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ABSTRACT. The method used in nonlinear regression is most of the time the

nonlinear squares. If the nonlinearity of the model is not too strong, it is possible

to linearize the model and to use the linear statistical theory which is more simple.

The question is under which condition this can be done. If the linearized model

is regular such criteria were found. To find a solution for singular models is the

aim of the paper.
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Introduction

The nonlinear least squares method, mostly used in nonlinear regression, is

described and analyzed in [7]. It is more sophisticated than the linear least

squares method, more complicated numerically and it needs different algorithms

for solution of statistical problems. Nevertheless sometimes the situation re-

quires such methods and no other way for a solution is at our disposal.

If a nonlinearity of the model is not too strong, it is possible to linearize the

model and to use the more simple linear statistical theory. The question is under

what condition this can be done.

If the linearized model is regular, i.e. the design matrix (the matrix of the

first derivatives of the mean value of the observation vector with respect to
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the parameters) is of the full column rank and the covariance matrix of the

observation vector is positive definite, the criteria were found which enable us to

decide whether the nonlinear model can be linearized. The mentioned criteria

are inspired by the B a t e s and W a t t s curvatures [1] and they are different

for different statistical problems (in more detail cf. [4], [5], [6], etc.).

The linearization is admissible if a solution of a statistical problem considered

in the linearized model is deteriorated only nonsignificantly by the nonlinearity.

It means that in the case of estimation the bias of the estimator caused by

nonlinearity is negligible with respect to the standard deviation of the estimator.

In the case of confidence region the decrease of the confidence level must be

smaller than in advance prescribed small value ε > 0, etc.

A criterion for parameter estimation is based on the Bates and Watts para-

metric curvature, which in this case is the measure of nonlinearity. This measure

of nonlinearity enables us to construct a neighbourhood, called the linearization

region (the form of it is an ellipsoid of the same shape as the confidence ellipsoid

however of the different size), of the value of the parameter which is used for a

linearization of the model. The linearization region is defined by its following

property. If the actual value of the parameter is inside the linearization region,

then the bias of the best linear estimator of any linear function of parameters

caused by nonlinearity is smaller than 100ε% of the standard deviation of the

estimator. Here ε > 0 is chosen in advance by a statistician. The criterion is

satisfied if the actual value of the parameter is with sufficiently high probability

in the linearization region.

If the linearized model is singular, i.e. the design matrix is not of the full col-

umn rank, the covariance matrix need not be positive definite, then the measure

of nonlinearity cannot be derived from the Bates and Watts curvature, since it

need not exist. However some generalization inspired by the Bates and Watts

curvatures can be used for a construction of the linearization region.

The aim of the paper is to find such linearization region in a singular model.

1. Notation and auxiliary statements

Let

Y ∼ Nn[f (β),Σ], β ∈ R
k,

where R
k is k-dimensional real linear vector space, Y is an n-dimensional nor-

mally distributed random vector (observation vector) with the mean value E(Y)
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equal to f (β) and the known covariance matrix Var(Y) = Σ. The function

f (·) : Rk → R
n is given and it is assumed that it can be expressed in the Taylor

series of the second order, i.e.

f (β) = f0 + Fδ +
1

2
κ(δ), δ = β − β0, f0 = f (β0),

F =
∂f (u)

∂u′

∣
∣
∣
u=β0

, κ(δ) =
(

κ1(δ), . . . , κn(δ)
)′
,

κi(δ) = δ′
∂2fi(u)

∂u∂u′

∣
∣
∣
u=β0

δ, i = 1, . . . , n.

In fact it means that quadratic models are considered only. The vector β0 is an

approximate value of the actual parameter β. The k-dimensional parameter β

is unknown and some linear functions of it must be estimated on the basis of a

realization of the observation vector Y. The matrix F need not be of the full

column rank and the matrix Σ need not be positive definite.

If the model

Y − f0 ∼ Nn(Fδ,Σ), δ ∈ R
k, (1)

is considered instead of the quadratic model, the following statements are valid.

They are given without proofs, since they are well known (for more detail cf. [2]).

����� 1� The function h(β) = h′(β0 + δ), δ ∈ R
k, is linearly unbiasedly

estimable iff h ∈ M (F′) =
{

F′u : u ∈ R
n
}

.

����� 2� The BLUE (best linear unbiased estimator) of the unbiasedly es-

timable linear function h′β, β ∈ R
k, is

ĥ′β = h′β0 + h′[(F′)−m(Σ)

]′
(Y − f0),

where (F′)−m(Σ) is the minimum Σ-seminorm g-inverse of the matrix F′ (in more

detail cf. [9]).

Thus the class of all unbiasedly estimable linear functions can be characterized

by the vector PF ′β0 + PF ′δ, where PF ′ = F′(FF′)−F is the projection matrix

on the subspace M (F′) =
{

F′u : u ∈ R
n
}

in the Euclidean norm.

����� 3� The BLUE of the vector PF ′δ is

P̂F ′δ = PF ′
[

(F′)−m(Σ)

]′
(Y − f0),

and its covariance matrix is

Var(P̂F ′δ) = PF ′
[

(F′)−m(Σ)

]′
Σ(F′)−m(Σ)PF ′

= PF ′
[

(F′T−F)− − I
]

PF ′ ,
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where T = Σ+ FF′.

2. Linearization region for the bias

If the model

Y − f0 ∼ Nn

[

Fδ +
1

2
κ(δ),Σ

]

, δ ∈ R
k, (2)

is considered instead of of the model (1), then the term 1
2κ(δ) causes a bias in

the BLUE from Lemma 3.

����� 4� The bias b of the estimator P̂F ′δ from Lemma 3 is

b =
1

2
PF ′

[

(F′)−m(Σ)

]′
κ(δ)

in the model (2).

P r o o f. Proof is obvious. �

If δ is sufficiently small, then b is small as well. However the size of b must be

compared with a statistical uncertainty of the estimator P̂F ′δ. Here the problem

due to the statement of the following lemma occurs.

����� 5� It is valid that

M
[

Var(P̂F ′δ)
] ⊂ M (F′), r

[

Var(P̂F ′δ)
]

= r(F′T−Σ).

P r o o f. The first statement is obvious. As far as the following statement is

concerned, the relationship

Var(P̂F ′δ) = F′(FF′)−F
[

(F′)−m(Σ)

]′
Σ(F′)−m(Σ)F

′(FF′)−F,

implies that

r
[

Var(P̂F ′δ)
]

= r
{

F′(FF′)−F
[

(F′)−m(Σ)

]′
Σ(F′)−m(Σ)F

′(FF′)−F
}

= r
{

F
[

(F′)−m(Σ)

]′
Σ(F′)−m(Σ)F

′
}

= r
{

F
[

(F′)−m(Σ)

]′
Σ
}

≥ r
{[

Var(P̂F ′δ)
]}

.

Here the equality

F
[

(F′)−m(Σ)

]′
Σ(F′)−m(Σ)F

′ = F
[

(F′)−m(Σ)

]′
Σ
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was utilized (in more detail cf. [9]). The expression F
[

(F′)−m(Σ

]′
Σ is invariant

with respect to the choice of the g-inverse (F′)−m(Σ) and thus

r
{

F
[

(F′)−m(Σ)

]′
Σ
}

=

= r
[

F(F′T−F)−F′T−Σ
] ≥ r

[

F′T−F(F′T−F)−F′T−Σ
]

= r(F′T−Σ) ≥ r
[

F(F′T−F)−F′T−Σ
]

= r
{

F
[

(F′)−m(Σ)

]′
Σ
}

.

�

The bias b need not be in M
[

Var(P̂F ′δ)
]

and thus the expression

b′[Var(P̂F ′δ)
]−

b,

which could be used for a definition of the measure of nonlinearity, may have no

meaning. If b ∈ M
[

Var(P̂F ′δ)
]

, then the inequality

b′ Var
[

P̂F ′δ)
]

b ≤ ε2

is equivalent with the inequalities

∀{h ∈ R
k}|h′b| ≤ ε

√

h′Var(P̂F ′δ)h

(regarding the S c h e f f é theorem). The last inequalities can serve as a good

criterion for the admissibility of the bias. In the general case when b need not

be in M [Var(P̂F ′δ)] some modification is necessary.

Let Var(P̂F ′δ) = U.

����� 6� The (1− α)-confidence region E (PF ′δ) for PF ′δ

E (PF ′δ) =
{

u : (u− P̂F ′δ) ∈ M (U), (u− P̂F ′δ)′U+(u− P̂F ′δ)

≤ χ2
r(F ′T−Σ)(0; 1− α)

}

is for any c2 > 0 (how to choose the value c2 is mentioned in Remark 7) subset

of

E (PF ′δ) =

=
{

u : u ∈ M (F′), (u− P̂F ′δ)′
[

U+ +
1

c2
(PF ′ −PU)

]

(u− P̂F ′δ)

≤ χ2
r(F ′T−Σ)(0; 1− α)

}

.
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P r o o f. The expression for E (PF ′δ) is implied by the Pearson lemma (cf. [8])

and Lemma 5, where degrees of freedom are given. The inclusion E (PF ′δ) ⊂
E (PF ′δ) is a consequence of the fact that

u ∈ M (U) =⇒ u′
[

U+ +
1

c2
(PF ′ −PU )

]

u = u′U+u.

�
Remark 7� The length of semi-axes in the subspace M (PF ′ − PU ) of the

ellipsoid E (PF ′δ) is
√

χ2
r(F ′T−Σ)(0; 1− α)c2 and it is the same for all r(F′) −

r(U) semi-axes. Thus the length of the projected vector (PF ′ −PU )b ⊥ M (U)

can be judged by the inequality

b′(PF ′ −PU )
[

U+ +
1

c2
(PF ′ −PU )

]

(PF ′ −PU )b

=
1

c2
b′(PF ′ −PU)b ≤ ε.

If the spectral decomposition of the matrix U is U =
r(F ′T−Σ)∑

i=1

λifif
′
i , then the

lengths of the semi-axes in the subspace M (U) of the ellipsoid E (PF ′δ) are
√

χ2
r(F ′T−Σ)

(0; 1− α)λi, i = 1, . . . , r(F′T−Σ).

Now the number c2 can be chosen, e.g. as

c2 = max{λi : i = 1, . . . , r(F′T−Σ)}.
(Other choice regarding the viewpoint of the user can be made as well.) Then,

even if b /∈ M (U), the inequality

b′
[

U+ +
1

c2
(PF ′ −PU )

]

b ≤ ε

can serve as a good starting point for a determination of a measure of nonlinearity

and a linearization region.

������	�
� 8� The measure of nonlinearity for the bias of the estimator P̂F ′δ

is

CP ′
F δ = sup

⎧

⎨

⎩

√

R(δ)

δ′PF ′
[

U+ + 1
c2 (PF ′ −PU )]

]

PF ′δ
: δ ∈ R

k

⎫

⎬

⎭
,

where

R(δ) = κ′(δ)(F′)−m(Σ)PF ′
[

U+ +
1

c2
(PF ′ −PU )

]

PF ′
[

(F′)−m(Σ)

]′
κ(δ).
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���

�� 9� If δ ∈ LPF ′δ (the linearization region for the bias of the estimator

P̂F ′δ),

LPF ′δβ =

{

PF ′u : u′PF ′
[

U+ +
1

c2
(PF ′ −PU )

]

PF ′u ≤ 2ε

CPF ′δ

}

,

then

∀{h ∈ R
k}|h′b| ≤ ε

√

h′
[

U+ c2(PF ′ −PU )
]

h.

Here the value ε > 0 is chosen with respect to the opinion of a statistician.

P r o o f. Regarding Definition 8 we have
√

R(δ) ≤ δ′PF ′
[

U+ +
1

c2
(PF ′ −PU )

]

PF ′δCP ′
F δ.

If

δ′PF ′
[

U+ +
1

c2
(PF ′ −PU )

]

PF ′δ ≤ 2ε

CP ′
F δ

,

then

2

√

b′
[

U+ +
1

c2
(PF ′ −PU )]

]

b ≤ 2ε,

i.e.

b′
[

U+ +
1

c2
(PF ′ −PU )

]

b ≤ ε2.

Now the Scheffé theorem [10]

∀{h ∈ R
k}|h′b| ≤ ε

√

h′
[

U+ c2(PF ′ −PU )
]

h

⇐⇒ b′
[

U+ + 1
c2 (PF ′ −PU )

]

b ≤ ε2

can be used. The last equivalence is valid in this case, since

b ∈ M
[

U+ c2(PF ′ −PU )
]

and further the equality
[

U+ c2(PF ′ −PU )
]+

= U+ +
1

c2
(PF ′ −PU )

is valid. �

Remark 10� If h ∈ M (U), then

h′
[

U+ c2(PF ′ −PU )
]

h = Var(ĥ′PF ′δ),

i.e. in this case |h′b| ≤ ε

√

Var(ĥ′PF ′δ).

If h ∈ M (PF ′ −PU ), then |h′b| ≤ εc
√
h′h (in this case Var( ̂h′PF ′δβ) = 0).
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Remark 11� Let’s investigate the result of Theorem 9 when the the linearized

model is regular, i.e. if r(F) = k ≤ n and Σ is positive definite. In this case the

Bates and Watts parametric curvature coincides with the measure of nonlinearity

defined in Definition 8. Particulary

U = PF ′(F′Σ−1F)−1PF ′ = (F′Σ−1F)−1,

r(U) = k, M (U) = M (F′) = R
k, PF ′ −PU = 0,

CPF ′δ = sup

{ √

R(δ)

δ′F′(FF′)−FF′Σ−1FF′(FF′)−Fδ
: δ ∈ R

k

}

,

where

R(δ) = κ′(δ)Σ−1F(F′Σ−1F)−1F′(FF′)−F(F′Σ−1F)−1F′(FF′)−F

×(F′Σ−1F)−1F′Σ−1κ(δ)

= κ′(δ)Σ−1F(F′Σ−1F)−1F′Σ−1κ(δ) = κ′(δ)Σ−1PΣ−1

F ′ κ(δ)

and

δ′F′(FF′)−FF′Σ−1FF′(FF′)−Fδ = δ′F′Σ−1Fδ.

The Bates and Watts parametric curvature K(par)(β0) of the model (2) at the

point β0 is defined as [1]

K(par)(β0) = sup

⎧

⎨

⎩

√

κ′(δ)Σ−1PΣ−1

F ′ κ(δ)

δ′F′Σ−1Fδ
: δ ∈ R

k

⎫

⎬

⎭
.

Thus in a regular model CPF ′δ = K(par)(β0). The linearization region L con-

structed in a regular model on the basis K(par)(β0) is

L =

{

δ : δ′F′Σ−1Fδ ≤ 2ε

K(par)(β0)

}

(in more detail cf. [4]) and thus

LPF ′δ =

{

PF ′u : u′PF ′
[

U+ + c2(PF ′ −PU )
]

PF ′u ≤ 2ε

CPF ′δ

}

=

{

PF ′δ = δ : δ′F′Σ−1Fδ ≤ 2ε

K(par)(β0)

}

= L .

Theorem 9 is a generalization of a theorem valid for a regular model.

Remark 12� The linearization region LPF ′δ is of practical use only, when we

are sure (or practically sure) that the actual value of the vector PF ′δ is an
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element of LPF ′δ . Our information on the actual position of the vector PF ′δ is

given by the relation

P
{

E (PF ′δ) � PF ′δ
}

= 1− α

(Lemma 6). Since E (PF ′δ) ⊂ E and E is of the same shape as the linearization

region LPF ′δ, the necessary condition for E (PF ′δ) ⊂ LPF ′δ is

χ2
r(F ′T−Σ)(0; 1− α) 
 2ε

CPF ′δ
,

which is the good first information on a possibility to consider the model (1)

instead of (2).
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[2] FIŠEROVÁ, E.—KUBÁČEK, L.—KUNDEROVÁ, P.: Linear Statistical Models, Regu-

larity and Singularities, Academia, Praha, 2007.
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