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ABSTRACT. The exact distribution of the APLE statistic for testing spatial
dependencies is derived. Examples are given to compare with the more common
Moran’s I statistic.
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1. Introduction

Spatial dependence is commonly measured by the so called Moran’s I statistic
(cf. [11]). However, if it can be safely assumed that the data stems from a
particular spatial process its use may be inefficient. This is particularly so, if a
so called spatial autoregressive (SAR) process generates the data. Then it is well
known that I can not be used as an estimator for the spatial autocorrelation
parameter. Therefore L i et al. [10] have suggested the use of the APLE
statistic, which is based on a least squares estimator of this parameter.

In their paper they provide a wealth of simulations to back up their choice,
however they do not compute moments or exact distributions. Also although
they introduce the measure as a rival of I they do not give comparisons to its
use.

In this paper, we will derive the exact distribution of the APLE statistics
following a corresponding derivation for the M o r a n ’s I given in [18] (note that
an alternative derivation technique as in [7] could be applied as well), which is
presented in Section 1. Section 2 will then give some comparisons with I for
particular example situations.
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Note that indicators as the above can also be used in the experimental design
context. G um p r e c h t et al. [5] for instance employ them for defining a
criterion to optimally select sample points. Since the classical optimal design
conditions are violated adaptations of alternative techniques such as given in
[13] might be useful.

2. Theoretical considerations

2.1. Moran’s I
The Moran’s I statistic is commonly used as an indicator of spatial depen-

dence in a data set. It is defined as a ratio of quadratic forms in the normally
distributed regression residuals ε̂ = (I−X (X TX )−1X T )y = M y from a regres-
sion of y on X , and thus of the same structure as the Durbin-Watson statistic
for serial autocorrelation, i.e.

I =
ε̂T · 1

2 · (V +V T
) · ε̂

ε̂T · ε̂ , (1)

where V denotes the (usually row-standardized) spatial link matrix.

One of the most commonly used methods to test for spatial independence
is to employ the asymptotic normal distribution of I (derived by [3]) as an
approximation, and test the standardized value of the statistic

z(I) = I0 − E[I]√
V [I] ∼ N (0, 1) (2)

against a standard normal. It turns out, however, that the normal approximation
is not very suitable for small lattices, so that it is advisable to compute the exact
distribution of I under the null, which was derived independently in [18] and
[7]. A comprehensive exposition of these derivations and corresponding R-code
(which is now implemented in the package spdep, see [1]) can be found in the
master thesis by R e d e r [15].

2.2. The APLE

The Moran’s I test statistic measures the intensity of spatial autocorrelation
in a spatial process but not directly the spatial autocorrelation level ρ. When
we assume that a Gaussian simultaneous spatial autoregressive (SAR) process,

i.e. ε = ρV · ε + η with η ∼N (0, σ2 · I ), which yields Ω
1
2 =

(
I − ρV T

)−1
,

without loss of generality, generates the data, O r d [12] suggested to use the least
squares estimator ρ̂ instead, albeit it being biased and inconsistent. Using it as
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a basis L i et al. [10] have further suggested the approximate profile-likelihood
estimator APLE

APLE =
ε̂T · 1

2 · (V +V T
) · ε̂

ε̂T (V TV + vT vI /n) · ε̂ , (3)

where v is the vector of eigenvalues of V as a competitor for I in tests for spatial
independence.

2.3. Normal approximation

Since the term vT vI /n plays no role asymptotically and V is fixed, one may
expect to safely employ the normal approximation under the usual conditions (cf.
[17]). However, for this purpose one needs to evaluate the first two moments of
the APLE under the assumption of spatial independence, which is not as simple
as those for the I (as first given in [6]).

Here the derivation is similar as to the moments of Moran’s I under the influ-
ence of a spatial process (cf. [16]) and we may employ his formulae with minor
adaptations, since the regression residuals ε̂ are here normally distributed with
covariance matrix σ2M . The expected values of the random errors ε and the
expectation of the regression residuals ε̂ are zero, which is eventually important
as it leads to central χ2-distributed variables. Let us then define

A ≡M · 1
2
· (V +V T

) ·M
B ≡M · (V TV + vT vI /n

) ·M
with βi being the eigenvalues of B and P a n × n matrix whose columns are
the normalized eigenvectors of B . The expectation of the APLE under the
assumption of spatial independence is then given by

E [APLE] =

∞∫
0

n−k∏
i=1

(1 + 2 · βi · t)−
1
2 ·

n−k∑
i=1

hii

1 + 2 · βi · t dt

and the second moment of the APLE can be written as

E
[
APLE2

]
=

∞∫
0

n−k∏
i=1

(1 + 2 · βi · t)−
1
2 ·

n−k∑
i=1

n−k∑
j=1

(hii · hjj + 2 · h2
ij) · t

(1 + 2 · βi · t) · (1 + 2 · βj · t) dt

where the hij are the elements of the matrix PT ·A ·P .
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2.4. The exact distribution

For the derivation of the distribution of the APLE a similar train of thought
can be followed and for a specific observed value APLE0 it can be written as

F (APLE0) =

=P

(
εT ·M · 1

2 · (V +V T
) ·M · ε

εT ·M · (V TV + vT vI /n) ·M · ε ≤ APLE0

)
(4)

=P

(
εT ·M

[
1

2
· (V +V T

)− APLE0

(
V TV +

vT vI

n

)]
M · ε ≤ 0

)
. (5)

By the Spectral Decomposition Theorem

L ≡ M ·
[
1

2
· (V +V T

)−APLE0(V
TV + vT vI /n)

]
·M (6)

(note that L is symmetric) can be written as L = H T ·Λ ·H , where H is the
matrix of the normalized eigenvectors and Λ = diag(λ1, . . . λn) is the diagonal
eigenvalue matrix of L given in equation (6).

From matrix algebra it is well known that here is an orthogonal matrix K
such that

KT ·M ·K =

(
In−k 0
0 0k×k

)
.

Now that because the projection matrix M is not of full rank only n − k
eigenvalues of B are non zero, which allow us some simplification for quicker
calculation. Recall rank(M ) = n − k and rank(X ) = k. Defining A ≡ 1

2 ·(
V +V T

)
we apply the orthogonal matrix K simultaneously onto the kernel

of the numerator of the APLE in (3). Additionally applying I = K ·KT we get

KT ·M ·A ·M ·K = KT ·M ·K ·KT ·A ·K ·KT ·M ·K

=

(
In−k 0
0 0k×k

)
·
(

B1 B2

B3 B4

)
·
(

In−k 0
0 0k×k

)

=

(
B1 0
0 0k×k

)

where

(
B1 B2

B3 B4

)
is the appropriate partition of the symmetric matrix

KT ·A ·K .

Let N1 be an orthogonal matrix diagonalizing B1

N T
1 ·B1 ·N1 =

⎛
⎜⎜⎜⎝

γ1 0
γ2

. . .

0 γn−k

⎞
⎟⎟⎟⎠
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the matrixN =

(
N1 0
0 Ik

)
is also orthogonal, so that the product H ≡ K ·N

is again orthogonal because H ·H T = K ·N ·N T ·KT = K · I ·KT = I .

Now applying H simultaneously onto the kernel of the numerator of the
APLE we get

ΓA = H T ·M ·A ·M ·H
= H T ·M ·K ·KT ·A ·K ·KT ·M ·H

= N T ·
(

In−k 0
0 0k×k

)
·N

=

⎛
⎜⎜⎜⎜⎜⎝

γA1 0
γA2

. . .

γAn−k

0 Ik×k

⎞
⎟⎟⎟⎟⎟⎠

and analogously for the denominator ΓB = H T ·M ·B ·M ·H .

So by applying the orthogonal transformation ε = H · η, the APLE can be
written as

APLE =
ηT ·H T ·M · 1

2 · (V +V T
) ·M ·H · η

ηT ·H T ·M · (V TV + vT vI /n) ·M ·H · η =
ηT · ΓA · η
ηT · ΓB · η

hence

APLE =

n−k∑
i=1

γAi · η2i
n−k∑
i=1

γBi · η2i
(7)

where ΓA = diag(γ1, . . . , γn−k, 0, . . . , 0) is the diagonal matrix of the eigenvalues
of the matrix M · 1

2 · (V +V T
) ·M and ΓB respectively.

Thus the distribution of the APLE under spatial independence is given by

F (APLE0) = P

⎛
⎜⎜⎜⎝

n−k∑
i=1

γAi · η2i
n−k∑
i=1

γBi · η2i
≤ APLE0

⎞
⎟⎟⎟⎠ (8)

= P

(
n−k∑
i=1

(γAi − APLE0γBi) · η2i ≤ 0

)
. (9)

569



MARKUS REDER — WERNER G. MÜLLER

Because the random error vector ε belongs to the class of the spherically
symmetric distributions, the orthogonal transformation η ≡ H · ε is again in-
dependent normally distributed with η ∼ N (0, I ). Thus we are able to use

I m h o f ’s formula (see below) since
n−k∑
i=1

(γi −APLE0γBi) ·η2i is a weighted sum

of χ2
1-distributed variables.

Imhof’s Formula ([8]):
The distribution function F (y) of the weighted sum of independent
central χ2-distributed variables is given by

F (y) = P (Y ≤ y) =
1

2
− 1

π

∞∫
0

1

u
· sin (Θ(u)) · ξ(u) du.

Where X1, X2, . . . , Xn are independent χ2
1-distributed random vari-

ables, with the weights λ1, λ2 . . . , λn ∈ R. Thus the weighted sum
Y = λ1 ·X1 + λ2 ·X2 + · · ·+ λn ·Xn.

The two functions Θ(u) and ξ(u) are given by

Θ(u) =
1

2

n∑
j=1

arctan(uλj)− 1

2
u y

ξ(u) =

n∏
j=1

(1 + u2λ2
j )

− 1
4 .

Note that all zero eigenvalues can be ignored, and because of y = 0, the term
−1

2u · y in Imhof’s formula is irrelevant for our purposes.

Another way is the direct evaluation of the complex-valued characteristic
function of a weighted sum of χ2-distributed variables. It has not succeeded
in practice, because the calculation is not easy to implement and the approach
above with real-valued integration is much easier to handle. Here, the solution of
the integral in Imhof’s formula can be approximated by numerical integration.
The behavior of the improper integral at u = 0 and at u → ∞ have to be
considered especially, yielding starting and truncation values respectively.

As a side issue it would be quite useful to know more about the feasible range
of the distribution of the APLE. The ratio of the quadratic form

εT ·A · ε
εT ·B · ε

for a matrix B with full rank and εi i.i.d. normal distributed is bound by the
minimum and maximum eigenvalues of B−1 · A, see [9]. However, it might be
useful to find a characterization of these bounds directly in terms of γAi and γBi

along the lines given in [4], but this is a future issue.
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3. Examples

To back up their suggestion of APLE as a spatial dependence measure L i
et al. [10] provide several simulations, contrasting its performance with the
theoretically superior, but computationally costly maximum likelihood estimator
of ρ. Although they have motivated their paper in providing an alternative
to I, however, they do not provide any direct comparisons. Also they never
investigated robustness issues, neither with respect to other data generating
processes nor with respect to other designs than regular grids. In this section
we attempt to fill these gaps: all our simulations are based on 2000 replications.

We have first calculated the performance of the I, the APLE and the ML-esti-
mators for a spatial autoregressive and a spatial lag process respectively. The
latter was for robustness comparison purposes, but did not yield essentially
different results and is thus not reported here. From Figure 1, which displays the
resulting distributions assuming a regular 4×4 and 30×30 grid respectively, it is
clear that under independence, I has the smallest variance. Also its distribution
is much closer to the normal also for small numbers of observations.

Figure 1: Various distributions for a 4×4 grid (left column) and a 30×30 grid (right column)
with ρ = 0
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Figure 2: Various distributions for a 10× 10 grid with ρ = 0.5 (left) and ρ = 0.9 (right)

The left panels of Figure 2 now show the behaviour of the statistics, when a
spatial SAR process with ρ = 0.5 is generating the data. Evidently, here the I is
strongly biased and not very useful compared with its competitors. Clearly, this
is where L i et al. [10] draw their support for the APLE from. However, looking
at the right panel of Figure 2, showing the situation for ρ = 0.9 the APLE is
quite off the mark as well, whereas the ML-estimator fares well. Nonrobustness
with respect to the wrong choice of the model seems to be the only issue there
(but only in the extreme case).

Let us now investigate the situation, when we do not have a regular grid (as
is quite usual in practice). As a somewhat extreme showcase example consider a
set of fourteen maximally connected planar spatial structures called the B-series
with a fixed number n = 8 nodes and an overall connectivity D = 36, introduced
in [2]. We will look at the shape of the distribution of Moran’s I and the APLE
for a subset, namely the B07 and B14-Structure shown in Figures 3 and 4 using
the C-coding scheme.
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Figure 3: B07-Structure Figure 4: B14-Structure

Figure 5: B07-Structure Figure 6: B14-Structure

Deriving the eigenvalues lead to {−0.444,−0.379,−0.340,−0.111,−0.077,
−0.065, 0.418} for the B07-Structure and to {−0.360,−0.360,−0.360,−0.333,
0.137, 0.137, 0.137} for the B14-Structure. The corresponding histograms for
ρ = 0.6 can be found in Figures 5 and 6, from which it is evident, that the
APLE looses its advantage completely over the I. Not only is it also biased,
but exhibits higher variance. We thus do not consider the case strong enough
for replacing a well established test statistic.
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Appendix: R-code

The R-scripts for examples are given below. Further code can be found in
[15].

rm(list=ls(all=TRUE)) source("routines\\DA Packages.R")

source("routines\\DA Structures.R") source("routines\\DA Maps.R")

# Structures +++++++++++++++++++++++++++++++++++++++++++++++++++

st="W"

area.w <- nb2listw(cell2nb(4, 4, torus=TRUE), style=st);

title="4 x 4 - grid"

area.w <- nb2listw(cell2nb(10, 10, torus=TRUE), style=st);

title="10 x 10 - grid"

area.w <- nb2listw(cell2nb(30, 30, torus=FALSE), style=st);

title="30 x 30 - grid"

area.w <- matb2listw(B07.mat,style=st);title="B07 Structure"

area.w <- matb2listw(B14.mat,style=st);title="B14 Structure"

# SAR und MA-Process simulieren

+++++++++++++++++++++++++++++++++++++++

r=0.9

lim=c(0,1.0)

sim=2000

par(mfrow=c(4,2))

time1=proc.time()[3]

n=length(area.w$neighbour)

V <- listw2mat(area.w)

lambda=eigen(V)$values

N=diag(as.real(t(lambda)%*%lambda/n),n)

MI1=c();MI2=c()

APLE1=c();APLE2=c()

MLsar1=c();MLsar2=c()

MLlag1=c();MLlag2=c()

for(i in 1:sim){

y = matrix(rnorm(n))
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# SAR-Process

WOmega1=invIrW(area.w, rho=r)

x1=WOmega1 %*% lm(y~1)$residuals

# Moran’s I

MI1 <- c(MI1,n/sum(V)*(t(x1)%*%(0.5*(V+t(V)))%*%x1)/

(t(x1)%*%x1))

# APLE1

APLE1 <- c(APLE1,(t(x1)%*%(0.5*(V+t(V)))%*%x1)/

(t(x1)%*%(t(V)%*%V+N)%*%x1))

# ML-SAR

MLsar1=c(MLsar1,errorsarlm(x1~1,listw=area.w,

na.action=na.exclude,zero.policy=TRUE)$lambda)

# ML-Lag

MLlag1=c(MLlag1,lagsarlm(x1~1,listw=area.w,

na.action=na.exclude,zero.policy=TRUE)$rho)

# MA-Process

WOmega2=diag(n)+r*V

x2=WOmega2 %*% lm(y~1)$residuals

# Moran’s I

MI2 <- c(MI2,n/sum(V)*(t(x2)%*%(0.5*(V+t(V)))%*%x2)/

(t(x2)%*%x2))

# APLE

APLE2 <- c(APLE2,(t(x2)%*%(0.5*(V+t(V)))%*%x2)/

(t(x2)%*%(t(V)%*%V+N)%*%x2))

# ML-SAR

MLsar2=c(MLsar2,errorsarlm(x2~1,listw=area.w,

na.action=na.exclude,zero.policy=TRUE)$lambda)

# ML-Lag

MLlag2=c(MLlag2,lagsarlm(x2~1,listw=area.w,

na.action=na.exclude,zero.policy=TRUE)$rho)

}

time2=proc.time()[3]

time2-time1

b=30

hist(MI1,breaks=b,xlim=lim,freq=FALSE,xlab="Moran’s I",

main="SAR Process - Histogram of Moran’s I");

abline(v=r,col="blue",lty=1,lwd=3)

hist(MI2,breaks=b,xlim=lim,freq=FALSE,xlab="Moran’s I",

main="MA Process - Histogram of Moran’s I");

abline(v=r,col="blue",lty=1,lwd=3)

hist(APLE1,breaks=b,xlim=lim,freq=FALSE,xlab="APLE",
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main="SAR Process - Histogram of APLE");

abline(v=r,col="blue",lty=1,lwd=3)

hist(APLE2,breaks=b,xlim=lim,freq=FALSE,xlab="APLE",

main="MA Process - Histogram of APLE");

abline(v=r,col="blue",lty=1,lwd=3)

hist(MLsar1,breaks=b,xlim=lim,freq=FALSE,xlab="ML rho (sar)",

main="SAR Process - Histogram of ML rho (sar)");

abline(v=r,col="blue",lty=1,lwd=3)

hist(MLsar2,breaks=b,xlim=lim,freq=FALSE,xlab="ML rho (sar)",

main="MA Process - Histogram of ML rho (sar)");

abline(v=r,col="blue",lty=1,lwd=3)

hist(MLlag1,breaks=b,xlim=lim,freq=FALSE,xlab="ML rho (lag)",

main="SAR Process - Histogram of ML rho (lag)");

abline(v=r,col="blue",lty=1,lwd=3)

hist(MLlag2,breaks=b,xlim=lim,freq=FALSE,xlab="ML rho (lag)",

main="MA Process - Histogram of ML rho (ag)");

abline(v=r,col="blue",lty=1,lwd=3)

savePlot(file=paste("10x10_Hist_rho_0_",r*10,sep=""),"pdf")

# SAR-Process simulieren +++++++++++++++++++++++++++++++++++++++

r=0.6

lim=c(-1,1)

sim=1000

par(mfrow=c(2,1))

time1=proc.time()[3]

n=length(area.w$neighbour)

V <- listw2mat(area.w)

lambda=eigen(V)$values

N=diag(as.real(t(lambda)%*%lambda/n),n)

MI=c()

APLE=c()

for(i in 1:sim){

y = matrix(rnorm(n))

# SAR-Process

WOmega=invIrW(area.w, rho=r)

x=WOmega %*% lm(y~1)$residuals

# Moran’s I

MI <- c(MI,n/sum(V)*(t(x)%*%(0.5*(V+t(V)))%*%x)/

(t(x)%*%x))

# APLE

APLE <- c(APLE,(t(x)%*%(0.5*(V+t(V)))%*%x)/
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(t(x)%*%(t(V)%*%V+N)%*%x))

}

time2=proc.time()[3]

time2-time1

b=30

hist(MI,breaks=b,xlim=lim,freq=FALSE,

main="Histogram of Moran’s I - SAR");

abline(v=r,col="blue",lty=1,lwd=3)

hist(APLE,breaks=b,xlim=lim,freq=FALSE,

main="Histogram of APLE - SAR");

abline(v=r,col="blue",lty=1,lwd=3)

savePlot(file=paste("B14_SAR_Hist_rho_0_",r*10,sep=""),"pdf")
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