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ABSTRACT. Flaminio and Montagna recently introduced state MV-algebras
as MV-algebras with an internal notion of a state. The present authors gave a
stronger version of state MV-algebras, called state-morphism MV-algebras. We
present some classes of state-morphism MV-algebras like local, simple, semisimple
state-morphism MV-algebras, and state-morphism MV-algebras with retractive
ideals. Finally, we describe state-morphism operators on m-free generated MV-al-
gebras, m < oo.
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1. Introduction

States as averaging of the true-value were first introduced for MV-algebras by
Mundici [Munl]. This notion is not a genuine notion for algebraic structures,
it is an external notion, however, in the realm of quantum structures, the math-
ematical background of quantum mechanics, it is a primary notion because it
describes the measurement process in quantum physics (for theory of quantum
structures and states on it we recommend the monograph [DvPu]). Therefore,
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states were known earlier for MV-algebras, as a special class of D-posets (equiv-
alently effect algebras), see [KoCh].

In the last few years, the theory of states is studied by many experts in MV-al-
gebras, see e.g. [RiMu], [Kro]. Kiithr and Mundici studied states using an
old notion of a coherent state by De Finnetti with motivation in Dutch book
making, see [KuMu].

Flaminio and Montagna [FIMo] presented recently another approach
to the state theory on MV-algebras: they add a new unary operation, o, to
the MV-algebra structure as an internal state. Such structures are called state
MV-algebras (or MV-algebras with internal state). For a more detailed motiva-
tion of state MV-algebras and its relation to logic, see [FIMo].

The authors [DiDv] motivated by an important property that a state-mor-
phism on an MV-algebra M is always an MV-homomorphism from M into the
basic MV-algebra of the unit interval [0, 1], they introduced a stronger notion
of state MV-algebras, called a state-morphism MV-algebra. That is, a couple
(M, o), where M is an MV-algebra and o is an MV-homomorphism from M into
itself such that o2 = o.

The basic properties of state-morphism MV-algebras, as well a complete de-
scription of subdirectly irreducible state-morphism MV-algebras were described
in [DiDv].

In the present paper, we continue in the study of state-morphism MV-alge-
bras. We describe some classes of state-morphism MV-algebras, like local, sim-
ple, semisimple state-morphism MV-algebras (Section 3), and state-morphism
MV-algebras with retractive ideals (Section 4). Finally in Section 5, we describe
state-morphism operators on m-free generated MV-algebras, m < oco. The ele-
ments of state-morphism MV-algebras are given in the next section.

2. Elements of state-morphism MYV-algebras
Let M = (M;®,®,*,0,1) be an MV-algebra. That is, an algebra of type

(2,2,1,0,0) such that

(i) @ is commutative and associative,

(i) 0% =1,
(ili) z® 0 = @,
(iv) z 1 =1,
() = =,
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Vi) y® (o) =za(zdy’)",
(Vi) 2 0y = (z* ®y*)*.
For more details on MV-algebras, see [Chal, [CDM].

We define a partial operation, 4, in such a way that x + y is defined in
M iff x ©y = 0, and in that a case we set © +y = x @ y. It is clear that
x @y =0iff x < y*. We recall that if A is a subset of an MV-algebra M, we set
A ={z*: v e A}.

We recall that if (G, u) denotes an Abelian ¢-group (= lattice ordered group)
G with a fixed strong unit (= order unit), then M = I'(G, u) := [0, u] endowed
withz@y=(x+y) Ay, 2" =u—z, 20y =(r+y—u)V0, and 0 = 0,
1 = u, is an MV-algebra, and thanks to the Mundici categorical representation
of MV-algebras, [Mun], every MV-algebra is of the form M = I'(G, u) for some
unital Abelian ¢-group G with a fixed strong unit.

A state on M is a mapping s: M — [0, 1] such that

(i) s(1) =1,
(ii) s(z +y) = s(x) + s(y) whenever x + y is defined in M.

A mapping s : M — [0,1] is said to be a state-morphism if s is an MV-homo-
morphism from M into the standard MV-algebra of the real line [0, 1] = T'(R, 1).

The set of all states on M, .7 (M), is convex, i.e. if s, sy are states on M,
then s = As1 + (1 — \)s2 is a state on M for any X € [0, 1]. A state s is extremal
if from s = Asy + (1 — A)sg for A € (0,1) it follows that s = s; = s2. We denote
by Z5(M) the set of extremal states on M. Due to the Mundici categorical
representation of MV-algebras via intervals in Abelian unital ¢-groups, (M)
is non-void whenever 0 # 1.

If we endow (M) with the weak topology of states, i.e. a net {s,} of states
on M converges weakly to a state s if s(a) = lién sq(a) for any a € M. Then

(M) becomes a compact Hausdorff topological space. In view of the Krein—
Mil’'man theorem, [Goo, Thm 5.17], every state on M is a weak limit of a net of
convex combinations of extremal states.

We recall that by an MV-ideal, or shortly an ideal, we mean a non-void subset
I of an MV-algebra M such that (i) x,y € I, then x @y € I, and (ii) if x € M,
y €I and x < y, then z € I.

According to [Munl] or [DvPu, Thm 7.1.1], there is a one-to-one correspon-
dence between extremal states, state-morphisms and maximal ideals: a state s
is extremal iff s is a state-morphism iff s(x ®y) = s(z) Br s(y) (where s Br t :=
min{s+t¢,1}) iff s(zVy) = max{s(x), s(y)} iff Ker(s) :={x € M : s(x) =0} is
a maximal ideal of M. In addition, if I is a maximal ideal, then s;(x) := z/I,
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x € M, is an extremal state, and there is a one-to-one correspondence between
extremal states and maximal ideals given by I > sj.

Ifai=---=a,=a,thenna:=a1®---®a, and a" :==a1 ®---® a,. For
any a € M, we define ord(a) as the least integer m such that ma = 1, if it exists,
otherwise, we set ord(a) = co. We define also a ©b:=a © b*.

According to [FIMo], we say that a mapping o : M — M is a state operator
if, for all z,y € M,

(i) o(1) =1,
(i) o(z7) = o(z)",
(iif) o(z @ y) =o(x) ®o(ye (zOy)),
(iv) o(o(z) ®o(y)) = o(z) Do(y).
A pair (M, o) is said to be a state MV-algebra. The set of all state MV-alge-
bras forms a variety.

For an MV-algebra M, let ¥(M) be the set of all state operators on M. Then
(M) is nonempty because it contains o = idy.

The basic properties of a state operator were described in [FIMo, Lemma 3.2]:
(i) o(0) =0,
(ii) o is monotone,
(iii) o(z®y) < o(x) ®o(y), and if t ©y =0 then o(x D y) = o(x) B o(y),
(iv) o(o(x)) = o(2),

(v) o(M) is an MV-subalgebra of M.

)
)
)
)

It is easy to see that
(vi) o(M)={a e M: a=o(a)}.
In addition,

(vii) ord(z) < co = o(z) ¢ Rad(M), where Rad (M) denotes the intersection
of all maximal ideals of M.

In [DiDv], we have introduced a state-morphism operator on an MV-algebra
M as an MV-homomorphism o : M — M such that 02 = o, and the couple
(M, o) is said to be a state-morphism MV-algebra, or more precisely, M with
internal state. This notion was inspired by the above described basic property
of extremal states which are only state-morphisms. For basic properties and
notions on state-morphism MV-algebra, see [DiDv]. We recall [DiDv, Thm 4.1],
that every state-morphism o MV-algebra M = I'(G, u) can be uniquely extended
to an f-group homomorphism 6 : G — G such that 62 = 6 and 6(u) = u, and
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vice-versa, the restriction to M of any ¢-group homomorphism h : G — G such
that h(u) = u and h? = h gives a state-morphism operator.

We recall, that (M, idy) is always a state-morphism MV-algebra. Therefore,
Yo(M), the set of state-morphism operators is non-void.

Let (M, o) be a state MV-algebra (a state-morphism MV-algebra). We say
that a nonempty subset I of M is a state-ideal (a state-morphism-ideal) if I is
an MV-ideal such that if z € I, then o(x) € I.

We note that if o is a state operator on M, then
Ker(o) ={z e M : o(z) =0}

is an MV-ideal as well as a state-ideal.

We recall that if a is an element of M, then the MV-ideal of M generated
by a is the set I(a) = {z € M : z < na for some n > 1}, and the state-ideal
(state-morphism-ideal) of M generated by a, is the set I,(a) ={z € M : = <
n(a @ o(a)) for some n > 1}, [FIMo, Lem 4.2].

There is a one-to-one correspondence between congruences, ~, and state ideals
(state-morphism-ideals), I, given © ~; y iff z @ y*,y @ z* € I, and if ~ is a
congruence, then I, = {z € M : x ~ 0} is a state-ideal of I and ~j_=~.

Let A .7 (M) be the set of all maximal state-ideals of M, and we set

Rad,(M) = ({1 € 4.5 5(M)}.
According to [DiDv, Prop. 4.7,
o(Rad(M)) = Rad(c(M)) = o(Rad,(M)). (2.1)

3. Classes of state-morphism MV-algebras

In the present section, we define some systems of state-morphism MV-alge-
bras.

We recall that an MV-algebra M is
(i) simple if M has only two MV-ideals,

(ii) semisimple if the intersection of all maximal ideals is {0}, or equivalently
M is MV-isomorphic to a system of fuzzy sets.

In what follows, we define the classes of state MV-algebras (M, o), S 4V
and ... .4V, such that (M) is a simple or semisimple MV-algebra, respec-
tively.
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Ezample 1. Let M = F(Z?G, (1,0)) (called a perfect MV-algebra), where
ZX G is the lexicographic product of the group of integers, Z, with an Abelian
t-group ((m1,91) > (mq,g2) iff m; > mgo or m; = mo and g1 > g2). Then
clearly M satisfies the identity 222 = (22)? because every element is of the form
x = (0,g) or z = (1, —g) where g € G*. Hence, the operator

o(x) = 222 x €M, (3.1)

is a state-morphism operator on M and o(M) = B(M) = {(0,0), (1,0)} where
B(M) ={x € M : x®x = x}, see also [DiLe, Thm 5.8]. Consequently,
(M,0)e LSS HYV.

More generally, if an MV-algebra M satisfies the identity 222 = (2x)2, then by
[DiLe, Thm 5.1, 5.11], M is a subdirect product of perfect MV-algebras. Then
the operator ¢ defined by (3.1) is again a state-morphism operator, o(M) =
B(M), and (M,0) e S S S MYV .

PRrROPOSITION 3.1. Let (M,0) be a state-morphism MV-algebra. Then the fol-
lowing are equivalent:

(1) (M,0)e S MY .
(2) Ker(o) is a mazimal MV-ideal of M.

Proof. Let ¢ Ker(o), then o(z) > 0 and there is a positive integer n such
that no(z) = 1. Hence o((z*)"™) = 0, that is (z*)" € Ker(o). So we have proved
that Ker(o) is a maximal MV-ideal of M.

Viceversa, assume that Ker(o) is a maximal MV-ideal of M and o(x) > 0.
Then o(z) € Ker(o). But Ker(o) is a maximal ideal of M, hence there exists an
integer n such that (o(x)*)" € Ker(o). Therefore o(n(o(x))) = 1. From (iv) of
the definition of a state operator we get no(x) = 1. Hence ord(o(z)) < oo for
every o(z) # 0, i.e., (M) is simple. O

PROPOSITION 3.2. Let (M, o) be a state MV-algebra. Then the following are
equivalent:

(1) M,0)e SSLS MYV .

(2) Rad(M) C Ker(o).

Proof. Assume (M,0) € S . # Y, then Rad(c(M))={0}. But o(Rad(M))
= Rad(o(M)). Hence o(Rad(M)) = {0}, that is Rad(M) C Ker(o).

Now assume that Rad(M) C Ker(o). Then o(Rad(M)) = {0}. By (2.1),
o(Rad(M)) = Rad(c(M)), then we get Rad(c(M)) = {0}, ie., (M,0) €
LSS MY . O
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We recall that perfect MV-algebras were defined in Example 1, and an MV-al-
gebra M is perfect iff, for each x € M, either € Rad(M) or z* € Rad(M),
[DiLe].

PrOPOSITION 3.3. Let (M,0) be a state MV-algebra. Then the following are
equivalent

(1) M is perfect;

(2) for every x € M, (o(x) € Rad(M) == =z € Rad(M)) and o(M) is
perfect.

Proof. Assume M is perfect. For x € M, let o(xz) € Rad(M) and = €
Rad(M)*. Hence z* @ o(z) € Rad(M) and o(x) < x. Furthermore, we get:

)
o(z") ®o(o(r) © (z®o(z7)))
=o(z") @ 0(0(1‘) x) = o(z%) @ o(o(z))
o(z") @ o
Hence for every y € Rad(M)*, o(y) = 1, in fact we have z* @ o(z) < y and

1 =o(x* @o(x)) < o(y). Therefore, for every z € Rad(M), o(z) = 0, in
contrast with o(z*@o(x)) = 1. Thus, assuming that o(x) € Rad(M) necessarily

olx* ®o(r))

) =

z € Rad(M). Of course (M) is perfect, being a subalgebra of a perfect algebra.
We proved that (1) = (2).

To prove that (2) = (1), assume o(M) is perfect. Let z € M. Then, if
o(x) € Rad(M), by the hypothesis we get x € Rad(M). If o(x) € Rad(M)*,
then o(z*) € Rad(M) and again, by the hypothesis, 2* € Rad(M) and = €
Rad(M)*. From that, easily can be seen that M has to be perfect. O

The Proposition 3.3 pushes us to give the following definition, which general-
izes the notion of a faithful state operator. Indeed, let (M, o) be a state MV-al-
gebra; we say that o is radical-faithful if, for every x € M, o(z) € Rad(M)
implies x € Rad(M). So we can paraphrase the Proposition 3.3 saying that
every state operator on a perfect MV-algebra is radical-faithful.

We recall that an MV-algebra is local if it has a unique maximal ideal. So we
have:

PROPOSITION 3.4. Let (M, o) be a state-morphism MV-algebra with radical-
faithful o. Then the following are equivalent:

(1) M is a local MV-algebra.
(2) o(M) is a local MV-algebra.
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Proof. The implication (1) = (2) is trivial. Now we are going to prove that
(2) = (1). Let o(M) be local. We shall prove that Rad(M) is a prime ideal,
so M is shown to be local. Take x,y € M such that z Ay € Rad(M). Then

oxNy)=o0c(z)No(y) € o(Rad(M)) = Rad(c(M)).

Since o(M) is local, then Rad(c(M)) is a prime ideal of o(M), this implies
that either o(x) € Rad(o(M)) C Rad(M), or o(y) € Rad(c(M)) C Rad(M).
Thus o(z) € Rad(M) or o(y) € Rad(M). Since o is radical-faithful, we get
x € Rad(M) or y € Rad(M), so it is now proved that Rad(M) is prime. O

PropPoOSITION 3.5. Let (M, o) be a state-morphism MV-algebra with faithful o.
Then the following are equivalent:

(1) (M,0) e LMY ;
(2) M is a local MV-algebra and Ker(o) = Rad(M).

Proof.

(1) = (2). Assume (M,0) € LS4V . Then o(M) is simple and it
is local. By Proposition 3.4, M is local. Since M is local, then Rad(M) is a
unique maximal ideal of M and Rad(c(M)) = {0}. Hence, Rad(M) C Ker(o).
But Ker(o) is an ideal of M, hence Ker(c) C Rad(M). So we shown that
Rad(M) = Ker(o).

(2) = (1). Since M islocal, o(M) is so. Moreover, from Rad(M ) = Ker(o)
we get Ker(o) is a maximal ideal of M, thus by Proposition 3.1, (M,o) €
LSS MY O

We can ask whether choosing a subalgebra B of M it happens that o(B) is
a subalgebra of M. In the next lemma we provide a sufficient condition for a
positive answer to the question:

Let B be a subalgebra of an MV-algebra M and let o be a state operator on
M. If o(B) C B, then by the basic properties of o, o(B) is a subalgebra of B.

Let M be an MV-algebra and X a non-empty subset of M. Then Alg(X)
denotes the subalgebra of M generated by X.

PROPOSITION 3.6. Let (M, o) be a state MV-algebra. Then o(Alg(Rad(M))) is
a subalgebra of Alg(Rad(M)).

Proof. By the equality (2.1), oc(Rad(M)) C Rad(M). Furthermore, we have
c((Rad(M))*) C (Rad(M))*, in fact for every x € Rad(M), o(z*) = o(z)* €
(Rad(M))*. Since Alg(Rad(M)) = Rad(M)URad(M)*, hence o(Alg(Rad(M)))
C Alg(Rad(M)). By the remark just before the proposition, we get the claim of
Proposition true. (]
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As a comment we can say that in any state MV-algebra M, the subalgebra
Alg(Rad(M)) = Rad(M) U Rad(M)* is the greatest subalgebra of M that is
perfect (see Example 2), [DiLe|, and is called the perfect skeleton. Therefore,
the perfect skeleton is stable with respect to the state operator.

4. State-morphism MV-algebras and retractive ideals

We recall that an MV-algebra A is said to be a retract of the MV-algebra
B (with respect to h and ¢) if there are MV-homomorphisms ¢: A — B and
h: B — A such that hoe =ida. Also we say that a homomorphism p: A — B
is retractive (with respect to ) provided that there is an MV-homomorphism
0: B — A such that pod = idg. A congruence relation 6 on A is called retractive
when the canonical projection mg: A — A/0 is retractive. An ideal I of A is
called retractive if the associated congruence is retractive.

Let M be an MV-algebra and [ a retractive ideal of M, then we call an ideal
retraction of M any pair (I, ¢), where ¢ is a homomorphism from M/6; to M
such that mp, o o = idps /g, -

LEMMA 4.1. Let M be an MV-algebra and o : M — M an endomorphism.
Then the following statements are equivalent:

(1) (M,0) is a state-morphism MV-algebra.

(2) o is a retractive homomorphism from M to o(M) with respect to the iden-

tity map from o(M) to M.

Proof.

(1) = (2). Then 0% = 6. We have to show that there is an MV-homo-
morphism 6: o(M) — M such that o 0§ = id,(ar). Let & be defined as the
identity map from o(M) to M, i.e., 6(c(a)) = o(a), for a € M. Hence we get

o(6(a(a))) = o(o(a)) = o(a).

(2) = (1). Let ¢ denote the identity map from o (M) to M. Then we only

have to verify that 02 = ¢. Indeed we have, for a € M:
o(a(a)) = a(p(a(a))) = a(a).
(]

PROPOSITION 4.2. Let (I, ) be an ideal retraction of an MV-algebra M. Then
there is a state-morphism operator o on M such that Ker(o) = 1.
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Proof. Let (I,¢) be an ideal retraction of M, 6; the associated congruence
relation to I and mg,: M — M/0; the canonical projection. Thus 7y, is a
retractive homomorphism and 7, o ¢ = idpz/;. Let us define the mapping
o: M — M as follows:

o(a) = p(mg,(a)), a€ M.

Now we are going to show that o is an MV-endomorphism such that 02 = o.
Indeed we have:

(0) = ¢(mg, (0)) = (0/1) = 0.
For every x,y € M,

o(x®y) = p(me, (z@y)) = @(z/ISy/I) = (7, () B (o, (y)) = o(x) Bo(y);
o(z*) = p(mg, (z%)) = o((z7) /1) = (p(x/1))" = p(mg, (x))" = (0(x))";
furthermore, since my o p = id /1, for every x € M we have:
o(o(z)) = a(p(01(x))) = e(01(p(01(x)))) = ¢(01(x)) = o(z).

By Lemma 4.1, we get that (M, o) is a state-morphism MV-algebra. Now we
only have to prove that Ker(pomg,) = I. Let a € I, then

p(mg, (a)) = (e, (0)) =0
hence I C Ker(¢p o mg,). Assume now that a € Ker(¢ o mp,). Then

(7o, (a)) =0

7o, (p(mo, (@) = o, (0)
hence we get 7y, (a) = mp,(0), a € I and then Ker(¢ o mp,) € I. We can then
conclude that

Ker(pomg,) = 1.
]
PROPOSITION 4.3. Let (M, o) be a state-morphism MV-algebra. Then the pair

(Ker(o),t) is an ideal retraction of M, where v : M/ Ker(o) — M is defined by
v(z/Ker(o)) =o(x), z € M.

Proof. Let (M,o) be a state-morphism MV-algebra with an MV-reduct M,
then, by Lemma 4.1, o is a retractive homomorphism from M to o(M) with
respect to the mapping ¢: o(M) — M, and Ker(o) is a retractive ideal of M. O

COROLLARY 4.4. Let (M,o0) be a state-morphism MV-algebra. Then o(M) is
a retract of M.
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Proof. Assume (M, o) be a state-morphism MV-algebra, then o is an MV-ho-
momorphism and (M) is an MV-subalgebra of M, hence we have:

o(M) -

N/

o(M

where 7 is the inclusion map and id,(a) is the identity map of o(M). Indeed we
get i(o(x)) = o(x) € M and o(o(x)) = o(x), for every x € M. Thus o(M) is a
retract of M, with respect to the MV-homomorphisms ¢ and o. O

We call a proper ideal retraction of an MV-algebra M any ideal retraction
(I, ) of M such that the canonical projection of the congruence associated to
I, ¢ omy,, is an endomorphism of M such that (¢ omg,) o (pomy,) = (pomg,).

Let M be a given MV-algebra. We define PIR(M ), the set of all proper ideal
retractions of M, and let .#mor(M) be the set of all state-morphism MV-alge-
bras (M, o),

So, we can define a mapping = : PIR(M) — Ymor(M) setting =(I, ¢) =
(M, pomg,), and a mapping U: #mor(M) — PIR(M) setting

U((M,o0)) = (Ker(o),t).

PROPOSITION 4.5. Let M be an MV-algebra. Then there is a one-to-one cor-

respondence between proper ideal retractions of M and state-morphism MV-al-
gebras (M, o).

Proof. To prove the proposition we shall show that the mapping = defined
above is bijective. Let (I, ), (J,1) be proper ideal retractions of M. Assume
that

(1]

(1, 9)) ==((J;¢)),

that is,
(M,pomg,)=(M,pomg,).
Then
(pomg,)(x) = (¢ omg,)(x) for every z € M,
that is,

x/I=x/J for every = € M.

Hence I = J and ¢ = 1. Then we get (I,¢) = (J,¢). So we proved that =
is injective.
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To show the surjectivity of = take a state-morphism MV-algebra (M, o). Then
by Proposition 3.3 (Ker(o),¢) is a proper ideal retraction of M such that

E((Ker(o),t)) = (M, o0 ﬁchr(ﬁ)) = (M,o0).

The proposition is now proved. (]

Notice that a retractive extremal state over an MV-algebra M determines
a retractive maximal ideal of M, via its kernel. So it is worth to provide in-
formation about maximal retractive ideals of an MV-algebra. The following
proposition aims to do that. We recall that given an MV-algebra M there is the
greatest local subalgebra of M, here denoted by .Z (M), see [DEG].

PROPOSITION 4.6. Let M be an MV-algebra and J a maximal ideal of M. Then
the following are equivalent:

(1) J is retractive;
(2) M/J=L(M)/J and L (M) has the radical retractive.

Proof. Let J be a retractive maximal ideal of the MV-algebra M and m; be the
canonical projection of M to M/J. Then there exists an MV-homomorphism
d: M/J — M such that

7TJO(5=idM/J. (41)

Notice that §(M/J) is a simple subalgebra of M, then it is a local subalgebra
of M, therefore

O(M/J)C L(M).
Hence 7;(6(M/J)) C w;(L(M)) and, by (4.1),
M/JC Z(M)/J.

Moreover, we have £ (M) C M, and then .Z(M)/J C M/J. Hence we proved
that

M/J =2 (M)/J.
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Now we are going to prove that (M) has the radical as a retractive ideal.
Indeed, we notice that for ¢,1 € £ (M) is:

t/Rad(Z(M)) = I/Rad(ZL(M))
<
tol* &t ©l) € Rad(L(M))
<
(t/Rad(M) = I/Rad(M))
<
(te1* &t ®1) € Rad(M)
—
tolret-ol)ed
<~
t)J=1/J.

Then we define a mapping 3 : Z(M)/Rad(Z(M)) — ZL(M) as follows:
for any | € Z(M),

5(1/Rad(L(M))) = 8(1)J) € L(M).
Indeed, 6(M/J) C L (M), being §(M/J) simple and therefore local.
Let us show that mraq(z(ar)) © 5= idRad(2 (). In fact we have:

-~

TRad(z(M)) © 0(l/Rad(Z(M))) = TRaa(z ) (6(1/J))
— 2, (8(1/T)) = 1/ = 1/ Rad(Z(M)).

Vice versa, let M/J = £ (M)/J and let £ (M) have the radical as a retrac-
tive ideal. Then there exists an MV-homomorphism \: .Z(M)/Rad(Z(M)) —
Z(M) such that

TRad(2(M)) © A = id.2(ar)/ Rad(2 (M) -
Let us define a mapping v: M/J — M, as follows:

for every m € M there is an element | € Z(M) such that m/J = [/J, then
we set

v(m/J) = A(I/Rad(Z(M))) € L (M) C M.
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Hence we get
75 (y(m/J)) = 7;(A(l/Rad(£(M))))

= TRad(z (M) A(l/Rad(Z(M)))
— I/ Rad(ZL(M)) = m/J.

0

As it was already mentioned in Section 2, there is a one-to-one correspondence
between extremal states on an MV-algebra M and maximal ideals of M, and
furthermore that the set of extremal states on M, .#5(M), is compact. It makes
sense to explore suitable subsets of .#5(M) that are someway linked with sets
of state-morphism operators on M, via a selection of classes of maximal ideals
of M.

Let Max(M) denote the set of maximal ideals of M. We say that an extremal
state s on M is retractive if s is retractive as an MV-homomorphism from M to
s(M).

We denote the set of retractive extremal states on M by SRetro(M) and by
YRetro(M) the set of state-morphism operators o on M with Ker(o) € Max(M)
and a retractive ideal of M.

PROPOSITION 4.7. Let M be an MV-algebra. Then there is a bijective mapping
from Sretro(M) onto Lgetra(M).

Proof. Let s be a state-morphism on M. So, by definition of a retractive
extremal state there is an MV-homomorphism 65 : s(M) — M such that sod, =
ids(ar). Then we can define a mapping o : M — M setting o(a) = 0,(s(a)) for
every a € M. Easily it can be seen that ¢ is an MV-endomorphism of M. Let
us show that 0 o 0 = ¢. Indeed, for every a € M, we have:

o(a(a)) = 0(s(s(a))) = ds(s(ds(s(a)))) = ds(s(a)) = o(a).

Hence, by Lemma 4.1, we get that o is a state-morphism operator on M. Now
we are going to prove that Ker(o) € Max(M) and that Ker(o) is a retractive
ideal of M. A direct verification can show that:

Ker(s) = Ker(o).

Since Ker(s) is a maximal ideal of M, so is Ker(c). By Proposition 3.1,
(M,0) € S #V. Since Ker(o) = Ker(s) € Max(M), by Proposition 4.3,
Ker(o) is a retractive ideal of M.

Let now ¥: SRetro(M) = ZRetro(M) be defined by 9(s) = o. Suppose that
¥(s1) = 1(s2). Then by the above, Ker(s;) = Ker(s2) which means s; = ss.
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Choose 0 € YRetro(M). Because Ker(o) is maximal, there is a unique ex-
tremal state, s, on M such that Ker(s) = Ker(o). Because Ker(o) is a retractive
ideal, s is a retractive extremal state, and ¥(s) = o. O

5. State-morphism operators on Free(m)

Let A be an MV-algebra of functions from a set X™, where m > 1 is an
integer, to the real interval [0, 1]. We say that a state-morphism operator o on
A satisfies the m-projective property if and only if there exist m elements from
A, {t1,...,tm}, such that:

ot)(o(t1)(®1, . s xn)y -y o(tm) (@1, xn)) = o(ti)(z1, ..., Tn)

for all (z1,...,2,) € X™.

Let F(m) denote the m-generated free MV-algebra. It is well known that
F(m) is isomorphic to the MV-algebra of McNaughton functions from [0, 1] to
[0,1], [CDM]. F(m) is also closed under the functional composition. Let f; and
f1 denote the zero constant function, which is the zero element of F'(m) and the
1-constant function, which is the unit of F(m), respectively. Let g1,...,gm be
the set of its free generators g;(z1,...,Zm) = x;. Let Alg(f1,..., fm) denote the
subalgebra of F(m) generated by fi,..., fm € F(m). Let § = {f1,..., fm} be
a subset of non-constant elements of F'(m). The system § is called a projective
system, iff

fi(fl(xla"'7xm)7"'7fm(x17"'7xm)) :fi(xlv"'axm)v
for all (z1,...,zy) € [0,1]™.

PROPOSITION 5.1. Let o be a state-morphism operator on F(m) such that o
satisfies the m-projective property. Then o(F(m)) is a projective subalgebra
generated by o(g1),...,0(gm)-

Proof. It is clear that Alg({c(g1),...,0(9m)}) C o(F(m)). Let f € F(m),
then there exists an MV-polynomial Py(x) such that for every x € [0,1]™,
P¢(x) = f(x). Then, for every x € [0,1]™,

Pr(g1(x), -+, gm(x)) = f(%).

That is o(Pf(g1,...,9m)) = o(f). Since o is an MV-endomorphism, then we
get Pr(o(g1,-..,9m)) = o(f). Thus, we proved that

Alg(o(g1),---,0(91)) = o(F(m)).
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Let us prove that {o(g1),...,0(gm)} is a projective system of generators of
o(F(m)). Indeed, this follows from the m-projective property of o. Hence, by
[DiGr, Thm 9], o(F(m)) is an m-generated projective subalgebra of F'(m) which
is generated by o(g1),...,0(gm)- d

PROPOSITION 5.2. Let A be a projective m-generated subalgebra of F(m), with
a projective system of generators § = {t1,...,tm}. Then there exists a state-
morphism operator, o, on F(m) such that A = o(F(m)) and o satisfies the
m-projective property.

Proof. Let A be a projective m-generated subalgebra of F'(m), with a pro-
jective system of generators § = {t1,...,t;n}. Then, by [DiGr, Cor. 27|, A
coincides with

{ftr(z1, ..y xm)s- s ti(xr, ..y zm)) o f € F(m), (z1,...,2m) € [0,1]™}.

Let us define a mapping o : F'(m) — F(m) by setting
o(f) = fltr,... tm).

Hence we get, for every i = 1,...,m,

o(9i) = gi(t1, ..., tm) = t;,

and then A is generated by o(g), furthermore, for every f € F(m),
a(a(f)=c(f(tr, ... tm)) = (f(t1, .o stm)) 1y tm)-

Hence, for every x € [0, 1]™,

a(a(£))x) = (f(tr, s tm)) (1 (%), - - s (X))

t1(t1(X)y eyt (X)), ooy i (B2 (X) oo En (X))

t1(X), ..y tm (%)) = o(f)(x).

That is o(o(f)) = o(f). It is plain to check that o is an MV-endomorphism.
Then, by Lemma 4.1, ¢ is a state-morphism operator on F(m), o(F(m)) = A,

o(F(m)) is generated by o(g1), .. .,0(gm) and o satisfies the m-projective prop-
erty. ]

THEOREM 5.3. There is a one-to-one correspondence between m-generated pro-
jective subalgebras of F(m) and state-morphism operators on F(m) satisfying
the m-projective property.

Proof. It follows from Propositions 5.1-5.2. (]
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As an example, we can say in more details if we study the one-generated free
MV-algebra F(1). The identity map g = idjp,;] of F(1) is a free generator of
F(1). To any 1-variable McNaughton function f there is associated a partition,

0=uay < a; < - < a, = 1, of the unit interval [0,1] in such a way that
the points {(aog, f(ao)), (a1, f(a1)), ..., (an, f(ay))} are the knots of f and the
function f is linear on each interval [a;_1,a;], with i =1,...,n.

From Propositions 5.1-5.2 we have that there is a one-to-one correspondence
between one-generated projective subalgebras of F(1) and state-morphism op-
erators on F'(1).

Thus all state-morphism operators o on F'(1) are obtained as follows:

o(f)=fot

with f,t € F(1) and ¢ such that t ot = ¢t. By [DiGr, Thm 23], ¢ is characterized
by one of the following conditions:

(1) max{t(z),z € [0,1]} = t(a1) and for a nonzero function ¢ and for every
z € [0,a1], t(z) = x;

(2) min{t(z),z € [0,1]} = t(an—1) and for a non-unit function ¢ and for every
T € [an_1,a,)], t(z) = .

Examples of such generators are: t = g Ag*, t = g A (¢°)*, t = gV g%,
t=gV2(g9)*
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