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ABSTRACT. We consider the design of c-optimal experiments for the estimation
of a scalar function h(f) of the parameters 6 in a nonlinear regression model.
A c-optimal design £* may be singular, and we derive conditions ensuring the
asymptotic normality of the Least-Squares estimator of h(0) for a singular design
over a finite space. As illustrated by an example, the singular designs for which
asymptotic normality holds typically depend on the unknown true value of 0,
which makes singular c-optimal designs of no practical use in nonlinear situations.
Some simple alternatives are then suggested for constructing nonsingular designs
that approach a c-optimal design under some conditions.
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1. Introduction

We consider experimental design for least-squares estimation in a nonlinear
regression model with scalar observations

Y, =Y (z;) = n(x,0) + ¢4, where €O, i=1,2..., (1)

where {g;} is a (second-order) stationary sequence of independent random vari-
ables with zero mean,

E{e;} =0 and E{e?} =0% <0 for all 7, (2)

O is a compact subset of RP and z; € 2 denotes the design point characteriz-
ing the experimental conditions for the ith observation Y;, with 2~ a compact
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subset of R%. For the observations Y7, ..., Yy performed at the design points
T1,...,7N, the Least-Squares Estimator (LSE) 61g is obtained by minimizing
N

Sw(0) = SV — (. 02, (3)

i=1

with respect to § € © C RP. We suppose throughout the paper that either the
x;’s are non-random constants or they are generated independently of the Y;’s
(i.e., the design is not sequential). We shall also use the following assumptions:

H1,: n(z,6) is continuous on © for any x € Z7;

H2,: 0 € int(©) and n(x,0) is two times continuously differentiable with
respect to 6 € int(O) for any x € 2.

Then, under H1,, the LS estimator is strongly consistent, é]LVS 259, N — oo,

provided that the sequence {z;} is “rich enough”, see, e.g., [3]. For instance,
when the design points form an i.i.d. sequence generated with the probability
measure § (which is called a randomized design with measure £ in [7], [9]), strong
consistency holds under the estimability condition

/[n(m,@) —n(x,0) ¢(dr) =0 — 6=10. (4)
A

Under the additional assumption H2,, é]LVS is asymptotically normally dis-
tributed,

VN@ONg —0) -5 2 ~ 4 (0,M71(£,0)), N = oo, (5)

provided that the information matrix (normalized, per observation)

Mg, §) = 1 /877(:1;,0) on(z,0)

| ean) (6)

o2 00 g

is nonsingular.

The paper concerns the situation where one is interested in the estimation of
h(0) rather than in the estimation of #, with h(-) a continuous scalar function
on O. Then, when the estimability condition (4) takes the relaxed form

/ [1(2,0) — 5z, 0))*€(dz) =0 = h(6) = h(d), (7)
X

we have h(éivs) 2% h(0), N — co. Under the assumption
H;,: h(0) is two times continuously differentiable with respect to 6 € int(©),
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assuming, moreover, that Oh(#)/00|; # 0 and that (5) is satisfied, we also obtain
(see [5, p. 61])

Oh(0)

O e 0

VN [R(0Ys) = h(B)] 5w~ N (o : 9

) , N —o0.

()
In Section 2 we prove a similar result on the asymptotic normality of h(0Ys)
when M(, 6) is singular, that is,

0

OnO)| - dh(6)
Sopt | MT(E0)

VN [h(0Ys) = h(0)] 5 w ~ (o ) o9

), N — 0,

(9)
with M~ a g-inverse of M. This is called regular asymptotic normality in [9],
where it is shown to hold under rather restrictive assumptions on h(:) but with-

0

out requiring éivs to be consistent. We show in Section 2 that when the design
space Z is finite é]LVS is consistent under fairly general conditions, from which
(9) then easily follows.

We use the standard approach and consider an experimental design that min-
imizes the asymptotic variance of h(é]LvS) According to (9), this corresponds
to minimizing [8h(9)/89—r‘§} M~ (&,0) [0h(0)/00|,]. Since 0 is unknown, lo-
cal c-optimal design is based on a nominal parameter value #° and minimizes

Pc(€) = ®[M(E, 0°)] with
TN - . .
0 - > cpoM™cgo if and only if cgo € .Z(M)
O.(): MeM~ — { o

otherwise (10)

where M= denotes the set of non-negative definite p x p matrices,
A (M) ={c: FJueRP, c=Mu}

and

Oh(9)

90 |0

Note that the value of ®.(M) is independent of the choice of the g-inverse M.
Nonlinearity may be present in two places, since the model response n(zx, )
and the function of interest h(#) may be nonlinear in . Local c-optimal design
corresponds to c-optimal design in the linear (or more precisely linearized) model
ne(x,0) = £,(x)0 where fgo(z) = 877(:1:,9)/89|90, with the linear (linearized)
function of interest hz,(0) = ¢ of. A design £* minimizing ¢.(¢) may be singular,
in the sense that the matrix M(£*,6°) is singular. In spite of an apparent
simplicity for linear models, this yields, however, a difficulty due to the fact that
the function ®.(-) is only lower semi-continuous at a singular matrix M € MZ.
Indeed, this property implies that

Jim "M (gy)e > "M (¢e

Cgo =
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when the empirical measure &y of the design points converges weakly to &, see
e.g. [6, p. 67] and [8] for examples with strict inequality. The two types of
nonlinearities mentioned above cause additional difficulties in the presence of a
singular design: both é]LVS and h(é]LVS) may not be consistent, or the asymptotic
normality (9) may not hold, see [8] for an example with a linear model and a
nonlinear function A(-). It is the purpose of the paper to expose some of those
difficulties and to make suggestions for regularizing a singular c-optimal design.

2. Asymptotic properties of LSE with finite 2~

When using a sequence of design points i.i.d. with the measure £, the condition
(4) implies that Sy (0) given by (3) grows to infinity at rate N when 6 # 6 (an
assumption used in the classic reference [3]). On the other hand, for a design
sequence with associated empirical measure converging to a discrete measure &,
this amounts to ignoring the information provided by design points z € 2~ with
a relative frequency rn(z)/N tending to zero, which therefore do not appear
in the support of £&. In order to acknowledge the information carried by such
points, we can follow the same approach as in [10] from which we extract the
following lemma.

LemMA 1. If for any d >0

liminf inf [Sn(0) —Sn(0)] >0 a.s. 11
foinf b [1Sn(0) = Sn(0)] a.s (11)

thenéivsgéasN%oo. If for any § > 0

Pr{whelﬁz(S[SN(e) — Sn(0)] > O} -1, N — oo, (12)

then é]LVS 250 as N — oo.

We can then prove the convergence of the LS estimator (in probability and
a.s.) when the sum % [n(zk,0) — nlz, é)]Q tends to infinity fast enough for
|0 —0|| >8>0 and ‘fl?el design space 2~ for the x;’s is finite.

THEOREM 1. Let {x;} be a design sequence on a finite set 2. If Dy (6,0) =

N _
S n(zk, 0) — n(xy, 0))? satisfies
k=1
forall 6 >0, inf  Dn(0,0)| /(loglogN) = 00, N — o0, (13)
16—011>6
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then é]LVS 2% 0 as N — oo. If Dn(0,0) simply satisfies

forall § >0, inf Dn(6,0) 500 as N — o0, (14)
l16—0611>6

then éivs 256, N = .

Proof. The proof is based on Lemma 1. We have

_ N )
Z( 2 €k> [n(,0) = n(z,0)]

= — reX \k=1,zp=x
Sn(0)—Sy(0) = Dn(6,0) |[1+2 _
_ N )
Z Z €k |’I7(£I3,9)—77(.Z‘,9)‘
— reX |k=1,zr=x

Y

Dn(0.0) |1—2 _
~(6,6) Dn(6,0)

From Lemma 1, under the condition (13) it suffices to prove that

N _
Z Z €k |7’]($,9) —77(35’9)‘
reX |k=1,zr=x ﬁ) 0 (15)
sup ~
lo-11>5 Dn(6,9)

for any § > 0 to obtain the strong consistency of 9]LVS Since Dy(6,6) — oo and
Z is finite, only the design points such that rx(z) — oo have to be considered,
where 7 (x) denotes the number of times = appears in the sequence x1,...,Tx.
Define 3(n) = v/nloglogn. From the law of the iterated logarithm,

N

1
for all z € 27, limsup x| = 0v2, almost surely. (16)
ry(z)—o0 ﬂ{rN (x)} Z

k=1, zr=x

Moreover, Dy (6,6) > Djlv/z(@, 0)\/rn(x)n(z,0) — n(x,0)| for any € 2, so

that B
Blr @)]In(z,0) = n(x,0)| _ [loglogry (2)]"/*

Dn(6,9) = DY*0,)
Therefore,
> el n)-n@ol | 3
ekl |n(z,0) —n(z, €
k=1, 2=z - k:l,zac:k:ac ; [loglog rn (z)]'/?
Dy(9,0) ~ | Blrn ()] DY?(6,0)
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which, together with (13) and (16), gives (15).

When inf Dy(0,0) — oo as N — oo, we only need to prove that
l16—0611>6

N

> €k

k=1,zr=x

> In(x,0) —n(x,0)|
ze X
sup -
16—6]|>6 Dn(0,0)

for any 0 > 0 to obtain the weak consistency of 9]LVS We proceed as above and
only consider the design points such that ry(z) — oo, with now S(n) = /n.

250 (17)

N
From the central limit theorem, for any « € 2, > e ] /Vrn() <

k=1,z,=x
Wy ~ A(0,0?) as ry(z) — oo and is thus bounded in probability. Also, for any
x € X, \/rn(@)n(x,0) —n(z,0)|/Dy(6,8) < DS?(6,0), so that (14) implies
(17). d

When the design space 2 is finite one can thus invoke Theorem 1 to ensure
the consistency of #Yy. Regular asymptotic normality then follows for suitable
functions h(-).

THEOREM 2. Let {z;} be a design sequence on a finite set 2", with the property
that the associated empirical measure (strongly) converges to & (possibly singu-
lar), that is, ]\;1_1)1100 ry(x)/N = &(x) for any x € 2", with ry(x) the number of
times x appears in the sequence x1,...,xy. Suppose that the assumptions H1,,
H2, and H), are satisfied, with Oh(0)/00|s # 0, and that Dx(0,0) satisfies (13).
Then,
oh(0)

00 16
implies that h(é]LVS) satisfies the regular asymptotic normality property (9), where
the choice of the g-inverse is arbitrary.

€ MM(E, )], (18)

a

Proof. Since Yy =% 0 € int(©), there exists Ny such that N is in some
convex neighborhood of 6 for all N larger than Ny and, for all 4 = 1,...,p
= dim(#), a Taylor development of the ith component of the gradient of the LS
criterion (3) gives

{VoSn(0Ys)}, =0={VeSn(0)}, + {ViSn(BM) (Y5 —0)},,  (19)
with BN between Yy and 6 (and BN measurable, see [3]). Using the fact that 2
is finite we obtain V,Sy(0)/vV N L v~ A(0,4M(€,0)) and V2Sn(BN)/N
2% 9M(€,0) as N — oco. Combining this with (19), we get

VNETM(E,0) (05 — ) -5 2 ~ #(0,eTM(E,8)c), N — oo,
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for any ¢ € RP. Applying the Taylor formula again we can write

N - Oh(0 - -
VN (@) n@] =N D] @ - a)
alN
for some a™ between 6y and § and 8h(9)/89|aN == Oh()/00|,; as N — oc.
When (18) is satisfied we can write 8h(9)/89‘§ = M(£,0)u for some u € RP,
which gives (9). O

Notice that when M(¢,f) has full rank the condition (18) is automatically
satisfied so that the other conditions of Theorem 2 are sufficient for the asymp-
totic normality (8). The conclusion of the Theorem remains valid when Dy (6, 6)

only satisfies (14) (convergence in probability of #Y¢) with © a convex set, see,
e.g., [1, Th. 4.2.2].

3. Properties of standard regularization

Consider a regularized version of the c-optimality criterion defined by
©(M) = .[(1—7)M +M]

with ®.(-) given by (10), v a small positive number and M a fixed nonsingular
p x p matrix of MZ. From the linearity of M(¢,0°) in &, when M = M(¢, 6°)
with & nonsingular this equivalently defines the criterion

92 (&) = Pel(1 = )& + ¥¢]
with ¢.(&) = ®.[M(&,6°)]. Let £* and & be two measures respectively optimal

for () and 93(-). We have 6.(€7) < 6e[(1-7)&;+1€] = 62(€]) < de[(1 — 7)€"

+ 9] < (1 = 4)pe(€F) + v0e(€), where the last inequality follows from the
convexity of ¢.(-). Therefore,

0 < ¢1(&]) = 0e(§7) < 7[¢e(§) = Pe(€7)]

which tends to zero as v — 0, showing that év =[1-7& + ~¢ tends to be
c-optimal when ~ decreases to zero.

We emphasize that c-optimality is defined for 8% # 0. Let (M. .., 2(*) be the
support points of a c-optimal measure £*, complement them by (6t z(s+k)
so that the measure é supported at z(1), ... z(51k) (with, e.g., equal weight at
each point) is nonsingular. When N observations are made, to the measure
(1 — 7)€" + 7€ corresponds a design that places approximately v N /(s + k)
observations at each of the points 26tV ... 2515 The example below shows
that the speed of convergence of cTéJLVS to ¢ may be arbitrarily slow when
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Ficure 1. Elfving set

tends to zero, thereby contradicting the acceptance of £* as a c-optimal design
for 6.

Ezample 1. Consider the regression model defined by (1), (2) with

0
n(x,0) = 9 19 [exp(—622) — exp(—012)],
1— 02
Z =[0,10] and 02 = 1. The D-optimal design measure £}, on 2 maximizing
log det M((¢,6°) for the nominal parameters 8° = (0.7, 0.2) " puts mass 1/2 at
each of the two support points given approximately by () = 1.25, (2 = 6.60.

Figure 1 shows the set {fgo(z) : 2 € 2"} (solid line), its symmetric {—fgo (z) :
x € Z'} (dashed line) and their convex closure Fgo, called the Elfving set
(shaded region), together with the minimum-volume ellipsoid containing %o
(the points of contact with .#go correspond to the support points of 7).

From Elfving’s theorem [2], when 2* € [z, ()] the c-optimal design
minimizing ¢ M~1(¢,0%)c with ¢ = Bfyo(x,), B # 0, is the delta measure &, .
Obviously, the singular design d,, only allows us to estimate n(z.,6) and not
h(f) =cTé.

Select now a second design point 2° # x, and suppose that when N obser-
vations are performed at the design points x1,...,xn, m of them coincide with
2% and N — m with 2., where m/(loglog N) — oo with m/N — 0. Then, for
2% # 0 the conditions of Theorem 1 are satisfied. Indeed, the design space equals
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{2 2.} and is thus finite, and
— N —
k=1
= (N - 2m)[77(55*a 9) - 77(37*7 9_)]2
+m {[n(z.,0) — (s, 0)]% + [n(2,0) — n(2°,0)]*}

so that inf Dy (6,0) > mC(2°, z,,0), with C(z°, x.,8) a positive constant,
[|6—06|>5

and inf Dy(6,0)/(loglog N) — oo as N — oo. Therefore, although the
10—-011>5

empirical measure £y of the design points in the experiment converges strongly
to the singular design d,,, this convergence is sufficiently slow to make GLS
(strongly) consistent. Moreover, for h(-) a function satisfying the conditions of
Theorem 2, h(égs) satisfies the regular asymptotic property (9). In the present
situation, this means that when 9h( 9)/89’§ = Pfz(x,) for some S € R, then
VNR(ONS) — h(B)] % w ~ /(o [0h(0)/00T M~ (6,.,0) Oh(6)/06)] é). This
holds for instance when h(-) = n(x,, ) (or is a function of n(z.,-)).

There is, however, a severe limitation in the application of this result in
practical situations. Indeed, the direction fz(x,) for which regular asymptotic
normality holds is unknown since # is unknown. Let ¢ be a given direction of
interest, the associated c-optimal design £* is determined for the nominal value
6°. For instance, when ¢ = (0, 1)T (which means that one is only interested in
the estimation of the component 6s), £&* = §,, with z, solution of {fypo(x)}; =0
(see Figure 1), that is, x, satisfies

03 = [05 +07(6% — 03)x.] exp[—(6) — 03)x.] . (20)

For 6" = (0.7, 0.2)7, this gives 2, = 2,(0°) ~ 4.28. In general, f5(x.) # fo(z.)
to which c is proportional. Therefore, ¢ ¢ .#[M({*,0)] and regular asymptotic
normality does not hold for cTé]LVS.

The example is simple enough to be able to investigate the limiting behavior
of CTQN by direct calculation. A Taylor development of the LS criterion Sy ()

gives (19) where BZN 2% 9 as N — o0, i = 1,2. Direct calculations give

VoSn(0) = —2 [x/mﬁm f5(2°) + VN —myn_m fg(x*)} :
VeSn(0) = 2[mfy(a")f] (%) + (N —m) f3(2.)f] (2.)] + Op(v/m),
where 3, = (1/y/m) 2 € and Yn_m = (1/V/N —m) 2 g; are independent

random variables that tend to be distributed .47(0, 1) as m — oo and N —m— oo.
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We then obtain,

B = s Lo CJEG ) On (Clis )
+op(1/vm),

where A(x,,2°) = det(f;(z.), f5(2°)). Therefore, \/Nfg—(;z:*)(égs —0) is asymp-
totically normal .4#7(0,1) whereas for any direction ¢ not parallel to fz(x,)
and not orthogonal to fy(z?), \/ch(é]LVS — #) is asymptotically normal (and
cT(é]LVS—G_) converges not faster than 1/y/m ). In particular, \/mfe:r(xo)(égs—ﬁ_)
is asymptotically normal .4 (0,1) and /m{fYs — 0} is asymptotically normal
N (0, {Eg(2) B/ A% (2, 29)).

The previous example has illustrated that letting v tend to zero in a regular-
ized c-optimal design (1 — ~)&* 4 ~€ raises important difficulties (one may refer
to [8] for an example with a linear model and a nonlinear function h(6)). We
shall therefore consider v as fixed in what follows. It is interesting, nevertheless,
to investigate the behavior of the c-optimality criterion when the regularized
measure (1 —v)&*+ ~€ approaches £* in some sense. Since v is now fixed, we let
the support points of é approach those of £*. This is illustrated by continuing
the example above.

Ezample 1 (continued). Place the proportion m = N/2 of the observations at x°
and consider the design measure &, ;o = (1 —¥)d,, + 7dz0 with 4 = 1/2. Since
the c-optimal design is §,,, we consider the limiting behavior of cT(éILVS —0)
when N tends to infinity for 20 approaching x.. The nonsingularity of &; /2,20
for 29 # x, (and 2° # 0) implies that \/NCT(éILVS — #) is asymptotically normal
A (0,6 "M (€3 40, 0)0).

The asymptotic variance CTM_l(Sl/QywO, f)c tends to infinity as 2° tends to
x, when c is not proportional to fz(x,), see Figure 2. Take ¢ = f5(z.). Then,
fej—(x*)M’l(ﬁl/Q’xo,é)fg(:z;*) equals 2 for any 2° # z,, twice more than what
could be achieved with the singular design 4, since £ (z,)M™ (0, ,0)f5(z.) = 1
(this result is similar to that in [6, p. 67] and is caused by the fact that ®.(-) is
only semi-continuous at a singular M).

The example above shows that not all regularizations are legitimate: the
regularized design should be close to the optimal one £* in some suitable sense
in order to avoid the discontinuity of ®.(-) at a singular M.
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1 1.5 2 25 3 3.5 4 4.5

FIGURE 2. ¢ "M ™1(§; /5 40, 0)c (solid line) and £, ()M~ (& /5 40,0)f5(zx)
(dashed line) for 20 varying between 1.25 and z, = 4.28; § = (0.65, 0.25) T,
69 = (0.7, 0.2)T and ¢ = (0, 1)T (so that d,, is c-optimal for ¢ and 6°)

4. Minimax regularization

4.1. Estimation of a nonlinear function of 6

Consider first the case where the function of interest h(#) is nonlinear in 6.
We should then ideally take ¢z = Oh(0)/86], in the definition of the optimality
criterion. However, since 6 is unknown, a direct application of local c-optimal
design consists in using the direction cgo = Oh(6)/ 89| go» With the risk that ¢
and h(f) are not estimable from the associated optimal design £* if it is singular.
One can then consider instead a set ©Y (a finite set or a compact subset of RP)
of possible values for # around #° in the definition of the directions of interest,
and the associated c-minimax optimality criterion becomes

0 () = mavx o] M (€,6%)c . 1)
€0

or equivalently ¢« (&) = max c "M~ (£,0%c with € = {cg : 0 € ©°}. A measure
ce

(%) on 2 that minimizes ¢« (§) is said to be (locally) c-minimax optimal.
When % is large enough (in particular when the vectors in % span RP), £*(%)
is nonsingular. According to Theorem 2, a design sequence on a finite set 2~
(containing the support of £*(%)) such that the associated empirical measure
converges strongly to £*(%’) then ensures the asymptotic normality property (8).
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4.2. Estimation of a linear function of 6:
regularization via D-optimal design

When the function of interest is h() = c¢'6 with the direction c fixed, the
construction of an admissible set 4 of directions for c-minimax optimal design is
somewhat artificial and a specific procedure is required. The rest of the section
is devoted to this situation. The approach presented is based on D-optimality
and applies when the c-optimal measure is a one-point measure.

Define a (local) c-maximin efficient measure ¢}, for € as a measure on 2
that maximizes N .

@ =i MO
cee cTM~(£,6%)c
with £*(c) a c-optimal design measure minimizing ¢' M~ (¢,6°)c. When the
c-optimal design £*(c) is the delta measure J,, it seems reasonable to consider
measures that are supported in the neighborhood of z,. One may then use the
following result of Kiefer [4] to obtain a c-maximin efficient measure through
D-optimal design.

THEOREM 3. A design measure &,,, on X is c-maximin efficient for € =
{foo(z) : ® € X'} if and only if it is D-optimal on X, that is, it mazimizes
log det M(€, 6°).
The construction is as follows. Define

Zs =B(x.,0) N L, (22)
with %(x.,6) the ball of centre z, and radius § in R%, and define €5 = {fo(z) :
x € Z5}. From Theorem 3, a measure & is c-maximin efficient for ¢ € % if
and only if it is D-optimal on Z5. Suppose that &5 spans RP when 6 > 0, the

measure & is then non singular for 6 > 0 (with £ = £*(c)). Various values of ¢
are associated with different designs £§. One may then choose ¢ by minimizing

J(d) = 5161%% <I>C[M(§§, 9)} ) (23)

where ©° defines a feasible set for the unknown parameter vector . Each
evaluation of J(0) requires the determination of a D-optimal design on a set
Z5 and the determination of the minimum with respect to # € ©°, but the
D-optimal design is often easily obtained, see the example below, and the set
00 can be discretized to facilitate the determination of the maximum.

Ezample 1 (continued). Take ¢ = (0, 1)T and #° = (0.7, 0.2)T. Choosing 25
as in (22) gives €5 = {fpo(z) : © € [z+ — 0, x4 + 6]}, with x, ~ 4.28, and the cor-
responding c-maximin efficient measure is §§ = (1/2)d,, -5 + (1/2)d,,45. Fig. 3
shows ¢ "M~ (&5,0)c and £ (2. )M~ (&;, 0)f5(x.) as functions of 4. Notice that
fg—(x*)M’l(gg,G_)fg(x*) tends to 1 as § tends to zero, indicating that the form
of the neighborhood used in the construction of 25 has a strong influence on
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22

0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2

FIcURE 3. ¢"M~1(€;,0)c (solid line) and fg(xj)M_l(Eg,é)fg(x*) (das-
hed line) for § between 0 and 2; z. = 4.28, § = (0.65, 0.25)7, #° =
(0.7, 0.2)T and ¢ = (0, 1)7 (so that 8, is c-optimal for ¢ and 69)

the performance of & (in terms of c-optimality) when ¢ tends to zero. Indeed,
taking 25 = [:UO, x| with 2 =z,—-6 yields the same situation as that depicted
in Fig. 2.

The curve showing ¢" M~1(¢5,0)c in Fig. 3 indicates the presence of a mini-
mum around ¢ = 0.5. Fig. 4 presents J(J) given by (23) as a function of 6 when
0° =[0.6,0.8] x [0.1, 0.3], indicating a minimum around § = 1.45 (the maximum
over 6 is attained at the endpoints 6#; = 0.8, 605 = 0.3 for any J).

5. Regularization by combination of c-optimal designs

We say that h(0) is locally estimable at 6 for the design £ in the regression
model (1), (2) if the condition (7) is locally satisfied, that is, if there exists a
neighborhood ©y of # such that

Vo' € Oy, / (. 0') — n(z,0)2€(dx) =0 = (@) =h(0).  (24)
X

Consider again the case of a linear function of interest h(f) = ¢'6 with the
direction ¢ fixed. The next theorem indicates that when c¢'#@ is not (locally)
estimable at #° from the c-optimal design ¢* it means that the support of £* de-
pends on the value §° for which it is calculated. By combining different c-optimal
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0.6

FIGURE 4. max c"M~1(£;,0)c as a function of § € [1,2] for @0 =
0co

[0.6,0.8] x [0.1,0.3]

designs obtained at various nominal values % one can thus easily construct a
nonsingular design from which #, and thus c'6, can be estimated. When the

true value of € is not too far from the #%%’s, this design will be almost c-optimal
for 6.

THEOREM 4. Consider a linear function of interest h(§) = c¢'6, ¢ # 0, in a
regression model (1), (2) satisfying the assumptions H1,, H2, and Hy. Let
& =£%(6°) be a (local) c-optimal design minimizing ¢ M~ (&,60%)c. Then, h(6)
being not locally estimable for €* at 89 implies that the support of £* varies with
the choice of 6°.

Proof. The proof is by contradiction. Suppose that the support of £*(6) does
not depend on #. We show that it implies that h(f) is locally estimable at 6
for £*.

Suppose, without any loss of generality, that ¢ = (cy,...,c,)" with ¢; # 0

and consider the reparametrization defined by 8 = (c'6,0z,...,6,)", so that
0 =0(8) =Jp with J the (jacobian) matrix

I ( /ey —c /ey ) 7

0p71 Ip,1
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where ¢’ = (ca,...,c,) " and 0,_1, I,_; respectively denote the (p — 1)-dimen-
sional null vector and identity matrix. From Elfving’s Theorem,

on(x,0) on(z,0) .,
[P ean - [ e an) < e
* e \ T

with v = () > 0, - the support of £* and .#* a subset of .Z¢+. De-
note n'(x,3) = nlz,0(8)]. Since o' (x,B)/0B = I On(x,0)/00 and JTc =

(1,0;)'—_1)T, we obtain

/8n’(x,ﬂ) £ (dz) — / I B) e () = 5f0(3)] ( 01 ) '

86 8[3 p—1
2 e \ S
Therefore, [ n'(z,8)&*(dz)— [ n'(z,B)&*(dzx) = G(B1), with G(B1) some
F* Fee \ S
function of B, estimable for £*. Finally, 81 = c'6 is locally estimable for ¢*
since G(1)/dB1 = ~v[0(8)] > 0. O

Ezxample 1 (continued). Take ¢ = (0, 1)T, ¢T# is not locally estimable at 0 =
(0.7, 0.2) " for the c-optimal design &* = §,,, with z,(6°) ~ 4.28, but the value
of z, depends on 6° through (20). Taking two different nominal values §°!, %2
is enough to construct a nonsingular design by mixing the associated c-optimal
designs.
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