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ABSTRACT. Flaminio and Montagna recently introduced state MV-algebras

as MV-algebras with an internal notion of a state. The present authors gave a

stronger version of state MV-algebras, called state-morphism MV-algebras. We

present some classes of state-morphism MV-algebras like local, simple, semisimple

state-morphism MV-algebras, and state-morphism MV-algebras with retractive

ideals. Finally, we describe state-morphism operators on m-free generated MV-al-

gebras, m < ∞.
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1. Introduction

States as averaging of the true-value were first introduced for MV-algebras by

M u n d i c i [Mun1]. This notion is not a genuine notion for algebraic structures,

it is an external notion, however, in the realm of quantum structures, the math-

ematical background of quantum mechanics, it is a primary notion because it

describes the measurement process in quantum physics (for theory of quantum

structures and states on it we recommend the monograph [DvPu]). Therefore,
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states were known earlier for MV-algebras, as a special class of D-posets (equiv-

alently effect algebras), see [KoCh].

In the last few years, the theory of states is studied by many experts in MV-al-

gebras, see e.g. [RiMu], [Kro]. K ü h r and M u n d i c i studied states using an

old notion of a coherent state by De Finnetti with motivation in Dutch book

making, see [KuMu].

F l a m i n i o and M o n t a g n a [FlMo] presented recently another approach

to the state theory on MV-algebras: they add a new unary operation, σ, to

the MV-algebra structure as an internal state. Such structures are called state

MV-algebras (or MV-algebras with internal state). For a more detailed motiva-

tion of state MV-algebras and its relation to logic, see [FlMo].

The authors [DiDv] motivated by an important property that a state-mor-

phism on an MV-algebra M is always an MV-homomorphism from M into the

basic MV-algebra of the unit interval [0, 1], they introduced a stronger notion

of state MV-algebras, called a state-morphism MV-algebra. That is, a couple

(M,σ), whereM is an MV-algebra and σ is an MV-homomorphism fromM into

itself such that σ2 = σ.

The basic properties of state-morphism MV-algebras, as well a complete de-

scription of subdirectly irreducible state-morphism MV-algebras were described

in [DiDv].

In the present paper, we continue in the study of state-morphism MV-alge-

bras. We describe some classes of state-morphism MV-algebras, like local, sim-

ple, semisimple state-morphism MV-algebras (Section 3), and state-morphism

MV-algebras with retractive ideals (Section 4). Finally in Section 5, we describe

state-morphism operators on m-free generated MV-algebras, m < ∞. The ele-

ments of state-morphism MV-algebras are given in the next section.

2. Elements of state-morphism MV-algebras

Let M = (M ;⊕,�,∗ , 0, 1) be an MV-algebra. That is, an algebra of type

〈2, 2, 1, 0, 0〉 such that

(i) ⊕ is commutative and associative,

(ii) 0∗ = 1,

(iii) x⊕ 0 = x,

(iv) x⊕ 1 = 1,

(v) x∗∗ = x,
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(vi) y ⊕ (y ⊕ x∗)∗ = x⊕ (x⊕ y∗)∗,

(vi) x� y = (x∗ ⊕ y∗)∗.

For more details on MV-algebras, see [Cha], [CDM].

We define a partial operation, +, in such a way that x + y is defined in

M iff x � y = 0, and in that a case we set x + y = x ⊕ y. It is clear that

x� y = 0 iff x ≤ y∗. We recall that if A is a subset of an MV-algebra M , we set

A∗ = {x∗ : x ∈ A}.
We recall that if (G, u) denotes an Abelian �-group (= lattice ordered group)

G with a fixed strong unit (= order unit), then M = Γ(G, u) := [0, u] endowed

with x ⊕ y = (x + y) ∧ u, x∗ = u − x, x � y = (x + y − u) ∨ 0, and 0 = 0,

1 = u, is an MV-algebra, and thanks to the Mundici categorical representation

of MV-algebras, [Mun], every MV-algebra is of the form M = Γ(G, u) for some

unital Abelian �-group G with a fixed strong unit.

A state on M is a mapping s : M → [0, 1] such that

(i) s(1) = 1,

(ii) s(x+ y) = s(x) + s(y) whenever x+ y is defined in M .

A mapping s : M → [0, 1] is said to be a state-morphism if s is an MV-homo-

morphism fromM into the standard MV-algebra of the real line [0, 1] = Γ(R, 1).

The set of all states on M , S (M ), is convex, i.e. if s1, s2 are states on M ,

then s = λs1 + (1− λ)s2 is a state on M for any λ ∈ [0, 1]. A state s is extremal

if from s = λs1 + (1− λ)s2 for λ ∈ (0, 1) it follows that s = s1 = s2. We denote

by S∂(M ) the set of extremal states on M . Due to the Mundici categorical

representation of MV-algebras via intervals in Abelian unital �-groups, S (M )

is non-void whenever 0 �= 1.

If we endow S (M ) with the weak topology of states, i.e. a net {sα} of states

on M converges weakly to a state s if s(a) = lim
α
sα(a) for any a ∈ M . Then

S (M ) becomes a compact Hausdorff topological space. In view of the Krein–

Mil’man theorem, [Goo, Thm 5.17], every state on M is a weak limit of a net of

convex combinations of extremal states.

We recall that by an MV-ideal, or shortly an ideal, we mean a non-void subset

I of an MV-algebra M such that (i) x, y ∈ I, then x⊕ y ∈ I, and (ii) if x ∈M ,

y ∈ I and x ≤ y, then x ∈ I.

According to [Mun1] or [DvPu, Thm 7.1.1], there is a one-to-one correspon-

dence between extremal states, state-morphisms and maximal ideals: a state s

is extremal iff s is a state-morphism iff s(x⊕ y) = s(x)⊕R s(y) (where s⊕R t :=

min{s+ t, 1}) iff s(x∨ y) = max{s(x), s(y)} iff Ker(s) := {x ∈M : s(x) = 0} is

a maximal ideal of M . In addition, if I is a maximal ideal, then sI(x) := x/I,
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x ∈ M , is an extremal state, and there is a one-to-one correspondence between

extremal states and maximal ideals given by I ↔ sI .

If a1 = · · · = an = a, then na := a1 ⊕ · · · ⊕ an and an := a1 � · · · � an. For

any a ∈M , we define ord(a) as the least integer m such that ma = 1, if it exists,

otherwise, we set ord(a) = ∞. We define also a
 b := a� b∗.
According to [FlMo], we say that a mapping σ : M →M is a state operator

if, for all x, y ∈M ,

(i) σ(1) = 1,

(ii) σ(x∗) = σ(x)∗,

(iii) σ(x⊕ y) = σ(x)⊕ σ(y 
 (x� y)),

(iv) σ(σ(x)⊕ σ(y)) = σ(x)⊕ σ(y).

A pair (M,σ) is said to be a state MV-algebra. The set of all state MV-alge-

bras forms a variety.

For an MV-algebraM , let Σ(M ) be the set of all state operators onM . Then

Σ(M ) is nonempty because it contains σ = idM .

The basic properties of a state operator were described in [FlMo, Lemma 3.2]:

(i) σ(0) = 0,

(ii) σ is monotone,

(iii) σ(x⊕ y) ≤ σ(x)⊕ σ(y), and if x� y = 0 then σ(x⊕ y) = σ(x)⊕ σ(y),

(iv) σ(σ(x)) = σ(x),

(v) σ(M ) is an MV-subalgebra of M .

It is easy to see that

(vi) σ(M ) = {a ∈M : a = σ(a)}.
In addition,

(vii) ord(x) <∞ =⇒ σ(x) �∈ Rad(M ), where Rad(M ) denotes the intersection

of all maximal ideals of M .

In [DiDv], we have introduced a state-morphism operator on an MV-algebra

M as an MV-homomorphism σ : M → M such that σ2 = σ, and the couple

(M,σ) is said to be a state-morphism MV-algebra, or more precisely, M with

internal state. This notion was inspired by the above described basic property

of extremal states which are only state-morphisms. For basic properties and

notions on state-morphism MV-algebra, see [DiDv]. We recall [DiDv, Thm 4.1],

that every state-morphism σ MV-algebraM = Γ(G, u) can be uniquely extended

to an �-group homomorphism σ̂ : G → G such that σ̂2 = σ̂ and σ̂(u) = u, and
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vice-versa, the restriction to M of any �-group homomorphism h : G→ G such

that h(u) = u and h2 = h gives a state-morphism operator.

We recall, that (M, idM ) is always a state-morphism MV-algebra. Therefore,

Σ∂(M ), the set of state-morphism operators is non-void.

Let (M,σ) be a state MV-algebra (a state-morphism MV-algebra). We say

that a nonempty subset I of M is a state-ideal (a state-morphism-ideal) if I is

an MV-ideal such that if x ∈ I, then σ(x) ∈ I.

We note that if σ is a state operator on M , then

Ker(σ) = {x ∈M : σ(x) = 0}
is an MV-ideal as well as a state-ideal.

We recall that if a is an element of M , then the MV-ideal of M generated

by a is the set I(a) = {x ∈ M : x ≤ na for some n ≥ 1}, and the state-ideal

(state-morphism-ideal) of M generated by a, is the set Iσ(a) = {x ∈ M : x ≤
n(a⊕ σ(a)) for some n ≥ 1}, [FlMo, Lem 4.2].

There is a one-to-one correspondence between congruences, ∼, and state ideals

(state-morphism-ideals), I, given x ∼I y iff x � y∗, y � x∗ ∈ I, and if ∼ is a

congruence, then I∼ = {x ∈M : x ∼ 0} is a state-ideal of I and ∼I∼=∼.

Let MI σ(M ) be the set of all maximal state-ideals of M , and we set

Radσ(M ) =
⋂

{I ∈ MI σ(M )}.

According to [DiDv, Prop. 4.7],

σ(Rad(M )) = Rad(σ(M )) = σ(Radσ(M )). (2.1)

3. Classes of state-morphism MV-algebras

In the present section, we define some systems of state-morphism MV-alge-

bras.

We recall that an MV-algebra M is

(i) simple if M has only two MV-ideals,

(ii) semisimple if the intersection of all maximal ideals is {0}, or equivalently
M is MV-isomorphic to a system of fuzzy sets.

In what follows, we define the classes of state MV-algebras (M,σ), S S MV
and S S S MV , such that σ(M ) is a simple or semisimple MV-algebra, respec-

tively.
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Example 1. Let M = Γ(Z
−→× G, (1, 0)) (called a perfect MV-algebra), where

Z
−→× G is the lexicographic product of the group of integers, Z, with an Abelian

�-group ((m1, g1) ≥ (m1, g2) iff m1 > m2 or m1 = m2 and g1 ≥ g2). Then

clearly M satisfies the identity 2x2 = (2x)2 because every element is of the form

x = (0, g) or x = (1,−g) where g ∈ G+. Hence, the operator

σ(x) = 2x2, x ∈M, (3.1)

is a state-morphism operator on M and σ(M ) = B(M ) = {(0, 0), (1, 0)} where

B(M ) = {x ∈ M : x ⊕ x = x}, see also [DiLe, Thm 5.8]. Consequently,

(M,σ) ∈ S S MV .

More generally, if an MV-algebraM satisfies the identity 2x2 = (2x)2, then by

[DiLe, Thm 5.1, 5.11], M is a subdirect product of perfect MV-algebras. Then

the operator σ defined by (3.1) is again a state-morphism operator, σ(M ) =

B(M ), and (M,σ) ∈ S S S MV .

����������� 3.1� Let (M,σ) be a state-morphism MV-algebra. Then the fol-

lowing are equivalent:

(1) (M,σ) ∈ S S MV .

(2) Ker(σ) is a maximal MV-ideal of M .

P r o o f. Let x �∈ Ker(σ), then σ(x) > 0 and there is a positive integer n such

that nσ(x) = 1. Hence σ((x∗)n) = 0, that is (x∗)n ∈ Ker(σ). So we have proved

that Ker(σ) is a maximal MV-ideal of M .

Viceversa, assume that Ker(σ) is a maximal MV-ideal of M and σ(x) > 0.

Then σ(x) �∈ Ker(σ). But Ker(σ) is a maximal ideal of M , hence there exists an

integer n such that (σ(x)∗)n ∈ Ker(σ). Therefore σ(n(σ(x))) = 1. From (iv) of

the definition of a state operator we get nσ(x) = 1. Hence ord(σ(x)) < ∞ for

every σ(x) �= 0, i.e., σ(M ) is simple. �

����������� 3.2� Let (M,σ) be a state MV-algebra. Then the following are

equivalent:

(1) (M,σ) ∈ S S S MV .

(2) Rad(M ) ⊆ Ker(σ).

P r o o f. Assume (M,σ) ∈ S S S MV , then Rad(σ(M ))={0}. But σ(Rad(M ))

= Rad(σ(M )). Hence σ(Rad(M )) = {0}, that is Rad(M ) ⊆ Ker(σ).

Now assume that Rad(M ) ⊆ Ker(σ). Then σ(Rad(M )) = {0}. By (2.1),

σ(Rad(M )) = Rad(σ(M )), then we get Rad(σ(M )) = {0}, i.e., (M,σ) ∈
S S S MV . �
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We recall that perfect MV-algebras were defined in Example 1, and an MV-al-

gebra M is perfect iff, for each x ∈ M , either x ∈ Rad(M ) or x∗ ∈ Rad(M ),

[DiLe].

����������� 3.3� Let (M,σ) be a state MV-algebra. Then the following are

equivalent

(1) M is perfect;

(2) for every x ∈ M , (σ(x) ∈ Rad(M ) =⇒ x ∈ Rad(M )) and σ(M ) is

perfect.

P r o o f. Assume M is perfect. For x ∈ M , let σ(x) ∈ Rad(M ) and x ∈
Rad(M )∗. Hence x∗ ⊕ σ(x) ∈ Rad(M ) and σ(x) ≤ x. Furthermore, we get:

σ(x∗ ⊕ σ(x)) = σ(x∗)⊕ σ(σ(x)� (x⊕ σ(x∗)))

= σ(x∗)⊕ σ(σ(x) ∧ x) = σ(x∗)⊕ σ(σ(x))

= σ(x∗)⊕ σ(x) = 1.

Hence for every y ∈ Rad(M )∗, σ(y) = 1, in fact we have x∗ ⊕ σ(x) ≤ y and

1 = σ(x∗ ⊕ σ(x)) ≤ σ(y). Therefore, for every z ∈ Rad(M ), σ(z) = 0, in

contrast with σ(x∗⊕σ(x)) = 1. Thus, assuming that σ(x) ∈ Rad(M ) necessarily

x ∈ Rad(M ). Of course σ(M ) is perfect, being a subalgebra of a perfect algebra.

We proved that (1) =⇒ (2).

To prove that (2) =⇒ (1), assume σ(M ) is perfect. Let x ∈ M . Then, if

σ(x) ∈ Rad(M ), by the hypothesis we get x ∈ Rad(M ). If σ(x) ∈ Rad(M )∗,
then σ(x∗) ∈ Rad(M ) and again, by the hypothesis, x∗ ∈ Rad(M ) and x ∈
Rad(M )∗. From that, easily can be seen that M has to be perfect. �

The Proposition 3.3 pushes us to give the following definition, which general-

izes the notion of a faithful state operator. Indeed, let (M,σ) be a state MV-al-

gebra; we say that σ is radical-faithful if, for every x ∈ M , σ(x) ∈ Rad(M )

implies x ∈ Rad(M ). So we can paraphrase the Proposition 3.3 saying that

every state operator on a perfect MV-algebra is radical-faithful.

We recall that an MV-algebra is local if it has a unique maximal ideal. So we

have:

����������� 3.4� Let (M,σ) be a state-morphism MV-algebra with radical-

faithful σ. Then the following are equivalent:

(1) M is a local MV-algebra.

(2) σ(M ) is a local MV-algebra.
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P r o o f. The implication (1) =⇒ (2) is trivial. Now we are going to prove that

(2) =⇒ (1). Let σ(M ) be local. We shall prove that Rad(M ) is a prime ideal,

so M is shown to be local. Take x, y ∈M such that x ∧ y ∈ Rad(M ). Then

σ(x ∧ y) = σ(x) ∧ σ(y) ∈ σ(Rad(M )) = Rad(σ(M )).

Since σ(M ) is local, then Rad(σ(M )) is a prime ideal of σ(M ), this implies

that either σ(x) ∈ Rad(σ(M )) ⊆ Rad(M ), or σ(y) ∈ Rad(σ(M )) ⊆ Rad(M ).

Thus σ(x) ∈ Rad(M ) or σ(y) ∈ Rad(M ). Since σ is radical-faithful, we get

x ∈ Rad(M ) or y ∈ Rad(M ), so it is now proved that Rad(M ) is prime. �

����������� 3.5� Let (M,σ) be a state-morphism MV-algebra with faithful σ.

Then the following are equivalent:

(1) (M,σ) ∈ S S MV ;

(2) M is a local MV-algebra and Ker(σ) = Rad(M ).

P r o o f.

(1) =⇒ (2). Assume (M,σ) ∈ S S MV . Then σ(M ) is simple and it

is local. By Proposition 3.4, M is local. Since M is local, then Rad(M ) is a

unique maximal ideal of M and Rad(σ(M )) = {0}. Hence, Rad(M ) ⊆ Ker(σ).

But Ker(σ) is an ideal of M , hence Ker(σ) ⊆ Rad(M ). So we shown that

Rad(M ) = Ker(σ).

(2) =⇒ (1). SinceM is local, σ(M ) is so. Moreover, from Rad(M ) = Ker(σ)

we get Ker(σ) is a maximal ideal of M , thus by Proposition 3.1, (M,σ) ∈
S S MV . �

We can ask whether choosing a subalgebra B of M it happens that σ(B) is

a subalgebra of M . In the next lemma we provide a sufficient condition for a

positive answer to the question:

Let B be a subalgebra of an MV-algebra M and let σ be a state operator on

M . If σ(B) ⊆ B, then by the basic properties of σ, σ(B) is a subalgebra of B.

Let M be an MV-algebra and X a non-empty subset of M . Then Alg(X)

denotes the subalgebra of M generated by X.

����������� 3.6� Let (M,σ) be a state MV-algebra. Then σ(Alg(Rad(M ))) is

a subalgebra of Alg(Rad(M )).

P r o o f. By the equality (2.1), σ(Rad(M )) ⊆ Rad(M ). Furthermore, we have

σ((Rad(M ))∗) ⊆ (Rad(M ))∗, in fact for every x ∈ Rad(M ), σ(x∗) = σ(x)∗ ∈
(Rad(M ))∗. Since Alg(Rad(M )) = Rad(M )∪Rad(M )∗, hence σ(Alg(Rad(M )))

⊆ Alg(Rad(M )). By the remark just before the proposition, we get the claim of

Proposition true. �
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As a comment we can say that in any state MV-algebra M , the subalgebra

Alg(Rad(M )) = Rad(M ) ∪ Rad(M )∗ is the greatest subalgebra of M that is

perfect (see Example 2), [DiLe], and is called the perfect skeleton. Therefore,

the perfect skeleton is stable with respect to the state operator.

4. State-morphism MV-algebras and retractive ideals

We recall that an MV-algebra A is said to be a retract of the MV-algebra

B (with respect to h and ε) if there are MV-homomorphisms ε : A → B and

h : B → A such that h ◦ ε = idA. Also we say that a homomorphism ρ : A→ B

is retractive (with respect to δ) provided that there is an MV-homomorphism

δ : B → A such that ρ◦δ = idB . A congruence relation θ on A is called retractive

when the canonical projection πθ : A → A/θ is retractive. An ideal I of A is

called retractive if the associated congruence is retractive.

Let M be an MV-algebra and I a retractive ideal of M , then we call an ideal

retraction of M any pair (I, ϕ), where ϕ is a homomorphism from M/θI to M

such that πθI ◦ ϕ = idM/θI .

	
��� 4.1� Let M be an MV-algebra and σ : M → M an endomorphism.

Then the following statements are equivalent:

(1) (M,σ) is a state-morphism MV-algebra.

(2) σ is a retractive homomorphism from M to σ(M ) with respect to the iden-

tity map from σ(M ) to M .

P r o o f.

(1) =⇒ (2). Then σ2 = σ. We have to show that there is an MV-homo-

morphism δ : σ(M ) → M such that σ ◦ δ = idσ(M). Let δ be defined as the

identity map from σ(M ) to M , i.e., δ(σ(a)) = σ(a), for a ∈M . Hence we get

σ(δ(σ(a))) = σ(σ(a)) = σ(a).

(2) =⇒ (1). Let ϕ denote the identity map from σ(M ) to M . Then we only

have to verify that σ2 = σ. Indeed we have, for a ∈M :

σ(σ(a)) = σ(ϕ(σ(a))) = σ(a).

�

����������� 4.2� Let (I, ϕ) be an ideal retraction of an MV-algebra M . Then

there is a state-morphism operator σ on M such that Ker(σ) = I.
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P r o o f. Let (I, ϕ) be an ideal retraction of M , θI the associated congruence

relation to I and πθI : M → M/θI the canonical projection. Thus πθI is a

retractive homomorphism and πθI ◦ ϕ = idM/I . Let us define the mapping

σ : M →M as follows:

σ(a) = ϕ(πθI (a)), a ∈M.

Now we are going to show that σ is an MV-endomorphism such that σ2 = σ.

Indeed we have:

σ(0) = ϕ(πθI (0)) = ϕ(0/I) = 0.

For every x, y ∈M ,

σ(x⊕y) = ϕ(πθI (x⊕y)) = ϕ(x/I⊕y/I) = ϕ(πθI (x))⊕ϕ(πθI (y)) = σ(x)⊕σ(y);
σ(x∗) = ϕ(πθI (x

∗)) = ϕ((x∗)/I) = (ϕ(x/I))∗ = ϕ(πθI (x))
∗ = (σ(x))∗;

furthermore, since πθ ◦ ϕ = idM/I , for every x ∈M we have:

σ(σ(x)) = σ(ϕ(θI(x))) = ϕ(θI(ϕ(θI(x)))) = ϕ(θI(x)) = σ(x).

By Lemma 4.1, we get that (M,σ) is a state-morphism MV-algebra. Now we

only have to prove that Ker(ϕ ◦ πθI ) = I. Let a ∈ I, then

ϕ(πθI (a)) = ϕ(πθI (0)) = 0

hence I ⊆ Ker(ϕ ◦ πθI ). Assume now that a ∈ Ker(ϕ ◦ πθI ). Then
ϕ(πθI (a)) = 0

so

πθI (ϕ(πθI (a))) = πθI (0)

hence we get πθI (a) = πθI (0), a ∈ I and then Ker(ϕ ◦ πθI ) ⊆ I. We can then

conclude that

Ker(ϕ ◦ πθI ) = I.

�

����������� 4.3� Let (M,σ) be a state-morphism MV-algebra. Then the pair

(Ker(σ), ι) is an ideal retraction of M , where ι : M/Ker(σ) → M is defined by

ι(x/Ker(σ)) = σ(x), x ∈M .

P r o o f. Let (M,σ) be a state-morphism MV-algebra with an MV-reduct M ,

then, by Lemma 4.1, σ is a retractive homomorphism from M to σ(M ) with

respect to the mapping ι : σ(M ) →M , and Ker(σ) is a retractive ideal ofM . �


�������� 4.4� Let (M,σ) be a state-morphism MV-algebra. Then σ(M ) is

a retract of M .
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P r o o f. Assume (M,σ) be a state-morphism MV-algebra, then σ is an MV-ho-

momorphism and σ(M ) is an MV-subalgebra of M , hence we have:

σ(M )
i−→ M

�
���

�
���

idM
σ

σ(M )

where i is the inclusion map and idσ(M) is the identity map of σ(M ). Indeed we

get i(σ(x)) = σ(x) ∈M and σ(σ(x)) = σ(x), for every x ∈M . Thus σ(M ) is a

retract of M , with respect to the MV-homomorphisms i and σ. �

We call a proper ideal retraction of an MV-algebra M any ideal retraction

(I, ϕ) of M such that the canonical projection of the congruence associated to

I, ϕ ◦ πθI , is an endomorphism of M such that (ϕ ◦ πθI ) ◦ (ϕ ◦ πθI ) = (ϕ ◦ πθI ).
LetM be a given MV-algebra. We define PIR(M ), the set of all proper ideal

retractions of M , and let Smor(M ) be the set of all state-morphism MV-alge-

bras (M,σ),

So, we can define a mapping Ξ : PIR(M ) → Smor(M ) setting Ξ(I, ϕ) =

(M,ϕ ◦ πθI ), and a mapping Ψ: Smor(M ) → PIR(M ) setting

Ψ((M,σ)) = (Ker(σ), ι).

����������� 4.5� Let M be an MV-algebra. Then there is a one-to-one cor-

respondence between proper ideal retractions of M and state-morphism MV-al-

gebras (M,σ).

P r o o f. To prove the proposition we shall show that the mapping Ξ defined

above is bijective. Let (I, ϕ), (J, ψ) be proper ideal retractions of M . Assume

that

Ξ((I, ϕ)) = Ξ((J, ψ)),

that is,

(M,ϕ ◦ πθI ) = (M,ψ ◦ πθJ ).
Then

(ϕ ◦ πθI )(x) = (ψ ◦ πθJ )(x) for every x ∈M,

that is,

x/I = x/J for every x ∈M.

Hence I = J and ϕ = ψ. Then we get (I, ϕ) = (J, ψ). So we proved that Ξ

is injective.
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To show the surjectivity of Ξ take a state-morphism MV-algebra (M,σ). Then

by Proposition 3.3 (Ker(σ), ι) is a proper ideal retraction of M such that

Ξ((Ker(σ), ι)) = (M, ι ◦ πθKer(σ)
) = (M,σ).

The proposition is now proved. �

Notice that a retractive extremal state over an MV-algebra M determines

a retractive maximal ideal of M , via its kernel. So it is worth to provide in-

formation about maximal retractive ideals of an MV-algebra. The following

proposition aims to do that. We recall that given an MV-algebra M there is the

greatest local subalgebra of M , here denoted by L (M ), see [DEG].

����������� 4.6� LetM be an MV-algebra and J a maximal ideal of M . Then

the following are equivalent:

(1) J is retractive;

(2) M/J ∼= L (M )/J and L (M ) has the radical retractive.

P r o o f. Let J be a retractive maximal ideal of the MV-algebraM and πJ be the

canonical projection of M to M/J . Then there exists an MV-homomorphism

δ : M/J →M such that

πJ ◦ δ = idM/J . (4.1)

Notice that δ(M/J) is a simple subalgebra of M , then it is a local subalgebra

of M , therefore

δ(M/J) ⊆ L (M ).

Hence πJ (δ(M/J)) ⊆ πJ (L (M )) and, by (4.1),

M/J ⊆ L (M )/J.

Moreover, we have L (M ) ⊆ M , and then L (M )/J ⊆ M/J . Hence we proved

that

M/J = L (M )/J.
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Now we are going to prove that L (M ) has the radical as a retractive ideal.

Indeed, we notice that for t, l ∈ L (M ) is:

t/Rad(L (M )) = l/Rad(L (M ))

⇐⇒
(t� l∗ ⊕ t∗ � l) ∈ Rad(L (M ))

⇐⇒
(t/Rad(M ) = l/Rad(M ))

⇐⇒
(t� l∗ ⊕ t∗ � l) ∈ Rad(M )

=⇒
(t� l∗ ⊕ t∗ � l) ∈ J

⇐⇒
t/J = l/J.

Then we define a mapping δ̂ : L (M )/Rad(L (M )) → L (M ) as follows:

for any l ∈ L (M ),

δ̂(l/Rad(L (M ))) = δ(l/J) ∈ L (M ).

Indeed, δ(M/J) ⊆ L (M ), being δ(M/J) simple and therefore local.

Let us show that πRad(L (M)) ◦ δ̂ = idRad(L (M)). In fact we have:

πRad(L (M)) ◦ δ̂(l/Rad(L (M ))) = πRad(L (M))(δ(l/J))

= πJ (δ(l/J)) = l/J = l/Rad(L (M )).

Vice versa, let M/J ∼= L (M )/J and let L (M ) have the radical as a retrac-

tive ideal. Then there exists an MV-homomorphism λ : L (M )/Rad(L (M )) →
L (M ) such that

πRad(L (M)) ◦ λ = idL (M)/Rad(L (M)) .

Let us define a mapping γ : M/J →M , as follows:

for every m ∈ M there is an element l ∈ L (M ) such that m/J = l/J , then

we set

γ(m/J) = λ(l/Rad(L (M ))) ∈ L (M ) ⊆M.
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Hence we get

πJ(γ(m/J)) = πJ(λ(l/Rad(L (M ))))

= πRad(L (M))λ(l/Rad(L (M )))

= l/Rad(L (M )) = m/J.

�

As it was already mentioned in Section 2, there is a one-to-one correspondence

between extremal states on an MV-algebra M and maximal ideals of M , and

furthermore that the set of extremal states on M , S∂(M ), is compact. It makes

sense to explore suitable subsets of S∂(M ) that are someway linked with sets

of state-morphism operators on M , via a selection of classes of maximal ideals

of M .

Let Max(M ) denote the set of maximal ideals ofM . We say that an extremal

state s on M is retractive if s is retractive as an MV-homomorphism from M to

s(M ).

We denote the set of retractive extremal states on M by SRetr ∂(M ) and by

ΣRetr ∂(M ) the set of state-morphism operators σ onM with Ker(σ) ∈ Max(M )

and a retractive ideal of M .

����������� 4.7� Let M be an MV-algebra. Then there is a bijective mapping

from SRetr ∂(M ) onto ΣRetr ∂(M ).

P r o o f. Let s be a state-morphism on M . So, by definition of a retractive

extremal state there is an MV-homomorphism δs : s(M ) →M such that s◦δs =
ids(M). Then we can define a mapping σ : M → M setting σ(a) = δs(s(a)) for

every a ∈ M . Easily it can be seen that σ is an MV-endomorphism of M . Let

us show that σ ◦ σ = σ. Indeed, for every a ∈M , we have:

σ(σ(a)) = σ(δs(s(a))) = δs(s(δs(s(a)))) = δs(s(a)) = σ(a).

Hence, by Lemma 4.1, we get that σ is a state-morphism operator onM . Now

we are going to prove that Ker(σ) ∈ Max(M ) and that Ker(σ) is a retractive

ideal of M . A direct verification can show that:

Ker(s) = Ker(σ).

Since Ker(s) is a maximal ideal of M , so is Ker(σ). By Proposition 3.1,

(M,σ) ∈ S S MV . Since Ker(σ) = Ker(s) ∈ Max(M ), by Proposition 4.3,

Ker(σ) is a retractive ideal of M .

Let now ψ : SRetr ∂(M ) → ΣRetr ∂(M ) be defined by ψ(s) = σ. Suppose that

ψ(s1) = ψ(s2). Then by the above, Ker(s1) = Ker(s2) which means s1 = s2.
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Choose σ ∈ ΣRetr ∂(M ). Because Ker(σ) is maximal, there is a unique ex-

tremal state, s, onM such that Ker(s) = Ker(σ). Because Ker(σ) is a retractive

ideal, s is a retractive extremal state, and ψ(s) = σ. �

5. State-morphism operators on Free(m)

Let A be an MV-algebra of functions from a set Xm, where m ≥ 1 is an

integer, to the real interval [0, 1]. We say that a state-morphism operator σ on

A satisfies the m-projective property if and only if there exist m elements from

A, {t1, . . . , tm}, such that:

σ(ti)(σ(t1)(x1, . . . , xn), . . . , σ(tm)(x1, . . . , xn)) = σ(ti)(x1, . . . , xn)

for all (x1, . . . , xn) ∈ Xm.

Let F (m) denote the m-generated free MV-algebra. It is well known that

F (m) is isomorphic to the MV-algebra of McNaughton functions from [0, 1]m to

[0, 1], [CDM]. F (m) is also closed under the functional composition. Let f0 and

f1 denote the zero constant function, which is the zero element of F (m) and the

1-constant function, which is the unit of F (m), respectively. Let g1, . . . , gm be

the set of its free generators gi(x1, . . . , xm) = xi. Let Alg(f1, . . . , fm) denote the

subalgebra of F (m) generated by f1, . . . , fm ∈ F (m). Let F = {f1, . . . , fm} be

a subset of non-constant elements of F (m). The system F is called a projective

system iff

fi(f1(x1, . . . , xm), . . . , fm(x1, . . . , xm)) = fi(x1, . . . , xm),

for all (x1, . . . , xm) ∈ [0, 1]m.

����������� 5.1� Let σ be a state-morphism operator on F (m) such that σ

satisfies the m-projective property. Then σ(F (m)) is a projective subalgebra

generated by σ(g1), . . . , σ(gm).

P r o o f. It is clear that Alg({σ(g1), . . . , σ(gm)}) ⊆ σ(F (m)). Let f ∈ F (m),

then there exists an MV-polynomial Pf (x) such that for every x ∈ [0, 1]m,

Pf (x) = f(x). Then, for every x ∈ [0, 1]m,

Pf (g1(x), . . . , gm(x)) = f(x).

That is σ(Pf (g1, . . . , gm)) = σ(f). Since σ is an MV-endomorphism, then we

get Pf (σ(g1, . . . , gm)) = σ(f). Thus, we proved that

Alg(σ(g1), . . . , σ(g1)) = σ(F (m)).
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Let us prove that {σ(g1), . . . , σ(gm)} is a projective system of generators of

σ(F (m)). Indeed, this follows from the m-projective property of σ. Hence, by

[DiGr, Thm 9], σ(F (m)) is an m-generated projective subalgebra of F (m) which

is generated by σ(g1), . . . , σ(gm). �

����������� 5.2� Let A be a projective m-generated subalgebra of F (m), with

a projective system of generators F = {t1, . . . , tm}. Then there exists a state-

morphism operator, σ, on F (m) such that A = σ(F (m)) and σ satisfies the

m-projective property.

P r o o f. Let A be a projective m-generated subalgebra of F (m), with a pro-

jective system of generators F = {t1, . . . , tm}. Then, by [DiGr, Cor. 27], A

coincides with

{f(t1(x1, . . . , xm), . . . , t1(x1, . . . , xm)) : f ∈ F (m), (x1, . . . , xm) ∈ [0, 1]m}.
Let us define a mapping σ : F (m) → F (m) by setting

σ(f) = f(t1, . . . , tm).

Hence we get, for every i = 1, . . . ,m,

σ(gi) = gi(t1, . . . , tm) = ti,

and then A is generated by σ(g), furthermore, for every f ∈ F (m),

σ(σ(f)) = σ(f(t1, . . . , tm)) = (f(t1, . . . , tm))(t1, . . . , tm).

Hence, for every x ∈ [0, 1]m,

σ(σ(f))(x) = (f(t1, . . . , tm))(t1(x), . . . , tm(x))

= f(t1(t1(x), . . . , tm(x)), . . . , tm(t1(x), . . . , tm(x)))

= f(t1(x), . . . , tm(x)) = σ(f)(x).

That is σ(σ(f)) = σ(f). It is plain to check that σ is an MV-endomorphism.

Then, by Lemma 4.1, σ is a state-morphism operator on F (m), σ(F (m)) = A,

σ(F (m)) is generated by σ(g1), . . . , σ(gm) and σ satisfies the m-projective prop-

erty. �

��
��
� 5.3� There is a one-to-one correspondence between m-generated pro-

jective subalgebras of F (m) and state-morphism operators on F (m) satisfying

the m-projective property.

P r o o f. It follows from Propositions 5.1–5.2. �
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As an example, we can say in more details if we study the one-generated free

MV-algebra F (1). The identity map g = id[0,1] of F (1) is a free generator of

F (1). To any 1-variable McNaughton function f there is associated a partition,

0 = a0 < a1 < · · · < an = 1, of the unit interval [0, 1] in such a way that

the points {(a0, f(a0)), (a1, f(a1)), . . . , (an, f(an))} are the knots of f and the

function f is linear on each interval [ai−1, ai], with i = 1, . . . , n.

From Propositions 5.1–5.2 we have that there is a one-to-one correspondence

between one-generated projective subalgebras of F (1) and state-morphism op-

erators on F (1).

Thus all state-morphism operators σ on F (1) are obtained as follows:

σ(f) = f ◦ t
with f, t ∈ F (1) and t such that t ◦ t = t. By [DiGr, Thm 23], t is characterized

by one of the following conditions:

(1) max{t(x), x ∈ [0, 1]} = t(a1) and for a nonzero function t and for every

x ∈ [0, a1], t(x) = x;

(2) min{t(x), x ∈ [0, 1]} = t(an−1) and for a non-unit function t and for every

x ∈ [an−1, an], t(x) = x.

Examples of such generators are: t = g ∧ g∗, t = g ∧ (g2)∗, t = g ∨ g∗,
t = g ∨ 2(g)∗.
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