. As illustrated by an example, the singular designs for which asymptotic normality holds typically depend on the unknown true value of θ , which makes singular c-optimal designs of no practical use in nonlinear situations. Some simple alternatives are then suggested for constructing nonsingular designs that approach a c-optimal design under some conditions.

©2009 Mathematical Institute Slovak Academy of Sciences

1. Introduction

We consider experimental design for least-squares estimation in a nonlinear regression model with scalar observations

$$Y_i = Y(x_i) = \eta(x_i, \bar{\theta}) + \varepsilon_i, \quad \text{where} \quad \bar{\theta} \in \Theta, \quad i = 1, 2 \dots,$$
 (1)

where $\{\varepsilon_i\}$ is a (second-order) stationary sequence of independent random variables with zero mean,

$$\mathbb{E}\{\varepsilon_i\} = 0 \quad \text{and} \quad \mathbb{E}\{\varepsilon_i^2\} = \sigma^2 < \infty \quad \text{for all } i,$$
 (2)

 Θ is a compact subset of \mathbb{R}^p and $x_i \in \mathscr{X}$ denotes the design point characterizing the experimental conditions for the *i*th observation Y_i , with \mathscr{X} a compact

2000 Mathematics Subject Classification: Primary 62K05, 62E20.

Keywords: singular design, optimum design, c-optimality, D-optimality, regular asymptotic normality, consistency, LS estimation.

subset of \mathbb{R}^d . For the observations Y_1, \ldots, Y_N performed at the design points x_1, \ldots, x_N , the Least-Squares Estimator (LSE) $\hat{\theta}_{LS}^N$ is obtained by minimizing

$$S_N(\theta) = \sum_{i=1}^{N} [Y_i - \eta(x_i, \theta)]^2,$$
 (3)

with respect to $\theta \in \Theta \subset \mathbb{R}^p$. We suppose throughout the paper that either the x_i 's are non-random constants or they are generated independently of the Y_j 's (i.e., the design is not sequential). We shall also use the following assumptions:

 $\mathbf{H1}_{\eta}$: $\eta(x,\theta)$ is continuous on Θ for any $x \in \mathcal{X}$;

 $\mathbf{H2}_{\eta}$: $\bar{\theta} \in \mathrm{int}(\Theta)$ and $\eta(x,\theta)$ is two times continuously differentiable with respect to $\theta \in \mathrm{int}(\Theta)$ for any $x \in \mathcal{X}$.

Then, under $\mathbf{H}\mathbf{1}_{\eta}$ the LS estimator is strongly consistent, $\hat{\theta}_{LS}^{N} \xrightarrow{\text{a.s.}} \bar{\theta}$, $N \to \infty$, provided that the sequence $\{x_{i}\}$ is "rich enough", see, e.g., [3]. For instance, when the design points form an i.i.d. sequence generated with the probability measure ξ (which is called a randomized design with measure ξ in [7], [9]), strong consistency holds under the estimability condition

$$\int_{\mathscr{X}} \left[\eta(x,\theta) - \eta(x,\bar{\theta}) \right]^2 \xi(\mathrm{d}x) = 0 \implies \theta = \bar{\theta}. \tag{4}$$

Under the additional assumption $\mathbf{H2}_{\eta}$, $\hat{\theta}_{LS}^{N}$ is asymptotically normally distributed,

$$\sqrt{N}(\hat{\theta}_{LS}^{N} - \bar{\theta}) \xrightarrow{d} z \sim \mathcal{N}(\mathbf{0}, \mathbf{M}^{-1}(\xi, \bar{\theta})), \quad N \to \infty,$$
(5)

provided that the information matrix (normalized, per observation)

$$\mathbf{M}(\xi, \bar{\theta}) = \frac{1}{\sigma^2} \int_{\mathcal{X}} \frac{\partial \eta(x, \theta)}{\partial \theta} \Big|_{\bar{\theta}} \frac{\partial \eta(x, \theta)}{\partial \theta^{\top}} \Big|_{\bar{\theta}} \xi(\mathrm{d}x)$$
 (6)

is nonsingular.

The paper concerns the situation where one is interested in the estimation of $h(\theta)$ rather than in the estimation of θ , with $h(\cdot)$ a continuous scalar function on Θ . Then, when the estimability condition (4) takes the relaxed form

$$\int_{\mathscr{T}} \left[\eta(x,\theta) - \eta(x,\bar{\theta}) \right]^2 \xi(\mathrm{d}x) = 0 \implies h(\theta) = h(\bar{\theta}), \tag{7}$$

we have $h(\hat{\theta}_{LS}^N) \xrightarrow{\text{a.s.}} h(\bar{\theta}), N \to \infty$. Under the assumption

 \mathbf{H}_h : $h(\theta)$ is two times continuously differentiable with respect to $\theta \in \mathrm{int}(\Theta)$,

ON THE REGULARIZATION OF SINGULAR c-OPTIMAL DESIGNS

assuming, moreover, that $\partial h(\theta)/\partial \theta|_{\bar{\theta}} \neq \mathbf{0}$ and that (5) is satisfied, we also obtain (see [5, p. 61])

$$\sqrt{N} \left[h(\hat{\theta}_{LS}^N) - h(\bar{\theta}) \right] \stackrel{\mathrm{d}}{\longrightarrow} \omega \sim \mathcal{N} \left(0, \frac{\partial h(\theta)}{\partial \theta^\top} \Big|_{\bar{\theta}} \mathbf{M}^{-1}(\xi, \bar{\theta}) \frac{\partial h(\theta)}{\partial \theta} \Big|_{\bar{\theta}} \right), \quad N \to \infty.$$
(8)

In Section 2 we prove a similar result on the asymptotic normality of $h(\hat{\theta}_{LS}^N)$ when $\mathbf{M}(\xi,\bar{\theta})$ is singular, that is,

$$\sqrt{N} \left[h(\hat{\theta}_{LS}^N) - h(\bar{\theta}) \right] \stackrel{\mathrm{d}}{\longrightarrow} \omega \sim \mathcal{N} \left(0, \frac{\partial h(\theta)}{\partial \theta^{\top}} \Big|_{\bar{\theta}} \mathbf{M}^{-}(\xi, \bar{\theta}) \frac{\partial h(\theta)}{\partial \theta} \Big|_{\bar{\theta}} \right), \quad N \to \infty,$$
(9)

with \mathbf{M}^- a g-inverse of \mathbf{M} . This is called regular asymptotic normality in [9], where it is shown to hold under rather restrictive assumptions on $h(\cdot)$ but without requiring $\hat{\theta}_{LS}^N$ to be consistent. We show in Section 2 that when the design space \mathscr{X} is finite $\hat{\theta}_{LS}^N$ is consistent under fairly general conditions, from which (9) then easily follows.

We use the standard approach and consider an experimental design that minimizes the asymptotic variance of $h(\hat{\theta}_{LS}^N)$. According to (9), this corresponds to minimizing $\left[\partial h(\theta)/\partial \theta^{\top}|_{\bar{\theta}}\right] \mathbf{M}^{-}(\xi,\bar{\theta}) \left[\partial h(\theta)/\partial \theta|_{\bar{\theta}}\right]$. Since $\bar{\theta}$ is unknown, local c-optimal design is based on a nominal parameter value θ^0 and minimizes $\phi_c(\xi) = \Phi_c[\mathbf{M}(\xi,\theta^0)]$ with

$$\Phi_c(\cdot): \mathbf{M} \in \mathbb{M}^{\geq} \to \begin{cases} \mathbf{c}_{\theta^0}^{\top} \mathbf{M}^{-} \mathbf{c}_{\theta^0} & \text{if and only if } \mathbf{c}_{\theta^0} \in \mathscr{M}(\mathbf{M}) \\ \infty & \text{otherwise} \end{cases}$$
 (10)

where \mathbb{M}^{\geq} denotes the set of non-negative definite $p \times p$ matrices,

$$\mathscr{M}(\mathbf{M}) = \{ \mathbf{c} : \exists \mathbf{u} \in \mathbb{R}^p, \ \mathbf{c} = \mathbf{M}\mathbf{u} \}$$

and

$$\mathbf{c}_{\theta^0} = \frac{\partial h(\theta)}{\partial \theta} \bigg|_{\theta^0} \,.$$

Note that the value of $\Phi_c(\mathbf{M})$ is independent of the choice of the g-inverse \mathbf{M}^- . Nonlinearity may be present in two places, since the model response $\eta(x,\theta)$ and the function of interest $h(\theta)$ may be nonlinear in θ . Local c-optimal design corresponds to c-optimal design in the linear (or more precisely linearized) model $\eta_L(x,\theta) = \mathbf{f}_{\theta^0}^\top(x)\theta$ where $\mathbf{f}_{\theta^0}(x) = \partial \eta(x,\theta)/\partial \theta|_{\theta^0}$, with the linear (linearized) function of interest $h_L(\theta) = \mathbf{c}_{\theta^0}^\top \theta$. A design ξ^* minimizing $\phi_c(\xi)$ may be singular, in the sense that the matrix $\mathbf{M}(\xi^*,\theta^0)$ is singular. In spite of an apparent simplicity for linear models, this yields, however, a difficulty due to the fact that the function $\Phi_c(\cdot)$ is only lower semi-continuous at a singular matrix $\mathbf{M} \in \mathbb{M}^{\geq}$. Indeed, this property implies that

$$\lim_{N\to\infty} \mathbf{c}^{\top} \mathbf{M}^{-}(\xi_N) \mathbf{c} \geq \mathbf{c}^{\top} \mathbf{M}^{-}(\xi) \mathbf{c}$$

when the empirical measure ξ_N of the design points converges weakly to ξ , see e.g. [6, p. 67] and [8] for examples with strict inequality. The two types of nonlinearities mentioned above cause additional difficulties in the presence of a singular design: both $\hat{\theta}_{LS}^N$ and $h(\hat{\theta}_{LS}^N)$ may not be consistent, or the asymptotic normality (9) may not hold, see [8] for an example with a linear model and a nonlinear function $h(\cdot)$. It is the purpose of the paper to expose some of those difficulties and to make suggestions for regularizing a singular c-optimal design.

2. Asymptotic properties of LSE with finite \mathscr{X}

When using a sequence of design points i.i.d. with the measure ξ , the condition (4) implies that $S_N(\theta)$ given by (3) grows to infinity at rate N when $\theta \neq \bar{\theta}$ (an assumption used in the classic reference [3]). On the other hand, for a design sequence with associated empirical measure converging to a discrete measure ξ , this amounts to ignoring the information provided by design points $x \in \mathscr{X}$ with a relative frequency $r_N(x)/N$ tending to zero, which therefore do not appear in the support of ξ . In order to acknowledge the information carried by such points, we can follow the same approach as in [10] from which we extract the following lemma.

Lemma 1. If for any $\delta > 0$

$$\liminf_{N \to \infty} \inf_{\|\theta - \bar{\theta}\| > \delta} [S_N(\theta) - S_N(\bar{\theta})] > 0 \quad a.s.$$
 (11)

then $\hat{\theta}_{LS}^N \xrightarrow{a.s.} \bar{\theta}$ as $N \to \infty$. If for any $\delta > 0$

$$\Pr\left\{\inf_{\|\theta-\bar{\theta}\|\geq\delta} [S_N(\theta) - S_N(\bar{\theta})] > 0\right\} \to 1, \quad N \to \infty,$$
(12)

then $\hat{\theta}_{LS}^N \stackrel{p}{\longrightarrow} \bar{\theta}$ as $N \to \infty$.

We can then prove the convergence of the LS estimator (in probability and a.s.) when the sum $\sum\limits_{k=1}^{N}\left[\eta(x_k,\theta)-\eta(x_k,\bar{\theta})\right]^2$ tends to infinity fast enough for $\|\theta-\bar{\theta}\|\geq\delta>0$ and the design space $\mathscr X$ for the x_k 's is finite.

THEOREM 1. Let $\{x_i\}$ be a design sequence on a finite set \mathscr{X} . If $D_N(\theta, \bar{\theta}) = \sum_{k=1}^{N} [\eta(x_k, \theta) - \eta(x_k, \bar{\theta})]^2$ satisfies

for all
$$\delta > 0$$
, $\left[\inf_{\|\theta - \bar{\theta}\| \ge \delta} D_N(\theta, \bar{\theta})\right] / (\log \log N) \to \infty$, $N \to \infty$, (13)

ON THE REGULARIZATION OF SINGULAR c-OPTIMAL DESIGNS

then
$$\hat{\theta}_{LS}^{N} \xrightarrow{a.s.} \bar{\theta} \text{ as } N \to \infty. \text{ If } D_{N}(\theta, \bar{\theta}) \text{ simply satisfies}$$

$$\text{for all } \delta > 0, \quad \inf_{\|\theta - \bar{\theta}\| \ge \delta} D_{N}(\theta, \bar{\theta}) \to \infty \quad \text{as } N \to \infty, \tag{14}$$

then $\hat{\theta}_{LS}^N \xrightarrow{p} \bar{\theta}, N \to \infty$.

Proof. The proof is based on Lemma 1. We have

$$S_{N}(\theta) - S_{N}(\bar{\theta}) = D_{N}(\theta, \bar{\theta}) \left[1 + 2 \frac{\sum\limits_{x \in \mathscr{X}} \left(\sum\limits_{k=1, x_{k}=x}^{N} \varepsilon_{k} \right) \left[\eta(x, \bar{\theta}) - \eta(x, \theta) \right]}{D_{N}(\theta, \bar{\theta})} \right]$$

$$\geq D_{N}(\theta, \bar{\theta}) \left[1 - 2 \frac{\sum\limits_{x \in \mathscr{X}} \left| \sum\limits_{k=1, x_{k}=x}^{N} \varepsilon_{k} \right| \left| \eta(x, \bar{\theta}) - \eta(x, \theta) \right|}{D_{N}(\theta, \bar{\theta})} \right].$$

From Lemma 1, under the condition (13) it suffices to prove that

$$\sup_{\|\theta - \bar{\theta}\| \ge \delta} \frac{\sum_{x \in \mathcal{X}} \left| \sum_{k=1, x_k = x}^{N} \varepsilon_k \right| |\eta(x, \bar{\theta}) - \eta(x, \theta)|}{D_N(\theta, \bar{\theta})} \xrightarrow{\text{a.s.}} 0$$
 (15)

for any $\delta > 0$ to obtain the strong consistency of $\hat{\theta}_{LS}^N$. Since $D_N(\theta, \bar{\theta}) \to \infty$ and \mathscr{X} is finite, only the design points such that $r_N(x) \to \infty$ have to be considered, where $r_N(x)$ denotes the number of times x appears in the sequence x_1, \ldots, x_N . Define $\beta(n) = \sqrt{n \log \log n}$. From the law of the iterated logarithm,

for all
$$x \in \mathcal{X}$$
, $\limsup_{r_N(x) \to \infty} \left| \frac{1}{\beta[r_N(x)]} \sum_{k=1, x_k=x}^N \varepsilon_k \right| = \sigma \sqrt{2}$, almost surely. (16)

Moreover, $D_N(\theta, \bar{\theta}) \geq D_N^{1/2}(\theta, \bar{\theta}) \sqrt{r_N(x)} |\eta(x, \bar{\theta}) - \eta(x, \theta)|$ for any $x \in \mathcal{X}$, so that

$$\frac{\beta[r_N(x)]|\eta(x,\bar{\theta}) - \eta(x,\theta)|}{D_N(\theta,\bar{\theta})} \le \frac{[\log\log r_N(x)]^{1/2}}{D_N^{1/2}(\theta,\bar{\theta})}.$$

Therefore,

$$\frac{\left|\sum\limits_{k=1,\,x_k=x}^{N}\varepsilon_k\right||\eta(x,\bar{\theta})-\eta(x,\theta)|}{D_N(\theta,\bar{\theta})}\leq \left|\frac{\sum\limits_{k=1,\,x_k=x}^{N}\varepsilon_k}{\beta[r_N(x)]}\right|\frac{\left[\log\log r_N(x)\right]^{1/2}}{D_N^{1/2}(\theta,\bar{\theta})},$$

which, together with (13) and (16), gives (15).

When $\inf_{\|\theta-\bar{\theta}\|\geq\delta} D_N(\theta,\bar{\theta})\to\infty$ as $N\to\infty$, we only need to prove that

$$\sup_{\|\theta - \bar{\theta}\| \ge \delta} \frac{\sum_{x \in \mathscr{X}} \left| \sum_{k=1, x_k = x}^{N} \varepsilon_k \right| |\eta(x, \bar{\theta}) - \eta(x, \theta)|}{D_N(\theta, \bar{\theta})} \xrightarrow{\mathbf{p}} 0$$
 (17)

for any $\delta > 0$ to obtain the weak consistency of $\hat{\theta}_{LS}^N$. We proceed as above and only consider the design points such that $r_N(x) \to \infty$, with now $\beta(n) = \sqrt{n}$.

From the central limit theorem, for any
$$x \in \mathcal{X}$$
, $\left(\sum_{k=1, x_k=x}^{N} \varepsilon_k\right) / \sqrt{r_N(x)} \stackrel{\mathrm{d}}{\longrightarrow}$

 $\omega_x \sim \mathcal{N}(0, \sigma^2)$ as $r_N(x) \to \infty$ and is thus bounded in probability. Also, for any $x \in \mathcal{X}$, $\sqrt{r_N(x)} |\eta(x, \bar{\theta}) - \eta(x, \theta)| / D_N(\theta, \bar{\theta}) \le D_N^{-1/2}(\theta, \bar{\theta})$, so that (14) implies (17).

When the design space \mathscr{X} is finite one can thus invoke Theorem 1 to ensure the consistency of $\hat{\theta}_{LS}^N$. Regular asymptotic normality then follows for suitable functions $h(\cdot)$.

THEOREM 2. Let $\{x_i\}$ be a design sequence on a finite set \mathscr{X} , with the property that the associated empirical measure (strongly) converges to ξ (possibly singular), that is, $\lim_{N\to\infty} r_N(x)/N = \xi(x)$ for any $x\in\mathscr{X}$, with $r_N(x)$ the number of times x appears in the sequence x_1,\ldots,x_N . Suppose that the assumptions $\mathbf{H1}_{\eta}$, $\mathbf{H2}_{\eta}$ and \mathbf{H}_h are satisfied, with $\partial h(\theta)/\partial \theta|_{\bar{\theta}} \neq \mathbf{0}$, and that $D_N(\theta,\bar{\theta})$ satisfies (13). Then,

$$\frac{\partial h(\theta)}{\partial \theta}\Big|_{\bar{\theta}} \in \mathscr{M}[\mathbf{M}(\xi, \bar{\theta})], \tag{18}$$

implies that $h(\hat{\theta}_{LS}^N)$ satisfies the regular asymptotic normality property (9), where the choice of the g-inverse is arbitrary.

Proof. Since $\hat{\theta}_{LS}^{N} \xrightarrow{\text{a.s.}} \bar{\theta} \in \text{int}(\Theta)$, there exists N_0 such that $\hat{\theta}_{LS}^{N}$ is in some convex neighborhood of $\bar{\theta}$ for all N larger than N_0 and, for all $i = 1, \ldots, p = \dim(\theta)$, a Taylor development of the ith component of the gradient of the LS criterion (3) gives

$$\left\{ \nabla_{\theta} S_N(\hat{\theta}_{LS}^N) \right\}_i = 0 = \left\{ \nabla_{\theta} S_N(\bar{\theta}) \right\}_i + \left\{ \nabla_{\theta}^2 S_N(\beta_i^N) (\hat{\theta}_{LS}^N - \bar{\theta}) \right\}_i, \tag{19}$$

with β_i^N between $\hat{\theta}_{LS}^N$ and $\bar{\theta}$ (and β_i^N measurable, see [3]). Using the fact that \mathscr{X} is finite we obtain $\nabla_{\theta} S_N(\bar{\theta})/\sqrt{N} \stackrel{\mathrm{d}}{\longrightarrow} \mathbf{v} \sim \mathscr{N}(\mathbf{0}, 4\mathbf{M}(\xi, \bar{\theta}))$ and $\nabla_{\theta}^2 S_N(\beta_i^N)/N \stackrel{\mathrm{a.s.}}{\longrightarrow} 2\mathbf{M}(\xi, \bar{\theta})$ as $N \to \infty$. Combining this with (19), we get

$$\sqrt{N}\mathbf{c}^{\top}\mathbf{M}(\xi,\bar{\theta})(\hat{\theta}_{LS}^{N}-\bar{\theta}) \stackrel{\mathrm{d}}{\longrightarrow} z \sim \mathcal{N}(0,\mathbf{c}^{\top}\mathbf{M}(\xi,\bar{\theta})\mathbf{c}), \quad N \to \infty,$$

for any $\mathbf{c} \in \mathbb{R}^p$. Applying the Taylor formula again we can write

$$\sqrt{N} \left[h(\hat{\theta}_{LS}^N) - h(\bar{\theta}) \right] = \sqrt{N} \left. \frac{\partial h(\theta)}{\partial \theta^{\top}} \right|_{\alpha^N} (\hat{\theta}_{LS}^N - \bar{\theta})$$

for some α^N between $\hat{\theta}_{LS}^N$ and $\bar{\theta}$ and $\partial h(\theta)/\partial \theta|_{\alpha^N} \xrightarrow{\text{a.s.}} \partial h(\theta)/\partial \theta|_{\bar{\theta}}$ as $N \to \infty$. When (18) is satisfied we can write $\partial h(\theta)/\partial \theta|_{\bar{\theta}} = \mathbf{M}(\xi,\bar{\theta})\mathbf{u}$ for some $\mathbf{u} \in \mathbb{R}^p$, which gives (9).

Notice that when $\mathbf{M}(\xi, \bar{\theta})$ has full rank the condition (18) is automatically satisfied so that the other conditions of Theorem 2 are sufficient for the asymptotic normality (8). The conclusion of the Theorem remains valid when $D_N(\theta, \bar{\theta})$ only satisfies (14) (convergence in probability of $\hat{\theta}_{LS}^N$) with Θ a convex set, see, e.g., [1, Th. 4.2.2].

3. Properties of standard regularization

Consider a regularized version of the c-optimality criterion defined by

$$\Phi_c^{\gamma}(\mathbf{M}) = \Phi_c[(1-\gamma)\mathbf{M} + \gamma\tilde{\mathbf{M}}]$$

with $\Phi_c(\cdot)$ given by (10), γ a small positive number and $\tilde{\mathbf{M}}$ a fixed nonsingular $p \times p$ matrix of \mathbb{M}^{\geq} . From the linearity of $\mathbf{M}(\xi, \theta^0)$ in ξ , when $\tilde{\mathbf{M}} = \mathbf{M}(\tilde{\xi}, \theta^0)$ with $\tilde{\xi}$ nonsingular this equivalently defines the criterion

$$\phi_c^{\gamma}(\xi) = \phi_c[(1-\gamma)\xi + \gamma\tilde{\xi}]$$

with $\phi_c(\xi) = \Phi_c[\mathbf{M}(\xi, \theta^0)]$. Let ξ^* and ξ^*_{γ} be two measures respectively optimal for $\phi_c(\cdot)$ and $\phi_c^{\gamma}(\cdot)$. We have $\phi_c(\xi^*) \leq \phi_c[(1-\gamma)\xi^*_{\gamma} + \gamma\tilde{\xi}] = \phi_c^{\gamma}(\xi^*_{\gamma}) \leq \phi_c[(1-\gamma)\xi^*_{\gamma} + \gamma\tilde{\xi}] \leq (1-\gamma)\phi_c(\xi^*) + \gamma\phi_c(\tilde{\xi})$, where the last inequality follows from the convexity of $\phi_c(\cdot)$. Therefore,

$$0 \le \phi_c^{\gamma}(\xi_{\alpha}^*) - \phi_c(\xi^*) \le \gamma [\phi_c(\tilde{\xi}) - \phi_c(\xi^*)]$$

which tends to zero as $\gamma \to 0$, showing that $\hat{\xi}_{\gamma} = (1 - \gamma)\xi_{\gamma}^* + \gamma \tilde{\xi}$ tends to be c-optimal when γ decreases to zero.

We emphasize that c-optimality is defined for $\theta^0 \neq \bar{\theta}$. Let $x^{(1)}, \ldots, x^{(s)}$ be the support points of a c-optimal measure ξ^* , complement them by $x^{(s+1)}, \ldots, x^{(s+k)}$ so that the measure $\tilde{\xi}$ supported at $x^{(1)}, \ldots, x^{(s+k)}$ (with, e.g., equal weight at each point) is nonsingular. When N observations are made, to the measure $(1-\gamma)\xi^* + \gamma\tilde{\xi}$ corresponds a design that places approximately $\gamma N/(s+k)$ observations at each of the points $x^{(s+1)}, \ldots, x^{(s+k)}$. The example below shows that the speed of convergence of $\mathbf{c}^{\top}\hat{\theta}_{LS}^{N}$ to $\mathbf{c}^{\top}\bar{\theta}$ may be arbitrarily slow when γ

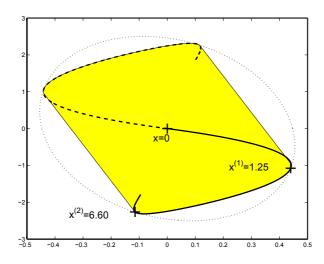


FIGURE 1. Elfving set

tends to zero, thereby contradicting the acceptance of ξ^* as a c-optimal design for $\bar{\theta}$.

Example 1. Consider the regression model defined by (1), (2) with

$$\eta(x,\theta) = \frac{\theta_1}{\theta_1 - \theta_2} \left[\exp(-\theta_2 x) - \exp(-\theta_1 x) \right],$$

 $\mathscr{X} = [0, 10]$ and $\sigma^2 = 1$. The *D*-optimal design measure ξ_D^* on \mathscr{X} maximizing log det $\mathbf{M}(\xi, \theta^0)$ for the nominal parameters $\theta^0 = (0.7, \ 0.2)^{\top}$ puts mass 1/2 at each of the two support points given approximately by $x^{(1)} = 1.25, x^{(2)} = 6.60$.

Figure 1 shows the set $\{\mathbf{f}_{\theta^0}(x): x \in \mathcal{X}\}$ (solid line), its symmetric $\{-\mathbf{f}_{\theta^0}(x): x \in \mathcal{X}\}$ (dashed line) and their convex closure \mathscr{F}_{θ^0} , called the Elfving set (shaded region), together with the minimum-volume ellipsoid containing \mathscr{F}_{θ^0} (the points of contact with \mathscr{F}_{θ^0} correspond to the support points of ξ_D^*).

From Elfving's theorem [2], when $x^* \in [x^{(1)}, x^{(2)}]$ the c-optimal design minimizing $\mathbf{c}^{\top} \mathbf{M}^{-1}(\xi, \theta^0) \mathbf{c}$ with $\mathbf{c} = \beta \mathbf{f}_{\theta^0}(x_*), \ \beta \neq 0$, is the delta measure δ_{x_*} . Obviously, the singular design δ_{x_*} only allows us to estimate $\eta(x_*, \theta)$ and not $h(\theta) = \mathbf{c}^{\top} \theta$.

Select now a second design point $x^0 \neq x_*$ and suppose that when N observations are performed at the design points x_1, \ldots, x_N , m of them coincide with x^0 and N-m with x_* , where $m/(\log \log N) \to \infty$ with $m/N \to 0$. Then, for $x^0 \neq 0$ the conditions of Theorem 1 are satisfied. Indeed, the design space equals

 $\{x^0, x_*\}$ and is thus finite, and

$$D_{N}(\theta, \bar{\theta}) = \sum_{k=1}^{N} [\eta(x_{k}, \theta) - \eta(x_{k}, \bar{\theta})]^{2}$$

$$= (N - 2m)[\eta(x_{*}, \theta) - \eta(x_{*}, \bar{\theta})]^{2}$$

$$+ m \{ [\eta(x_{*}, \theta) - \eta(x_{*}, \bar{\theta})]^{2} + [\eta(x^{0}, \theta) - \eta(x^{0}, \bar{\theta})]^{2} \}$$

so that $\inf_{\|\theta-\bar{\theta}\|>\delta} D_N(\theta,\bar{\theta}) \geq mC(x^0,x_*,\delta)$, with $C(x^0,x_*,\delta)$ a positive constant, and $\inf_{\|\theta-\bar{\theta}\|>\delta} D_N(\theta,\bar{\theta})/(\log\log N) \to \infty$ as $N\to\infty$. Therefore, although the empirical measure ξ_N of the design points in the experiment converges strongly to the singular design δ_{x_*} , this convergence is sufficiently slow to make $\hat{\theta}_{LS}^N$ (strongly) consistent. Moreover, for $h(\cdot)$ a function satisfying the conditions of Theorem 2, $h(\hat{\theta}_{LS}^N)$ satisfies the regular asymptotic property (9). In the present situation, this means that when $\partial h(\theta)/\partial \theta|_{\bar{\theta}} = \beta \mathbf{f}_{\bar{\theta}}(x_*)$ for some $\beta \in \mathbb{R}$, then $\sqrt{N}[h(\hat{\theta}_{LS}^N) - h(\bar{\theta})] \xrightarrow{\mathrm{d}} \omega \sim \mathcal{N}\left(0, \left[\partial h(\theta)/\partial \theta^\top \mathbf{M}^-(\delta_{x_*}, \theta) \partial h(\theta)/\partial \theta\right]_{\bar{\theta}}\right)$. This holds for instance when $h(\cdot) = \eta(x_*, \cdot)$ (or is a function of $\eta(x_*, \cdot)$).

There is, however, a severe limitation in the application of this result in practical situations. Indeed, the direction $\mathbf{f}_{\bar{\theta}}(x_*)$ for which regular asymptotic normality holds is unknown since $\bar{\theta}$ is unknown. Let \mathbf{c} be a given direction of interest, the associated c-optimal design ξ^* is determined for the nominal value θ^0 . For instance, when $\mathbf{c} = (0, 1)^{\top}$ (which means that one is only interested in the estimation of the component θ_2), $\xi^* = \delta_{x_*}$ with x_* solution of $\{\mathbf{f}_{\theta^0}(x)\}_1 = 0$ (see Figure 1), that is, x_* satisfies

$$\theta_2^0 = \left[\theta_2^0 + \theta_1^0(\theta_1^0 - \theta_2^0)x_*\right] \exp\left[-(\theta_1^0 - \theta_2^0)x_*\right]. \tag{20}$$

For $\theta^0 = (0.7, 0.2)^{\top}$, this gives $x_* = x_*(\theta^0) \simeq 4.28$. In general, $\mathbf{f}_{\bar{\theta}}(x_*) \neq \mathbf{f}_{\theta^0}(x_*)$ to which \mathbf{c} is proportional. Therefore, $\mathbf{c} \notin \mathscr{M}[\mathbf{M}(\xi^*, \bar{\theta})]$ and regular asymptotic normality does not hold for $\mathbf{c}^{\top}\hat{\theta}_{LS}^N$.

The example is simple enough to be able to investigate the limiting behavior of $\mathbf{c}^{\top}\hat{\theta}_{LS}^{N}$ by direct calculation. A Taylor development of the LS criterion $S_{N}(\theta)$ gives (19) where $\beta_{i}^{N} \xrightarrow{\text{a.s.}} \bar{\theta}$ as $N \to \infty$, i = 1, 2. Direct calculations give

$$\nabla_{\theta} S_{N}(\bar{\theta}) = -2 \left[\sqrt{m} \beta_{m} \mathbf{f}_{\bar{\theta}}(x^{0}) + \sqrt{N - m} \gamma_{N-m} \mathbf{f}_{\bar{\theta}}(x_{*}) \right],$$

$$\nabla_{\theta}^{2} S_{N}(\bar{\theta}) = 2 \left[m \mathbf{f}_{\bar{\theta}}(x^{0}) \mathbf{f}_{\bar{\theta}}^{\top}(x^{0}) + (N - m) \mathbf{f}_{\bar{\theta}}(x_{*}) \mathbf{f}_{\bar{\theta}}^{\top}(x_{*}) \right] + \mathcal{O}_{p}(\sqrt{m}),$$

where $\beta_m = (1/\sqrt{m}) \sum_{x_i = x^0} \varepsilon_i$ and $\gamma_{N-m} = (1/\sqrt{N-m}) \sum_{x_i = x_*} \varepsilon_i$ are independent random variables that tend to be distributed $\mathcal{N}(0,1)$ as $m \to \infty$ and $N-m \to \infty$.

We then obtain,

$$\hat{\theta}_{LS}^{N} - \bar{\theta} = \frac{1}{\Delta(x_{*}, x^{0})} \left\{ \frac{\gamma_{N-m}}{\sqrt{N-m}} \begin{pmatrix} \{\mathbf{f}_{\bar{\theta}}(x^{0})\}_{2} \\ -\{\mathbf{f}_{\bar{\theta}}(x^{0})\}_{1} \end{pmatrix} + \frac{\beta_{m}}{\sqrt{m}} \begin{pmatrix} -\{\mathbf{f}_{\bar{\theta}}(x_{*})\}_{2} \\ \{\mathbf{f}_{\bar{\theta}}(x_{*})\}_{1} \end{pmatrix} \right\} + o_{p}(1/\sqrt{m}),$$

where $\Delta(x_*, x^0) = \det(\mathbf{f}_{\bar{\theta}}(x_*), \mathbf{f}_{\bar{\theta}}(x^0))$. Therefore, $\sqrt{N}\mathbf{f}_{\bar{\theta}}^{\top}(x_*)(\hat{\theta}_{LS}^N - \bar{\theta})$ is asymptotically normal $\mathcal{N}(0, 1)$ whereas for any direction \mathbf{c} not parallel to $\mathbf{f}_{\bar{\theta}}(x_*)$ and not orthogonal to $\mathbf{f}_{\bar{\theta}}(x^0)$, $\sqrt{m}\mathbf{c}^{\top}(\hat{\theta}_{LS}^N - \bar{\theta})$ is asymptotically normal (and $\mathbf{c}^{\top}(\hat{\theta}_{LS}^N - \bar{\theta})$ converges not faster than $1/\sqrt{m}$). In particular, $\sqrt{m}\mathbf{f}_{\bar{\theta}}^{\top}(x^0)(\hat{\theta}_{LS}^N - \bar{\theta})$ is asymptotically normal $\mathcal{N}(0, 1)$ and $\sqrt{m}\{\hat{\theta}_{LS}^N - \bar{\theta}\}_2$ is asymptotically normal $\mathcal{N}(0, \{\mathbf{f}_{\bar{\theta}}(x_*)\}_1^2/\Delta^2(x_*, x^0))$.

The previous example has illustrated that letting γ tend to zero in a regularized c-optimal design $(1-\gamma)\xi^* + \gamma\tilde{\xi}$ raises important difficulties (one may refer to [8] for an example with a linear model and a nonlinear function $h(\theta)$). We shall therefore consider γ as fixed in what follows. It is interesting, nevertheless, to investigate the behavior of the c-optimality criterion when the regularized measure $(1-\gamma)\xi^* + \gamma\tilde{\xi}$ approaches ξ^* in some sense. Since γ is now fixed, we let the support points of $\tilde{\xi}$ approach those of ξ^* . This is illustrated by continuing the example above.

Example 1 (continued). Place the proportion m=N/2 of the observations at x^0 and consider the design measure $\xi_{\gamma,x^0}=(1-\gamma)\delta_{x_*}+\gamma\delta_{x^0}$ with $\gamma=1/2$. Since the c-optimal design is δ_{x_*} , we consider the limiting behavior of $\mathbf{c}^{\top}(\hat{\theta}_{LS}^N-\bar{\theta})$ when N tends to infinity for x^0 approaching x_* . The nonsingularity of $\xi_{1/2,x^0}$ for $x^0 \neq x_*$ (and $x^0 \neq 0$) implies that $\sqrt{N}\mathbf{c}^{\top}(\hat{\theta}_{LS}^N-\bar{\theta})$ is asymptotically normal $\mathcal{N}(0,\mathbf{c}^{\top}\mathbf{M}^{-1}(\xi_{1/2,x^0},\bar{\theta})\mathbf{c})$.

The asymptotic variance $\mathbf{c}^{\top}\mathbf{M}^{-1}(\xi_{1/2,x^0},\bar{\theta})\mathbf{c}$ tends to infinity as x^0 tends to x_* when \mathbf{c} is not proportional to $\mathbf{f}_{\bar{\theta}}(x_*)$, see Figure 2. Take $\mathbf{c} = \mathbf{f}_{\bar{\theta}}(x_*)$. Then, $\mathbf{f}_{\bar{\theta}}^{\top}(x_*)\mathbf{M}^{-1}(\xi_{1/2,x^0},\bar{\theta})\mathbf{f}_{\bar{\theta}}(x_*)$ equals 2 for any $x^0 \neq x_*$, twice more than what could be achieved with the singular design δ_{x_*} since $\mathbf{f}_{\bar{\theta}}^{\top}(x_*)\mathbf{M}^{-}(\delta_{x_*},\bar{\theta})\mathbf{f}_{\bar{\theta}}(x_*) = 1$ (this result is similar to that in [6, p. 67] and is caused by the fact that $\Phi_c(\cdot)$ is only semi-continuous at a singular \mathbf{M}).

The example above shows that not all regularizations are legitimate: the regularized design should be close to the optimal one ξ^* in some suitable sense in order to avoid the discontinuity of $\Phi_c(\cdot)$ at a singular \mathbf{M} .

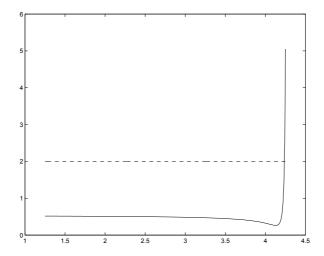


FIGURE 2. $\mathbf{c}^{\top}\mathbf{M}^{-1}(\xi_{1/2,x^0},\bar{\theta})\mathbf{c}$ (solid line) and $\mathbf{f}_{\bar{\theta}}^{\top}(x_*)\mathbf{M}^{-1}(\xi_{1/2,x^0},\bar{\theta})\mathbf{f}_{\bar{\theta}}(x_*)$ (dashed line) for x^0 varying between 1.25 and $x_* = 4.28$; $\bar{\theta} = (0.65, 0.25)^{\top}$, $\theta^0 = (0.7, 0.2)^{\top}$ and $\mathbf{c} = (0, 1)^{\top}$ (so that δ_{x_*} is c-optimal for \mathbf{c} and θ^0)

4. Minimax regularization

4.1. Estimation of a nonlinear function of θ

Consider first the case where the function of interest $h(\theta)$ is nonlinear in θ . We should then ideally take $\mathbf{c}_{\bar{\theta}} = \partial h(\theta)/\partial \theta\big|_{\bar{\theta}}$ in the definition of the optimality criterion. However, since $\bar{\theta}$ is unknown, a direct application of local c-optimal design consists in using the direction $\mathbf{c}_{\theta^0} = \partial h(\theta)/\partial \theta\big|_{\theta^0}$, with the risk that θ and $h(\theta)$ are not estimable from the associated optimal design ξ^* if it is singular. One can then consider instead a set Θ^0 (a finite set or a compact subset of \mathbb{R}^p) of possible values for $\bar{\theta}$ around θ^0 in the definition of the directions of interest, and the associated c-minimax optimality criterion becomes

$$\phi_{\mathscr{C}}(\xi) = \max_{\theta \in \Theta^0} \mathbf{c}_{\theta}^{\mathsf{T}} \mathbf{M}^{-}(\xi, \theta^0) \mathbf{c}_{\theta} , \qquad (21)$$

or equivalently $\phi_{\mathscr{C}}(\xi) = \max_{\mathbf{c} \in \mathscr{C}} \mathbf{c}^{\top} \mathbf{M}^{-}(\xi, \theta^{0}) \mathbf{c}$ with $\mathscr{C} = \{\mathbf{c}_{\theta} : \theta \in \Theta^{0}\}$. A measure $\xi^{*}(\mathscr{C})$ on \mathscr{X} that minimizes $\phi_{\mathscr{C}}(\xi)$ is said to be (locally) *c*-minimax optimal. When \mathscr{C} is large enough (in particular when the vectors in \mathscr{C} span \mathbb{R}^{p}), $\xi^{*}(\mathscr{C})$ is nonsingular. According to Theorem 2, a design sequence on a finite set \mathscr{X} (containing the support of $\xi^{*}(\mathscr{C})$) such that the associated empirical measure converges strongly to $\xi^{*}(\mathscr{C})$ then ensures the asymptotic normality property (8).

4.2. Estimation of a linear function of θ : regularization via D-optimal design

When the function of interest is $h(\theta) = \mathbf{c}^{\top}\theta$ with the direction \mathbf{c} fixed, the construction of an admissible set \mathscr{C} of directions for c-minimax optimal design is somewhat artificial and a specific procedure is required. The rest of the section is devoted to this situation. The approach presented is based on D-optimality and applies when the c-optimal measure is a one-point measure.

Define a (local) c-maximin efficient measure ξ_{mm}^* for $\mathscr C$ as a measure on $\mathscr X$ that maximizes

$$E_{mm}(\xi) = \min_{\mathbf{c} \in \mathscr{C}} \frac{\mathbf{c}^{\top} \mathbf{M}^{-} [\xi^{*}(\mathbf{c}), \theta^{0}] \mathbf{c}}{\mathbf{c}^{\top} \mathbf{M}^{-} (\xi, \theta^{0}) \mathbf{c}},$$

with $\xi^*(\mathbf{c})$ a c-optimal design measure minimizing $\mathbf{c}^{\top}\mathbf{M}^{-}(\xi, \theta^0)\mathbf{c}$. When the c-optimal design $\xi^*(\mathbf{c})$ is the delta measure δ_{x_*} it seems reasonable to consider measures that are supported in the neighborhood of x_* . One may then use the following result of Kiefer [4] to obtain a c-maximin efficient measure through D-optimal design.

THEOREM 3. A design measure ξ_{mm}^* on \mathscr{X} is c-maximin efficient for $\mathscr{C}_{\mathscr{X}} = \{\mathbf{f}_{\theta^0}(x) : x \in \mathscr{X}\}\$ if and only if it is D-optimal on \mathscr{X} , that is, it maximizes $\log \det \mathbf{M}(\xi, \theta^0)$.

The construction is as follows. Define

$$\mathscr{X}_{\delta} = \mathscr{B}(x_*, \delta) \cap \mathscr{X} \,, \tag{22}$$

with $\mathscr{B}(x_*, \delta)$ the ball of centre x_* and radius δ in \mathbb{R}^d , and define $\mathscr{C}_{\delta} = \{\mathbf{f}_{\theta^0}(x) : x \in \mathscr{X}_{\delta}\}$. From Theorem 3, a measure ξ_{δ}^* is c-maximin efficient for $\mathbf{c} \in \mathscr{C}_{\delta}$ if and only if it is D-optimal on \mathscr{X}_{δ} . Suppose that \mathscr{C}_{δ} spans \mathbb{R}^p when $\delta > 0$, the measure ξ_{δ}^* is then non singular for $\delta > 0$ (with $\xi_0^* = \xi^*(\mathbf{c})$). Various values of δ are associated with different designs ξ_{δ}^* . One may then choose δ by minimizing

$$J(\delta) = \max_{\theta \in \Theta^0} \Phi_c[\mathbf{M}(\xi_{\delta}^*, \theta)], \qquad (23)$$

where Θ^0 defines a feasible set for the unknown parameter vector $\bar{\theta}$. Each evaluation of $J(\delta)$ requires the determination of a D-optimal design on a set \mathscr{X}_{δ} and the determination of the minimum with respect to $\theta \in \Theta^0$, but the D-optimal design is often easily obtained, see the example below, and the set Θ^0 can be discretized to facilitate the determination of the maximum.

Example 1 (continued). Take $\mathbf{c} = (0, 1)^{\top}$ and $\theta^0 = (0.7, 0.2)^{\top}$. Choosing \mathscr{X}_{δ} as in (22) gives $\mathscr{C}_{\delta} = \{\mathbf{f}_{\theta^0}(x) : x \in [x_* - \delta, x_* + \delta]\}$, with $x_* \simeq 4.28$, and the corresponding c-maximin efficient measure is $\xi_{\delta}^* = (1/2)\delta_{x_*-\delta} + (1/2)\delta_{x_*+\delta}$. Fig. 3 shows $\mathbf{c}^{\top}\mathbf{M}^{-1}(\xi_{\delta}^*, \bar{\theta})\mathbf{c}$ and $\mathbf{f}_{\bar{\theta}}^{\top}(x_*)\mathbf{M}^{-1}(\xi_{\delta}^*, \bar{\theta})\mathbf{f}_{\bar{\theta}}(x_*)$ as functions of δ . Notice that $\mathbf{f}_{\bar{\theta}}^{\top}(x_*)\mathbf{M}^{-1}(\xi_{\delta}^*, \bar{\theta})\mathbf{f}_{\bar{\theta}}(x_*)$ tends to 1 as δ tends to zero, indicating that the form of the neighborhood used in the construction of \mathscr{X}_{δ} has a strong influence on

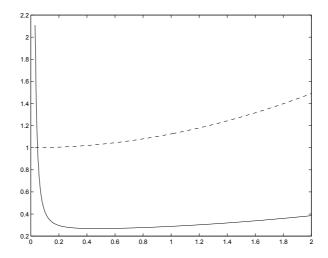


FIGURE 3. $\mathbf{c}^{\top} \mathbf{M}^{-1}(\xi_{\delta}^*, \bar{\theta}) \mathbf{c}$ (solid line) and $\mathbf{f}_{\bar{\theta}}^{\top}(x_*) \mathbf{M}^{-1}(\xi_{\delta}^*, \bar{\theta}) \mathbf{f}_{\bar{\theta}}(x_*)$ (dashed line) for δ between 0 and 2; $x_* = 4.28$, $\bar{\theta} = (0.65, 0.25)^{\top}$, $\theta^0 = (0.7, 0.2)^{\top}$ and $\mathbf{c} = (0, 1)^{\top}$ (so that δ_{x_*} is c-optimal for \mathbf{c} and θ^0)

the performance of ξ^*_{δ} (in terms of *c*-optimality) when δ tends to zero. Indeed, taking $\mathscr{X}_{\delta} = [x^0, x_*]$ with $x^0 = x_* - \delta$ yields the same situation as that depicted in Fig. 2.

The curve showing $\mathbf{c}^{\top}\mathbf{M}^{-1}(\xi_{\delta}^*, \bar{\theta})\mathbf{c}$ in Fig. 3 indicates the presence of a minimum around $\delta = 0.5$. Fig. 4 presents $J(\delta)$ given by (23) as a function of δ when $\Theta^0 = [0.6, 0.8] \times [0.1, 0.3]$, indicating a minimum around $\delta = 1.45$ (the maximum over θ is attained at the endpoints $\theta_1 = 0.8, \theta_2 = 0.3$ for any δ).

5. Regularization by combination of c-optimal designs

We say that $h(\theta)$ is locally estimable at θ for the design ξ in the regression model (1), (2) if the condition (7) is locally satisfied, that is, if there exists a neighborhood Θ_{θ} of θ such that

$$\forall \theta' \in \Theta_{\theta}, \int_{\mathscr{X}} [\eta(x, \theta') - \eta(x, \theta)]^2 \, \xi(\mathrm{d}x) = 0 \implies h(\theta') = h(\theta). \tag{24}$$

Consider again the case of a linear function of interest $h(\theta) = \mathbf{c}^{\top}\theta$ with the direction \mathbf{c} fixed. The next theorem indicates that when $\mathbf{c}^{\top}\theta$ is not (locally) estimable at θ^0 from the c-optimal design ξ^* it means that the support of ξ^* depends on the value θ^0 for which it is calculated. By combining different c-optimal

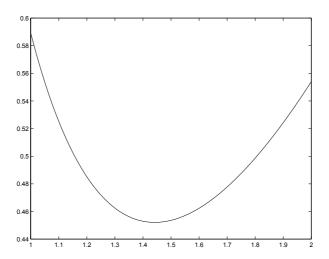


Figure 4. $\max_{\theta \in \Theta^0} \mathbf{c}^{\top} \mathbf{M}^{-1}(\xi_{\delta}^*, \theta) \mathbf{c}$ as a function of $\delta \in [1, 2]$ for $\Theta^0 = [0.6, 0.8] \times [0.1, 0.3]$

designs obtained at various nominal values $\theta^{0,i}$ one can thus easily construct a nonsingular design from which θ , and thus $\mathbf{c}^{\top}\theta$, can be estimated. When the true value of $\bar{\theta}$ is not too far from the $\theta^{0,i}$'s, this design will be almost c-optimal for $\bar{\theta}$.

THEOREM 4. Consider a linear function of interest $h(\theta) = \mathbf{c}^{\top}\theta$, $\mathbf{c} \neq \mathbf{0}$, in a regression model (1), (2) satisfying the assumptions $\mathbf{H}\mathbf{1}_{\eta}$, $\mathbf{H}\mathbf{2}_{\eta}$ and \mathbf{H}_{h} . Let $\xi^{*} = \xi^{*}(\theta^{0})$ be a (local) c-optimal design minimizing $\mathbf{c}^{\top}\mathbf{M}^{-}(\xi, \theta^{0})\mathbf{c}$. Then, $h(\theta)$ being not locally estimable for ξ^{*} at θ^{0} implies that the support of ξ^{*} varies with the choice of θ^{0} .

Proof. The proof is by contradiction. Suppose that the support of $\xi^*(\theta)$ does not depend on θ . We show that it implies that $h(\theta)$ is locally estimable at θ for ξ^* .

Suppose, without any loss of generality, that $\mathbf{c} = (c_1, \dots, c_p)^{\top}$ with $c_1 \neq 0$ and consider the reparametrization defined by $\beta = (\mathbf{c}^{\top} \theta, \theta_2, \dots, \theta_p)^{\top}$, so that $\theta = \theta(\beta) = \mathbf{J}\beta$ with \mathbf{J} the (jacobian) matrix

$$\mathbf{J} = \begin{pmatrix} 1/c_1 & -\mathbf{c'}^\top/c_1 \\ \mathbf{0}_{p-1} & \mathbf{I}_{p-1} \end{pmatrix},$$

ON THE REGULARIZATION OF SINGULAR c-OPTIMAL DESIGNS

where $\mathbf{c}' = (c_2, \dots, c_p)^{\top}$ and $\mathbf{0}_{p-1}$, \mathbf{I}_{p-1} respectively denote the (p-1)-dimensional null vector and identity matrix. From Elfving's Theorem,

$$\int_{\mathscr{S}^*} \frac{\partial \eta(x,\theta)}{\partial \theta} \xi^*(\mathrm{d}x) - \int_{\mathscr{S}_{\mathsf{c}^*} \setminus \mathscr{S}^*} \frac{\partial \eta(x,\theta)}{\partial \theta} \xi^*(\mathrm{d}x) = \gamma \mathbf{c}$$

with $\gamma = \gamma(\theta) > 0$, \mathscr{S}_{ξ^*} the support of ξ^* and \mathscr{S}^* a subset of \mathscr{S}_{ξ^*} . Denote $\eta'(x,\beta) = \eta[x,\theta(\beta)]$. Since $\partial \eta'(x,\beta)/\partial \beta = \mathbf{J}^\top \partial \eta(x,\theta)/\partial \theta$ and $\mathbf{J}^\top \mathbf{c} = (1,\mathbf{0}_{n-1}^\top)^\top$, we obtain

$$\int_{\mathscr{S}^*} \frac{\partial \eta'(x,\beta)}{\partial \beta} \, \xi^*(\mathrm{d}x) - \int_{\mathscr{S}_{\xi^*} \setminus \mathscr{S}^*} \frac{\partial \eta'(x,\beta)}{\partial \beta} \, \xi^*(\mathrm{d}x) = \gamma[\theta(\beta)] \, \left(\begin{array}{c} 1 \\ \mathbf{0}_{p-1} \end{array} \right) \, .$$

Therefore, $\int_{\mathscr{S}^*} \eta'(x,\beta) \, \xi^*(\mathrm{d}x) - \int_{\mathscr{S}_{\xi^*} \setminus \mathscr{S}^*} \eta'(x,\beta) \, \xi^*(\mathrm{d}x) = G(\beta_1)$, with $G(\beta_1)$ some

function of β_1 , estimable for ξ^* . Finally, $\beta_1 = \mathbf{c}^\top \theta$ is locally estimable for ξ^* since $G(\beta_1)/\mathrm{d}\beta_1 = \gamma[\theta(\beta)] > 0$.

Example 1 (continued). Take $\mathbf{c} = (0, 1)^{\top}$, $\mathbf{c}^{\top}\theta$ is not locally estimable at $\theta^0 = (0.7, 0.2)^{\top}$ for the c-optimal design $\xi^* = \delta_{x_*}$, with $x_*(\theta^0) \simeq 4.28$, but the value of x_* depends on θ^0 through (20). Taking two different nominal values $\theta^{0,1}, \theta^{0,2}$ is enough to construct a nonsingular design by mixing the associated c-optimal designs.

REFERENCES

- BIERENS, H. J.: Topics in Advanced Econometrics, Cambridge University Press, Cambridge, 1994.
- [2] ELFVING, G.: Optimum allocation in linear regression, Ann. Math. Statist. 23 (1952), 255-262.
- [3] JENNRICH, R. I.: Asymptotic properties of nonlinear least squares estimation, Ann. Math. Statist. 40 (1969), 633-643.
- [4] KIEFER, J.: Two more criteria equivalent to D-optimality of designs, Ann. Math. Statist. 33 (1962), 792–796.
- [5] LEHMANN, E. L.—CASELLA, G.: Theory of Point Estimation, Springer, Heidelberg, 1998.
- [6] PÁZMAN, A.: Foundations of Optimum Experimental Design. Reidel (Kluwer group)/ VEDA, Dordrecht/Bratislava, 1986.
- [7] PÁZMAN, A.—PRONZATO, L.: Asymptotic criteria for designs in nonlinear regression, Math. Slovaca 56 (2006), 543–553.
- [8] PÁZMAN, A.—PRONZATO, L.: On the irregular behavior of LS estimators for asymptotically singular designs. Statist. Probab. Lett. 76 (2006), 1089–1096.
- [9] PÁZMAN, A.—PRONZATO, L.: Asymptotic normality of nonlinear least squares under singular experimental designs. In: Optimal Design and Related Areas in Optimization

- and Statistics (L. Pronzato, A. A. Zhigljavsky, eds). Springer Optimization and Its Applications Vol. 28, Springer, New York, 2009, pp. 167–191.
- [10] WU, C. F. J.: Asymptotic theory of nonlinear least squares estimation, Ann. Statist. 9 (1981), 501–513.

Received 10. 3. 2008

Laboratoire 13S CNRS/Université de Nice Sophia-Antipolis Bât. Euclide, Les Algorithmes BP 121, 2000 route des lucioles 06903 Sophia Antipolis cedex FRANCE