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Introduction

Recently, increasing attention has been paid to algebraic structures arising
from quantum computation [3], [4], [8]. More precisely these structures stem
from mathematical description of circuits obtained by combinations of quantum
gates and operations acting in the bidimensional complex Hilbert space C? ([9]).
In this case the information processed by means of quantum gates is represented
by qubits (unit vectors in the bidimensional complex Hilbert space C?) or by
qumizes (density operators' in C?) according as they correspond to maximal
or to possibly incomplete pieces of information. As is well known, each density
operator o in C? has a matrix representation via the Pauli matrices

g = I+7"10'1+7"20'2+7”30’3)

2 (
where:

(10 (01 (0 —i (10
“\Lo1 )T\ 1 0)270i 0 )00 <1

and rq, 72,73 are real numbers s.t. r3+73+7r2 < 1. We will denote by Z(C?) the
set of all density operators of C2. It can be noticed that density operators are
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in one-one correspondence with the points of the Poincaré sphere D? of radius
1. An interesting feature of density operators is the fact that any real number
0 < A < 1 uniquely determines a density operator py = J(I + (1 — 2\)o3). For
each o = %(I—l—rlal +7909+1303) in 2(C?) we can associate, as dictated by the
Born rule, a probability value p(o) in the following manner: p(c) = Tr(pi0) =
13”’. In this perspective, quantum gates can be represented (in a probabilistic
way) as operations in D3. The analysis of the structural properties of these
transformations, fully described in [3], [7], [6], has suggested the introduction
of appropriate algebraic structures in order to provide an abstract overview of
them. In previous works [8], [10], the most basic of such class of structures is
motivated by the following operations in 2(C?):

® 0&T = py(e)ep(r), Where p(0) & p(7) = min{p(c) + p(7), 1},

e NOT(7) = 017071,

e po and p; as constant operations.

For sake of notational simplicity, in what follows, 2(C?) will denote the
structure (2(C?), @, NOT, po). It has been shown in [8] that the equational theory
of 2(C?) is algebraically represented by the class of quasi MV-algebras.

In this paper we provide a categorial duality between quasi MV-algebras and
a category of semigroups, which turns out to be a reflective subcategory of the
category of l-groups with strong unit.

The paper is organized as follows: in §1 we recall some basic definitions and
properties about MV-algebras and l-groups. In §2 we introduce the notion of
quasi I-group and we outline its relations with quasi MV-algebras. In Section §3
we introduce an analogous for quasi MV-algebras of the I' functor for MV-al-
gebras [5]. Finally, section §4 is dedicated to the study of categorical duality
between these quasi l-groups and quasi MV-algebras.

1. Basic notions

We recall from [2] and [5] some basic notions about l-groups and MV-algebras,
respectively.

A lattice ordered abelian group or l-group for short, [2] is an algebra
(G,+,—,V,A,0), of type (2,1,2,2,0), which satisfies the following conditions:
1) (G,+,—,0) is an abelian group,

(G, A, V) is a lattice,
(zVy)=(w+2z)V(w+y),
(@ Ay) = (w+2z)A(w+y).
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If 2 is an element of a l-group G we define the absolute value of = as |z| =
(zVO0)+ (—x Vv0). Moreover an element u > 0 in G is a strong unit of G iff for
each = € G there exists a natural number n such that |z| < nu. We denote by
L9, the category of l-groups whose objects are l-groups with strong unit and
whose arrows are l-groups homomorphisms preserving strong units.

An MV-algebra [5] is an algebra (A, ®,—,0) of type (2,1,0) satisfying the
following axioms:

(1) (A,&,0) is an abelian monoid,
(2) ~a =2,
(3) & -0 =0,
(4) “(rz@y)dy=-(~y®x)®x (Lukasiewicz axiom)
By means of the primitive MV-algebraic functions, we can define:

rOy=-(r®y), zAy=-(zV-y).

An important example of an MV-algebra is given by the algebra L1 =
([0,1],®,,0,1), where @y = min{z +y, 1} and ~x = 1 — z. It is well known
that if G is an l-group and u € G is a strong unit then the interval algebra
([0,u],®,—,0,u) where x ®y = (v + y) Au and -z = u — z is an MV-algebra.
In this way, Lo,1] can be obtained from the l-group R of the real numbers with
strong unit 1.

On the other hand, it is possible to construct out of an MV-algebra an l-group
as we will see in what follows. Let A be an MV-algebra. A good sequence in A
is a sequence a = (ay, asg, .. .) of elements of A such that a; @ a;41 = a; for each
i =1,2... and there exists an integer n such that a; = 0 if i > n. We denote
by (a) the sequence (a,0...). The set of good sequences of A is noted by M 4.

Let a = (a1,as9,...) and b = (b1, ba,...) be arbitrary good sequences. If we
consider the following operations in M 4:

Ml: a+ b = (c1,¢2,...) where ¢; = a; ® (a;—1 @ b1) ® (a;—2 © by) O ---
@ (ag ©®bi—2) ® (a1 ©bj—1) ®b; foreach i =1,2,...,

M2: aVb = (a1 Vbi,azVbs,...),

M3: aAb = (a1 Abi,az Aba,...),

then (Ma,+,V, A, (0)) is an abelian cancellative lattice monoid whose order is

given as a < b iff a; < b; for eachi =1,2.... This order is translation invariant,
in the sense that a < b implies that a+d < b + d for each good sequence d.

From the abelian lattice monoid M4 we can obtain an l-group as follows: we
consider the equivalence relation = in M4 x M4 given by (a,b) = (a’,b’) iff
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a+ b’ =a’ + b. Denoting by [a,b] the equivalence class of (a,b), and by G4
the set of equivalence classes we can consider the following operations in G 4:

[a,b] + [c,d] = [a+c,b+d],

[a,b] V]c,d] =[(a+d)V(c+b),b+d],
[a,b] Afc,d] = [(a+d)A(c+b),b+d],
—[a,b] = [b,a],

0 = [(0), (0)]-

In this case (Ga,+,V,A,—,0) is an l-group called Chang’s I-group of the
MV-algebra A and the order in G4 is given by [a,b] <¢ [c,d] iff a+d < b +c.

2. Quantum computational structures

In this section we introduce quasi MV-algebras ([8]). From an intuitive point
of view, a quasi MV-algebra can be seen as an MV-algebra which fails to satisfy
the equation z ® 0 = x.

DEFINITION 2.1. A quasi MV-algebra ([8]) is an algebra (A, ®,—,0,1) of type
(2,1,0,0) satisfying the following equations:

Qlizd(ydz)=(z®2) Dy,

Q2: -—x ==,

Q3: zdl=1,

Q4 ~(zdy)dy=-(ydz) b,

Q5 =(x @ 0) =20,

Q6: (zdy)d0=2Dy,

Q7: =0 =1.

Axioms Q5 and Q6 are introduced for the sake of mathematical smoothness,

due to the general failure of © & 0 = . We denote by ¢.# 7 the variety of

gMV-algebras. We define ®,V,A as we did for MV-algebras. The following
lemma can be easily proved:

LEMMA 2.2. Let A be a quasi MV-algebra. Then we have:
(1) z2Vy=azV(y®0)=(xVy) &0,
(2) zAhy=2zAN(y®0)=(xAy) &0,
B)zoy=20(ye0)=(x0y)®0.

416



CATEGORIES OF SEMIGROUPS IN QUANTUM COMPUTATIONAL STRUCTURES

Let A be a quasi MV-algebra. Then we define a binary relation < on A as
follows:
a<b <<= 1=-a®b.

It is clear that (A, <) is a preorder. One can also easily prove that a < b iff
aANb=a®0ifavb=b&®0. Moreover a < a® 0 and a ® 0 < a. If we define
A®0={x@®0: z € A} it is not very hard to see that (A ® 0,®,—,0,1) is an
MV-algebra. An element a € A is regular iff a ® 0 = 0. Clearly, A® 0 is the set
of regular elements.

LeEmMA 2.3. Let A be quasi MV-algebra and a € A. Then, a € A& 0 iff
—a € ADO0.

Proof. It follows from the fact that, a = a® 0 iff ~a = ~(a®0) = —a®0. O
Ezample 2.4. Given the standard Lukasiewicz algebra L i), the standard
qMV-algebra is built from [0, 1] x [0, 1] with the following operations:

(a,0) & (¢, d) = (a @ ¢,1/2),

0=1(0,1/2),

1=(1,1/2),

=(a,b) = (—a, b).

The standard qMV-algebra is particularly important since an equation holds

in the whole variety q.# ¥ if ad only if it holds in the standard qMV-algebra,
see [8].

DEFINITION 2.5. A quasi l-group (shortly, ql-group) is an algebra (G, +, V, A,
—,0) of type (2,2,2,1,0) such that, upon defining G+0 = {zx+0: = € G}, the
following conditions are satisfied:
QL1: (G+0,4,V,A,—,0) is an l-group,
QL2: z+ (—x) =0,
QL3: —(—x) ==,
QL4: —(z4+0) =—x+0,
QL5: x+y=(z+0)+ (y+0),
QL6: xVy=(x+0)V(y+0),
QL7: z+ (yVz2)=(z+y)V (z+2).
We denote by ¢.£% the variety of ql-groups. For sake of notational clarity in
what follows we will write x — y instead of z 4+ (—y). We inductively define nx

as follows 1z = x and (n + 1)z = nz + x. It can be easily seen that a gl-group
is an l-group iff it satisfies the equation =z + 0 = .
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Example 2.6. Let R be the set of real number. We consider the gl-group Sy
given by (R x {1/2})U ([-1,1] x [0,1]) equipped with the following operations:

(1) (w1,91) + (z2,92) = (71 + 22,1/2),
(2) (z1,91) V (22, 92) = (21 V 22,1/2),
(3) (z1,91) A (22, 92) = (21 A 22, 1/2),
4) —(z,y) = (-2, 1-y),

(5) 0=1(0,1/2)

We note that Sg +0 =R x {1/2}. As we shall see in what follows the ql-group
Sk is the natural dual of the standard qMV-algebra introduced in Example 2.4.

PROPOSITION 2.7. Let G be a ql-group and let a,b,c € G then we have:

(1) —(zVy)=—zA—y,

(2) —(zAy)=—zV -y,

B) zAy=(x+0)A(y+0),

(4) (G,+), (G,V) and (G, N) are abelian semigroups,
5) (z+y)+0=2+(y+0)=z+y,
(6) —(z+y)=—-z—y,

(7) zVx=zANz=1x+0,

8) zV(zxAy)=xzA(zVy) =x+0,
9) 24+ (yAz)=(x+y)A(z+ 2),
(10) zvy=aV(y+0)=(xVy) +0,
(1) zAy=x2zA(y+0)=(xAy)+0.

Proof.

(1) By axioms QL3 and QL4, —(zVy) = —((x +0) V (y+0)) = —(x +0) A
—(y+0)=(—2+0)A(—y+0) =—z A —ysince G + 0 is an l-group. The same
argument allows to prove (2).

(3) Using item (2) we have that Ay = —(—2V—y) = —((—z+0)V(—y+0)) =
—(—(z4+0)V—(y+0)=(x+0)A(y+0).

(4) We prove that (G, +) is an abelian semigroup. Since z+0, y+0 € G+0 then
using axiom QL4 we have that z+y = (z+0)+ (y+0) = (y+0)+(z+0) =y+=x
and (z+y)+2z = ((+0)+(y+0))+(2+0) = (2+0)+((y+0)+(2+0)) = z+(y+2).
In similar manner we can prove that (G, V) and (G, A) are abelian monoids.

(5) By axiom QL5, z +y € G+ 0. Therefore z+y = (z+y)+0=(z+0)+
(y+0)=(2+0)+((y+0)+0)=z+(y+0).
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(6) —=(z+y) = =((¢+0)+(y+0)) = =(¢+0) = (y+0) = (=2 +0)+(-y+0) =
—x — .
The remaining items are left to the reader. O

DEFINITION 2.8. Let G be a gql-group. Then we define the binary relation < on
G as

a<b < a+0=aAb.

PROPOSITION 2.9. Let G be a ql-group a,b,c € G. Then we have:

(1) (G, <) is a preorder,

(2) a<biffb+0=aVDb,

3) a<a+0anda+0<a,

(4) if a < b then, foranyc € G, a+c<b+c,aNc<bAc,aVc<bVe,
(5) anb<a<aVb,

(6) if a <b then —b < —a,

(7) if0<a<bthen0<b—a<b,a+0=aA (a+D).

Proof.

(1) Tt is clear that a < a. Now we prove that if a < band b < cthena <ec. In
fact if @ < b then a+0 = aAb and b < ¢ then b4+0 = bAc. By Proposition 2.7(11),
a+0=aNb=aN(b+0)=aAN(bAc)=(aNb)ANc=(a+0)ANc=aAc. Thus
a<ec.

(2) IffaAbthena+0=aAband bV (a+0) = (aAb). By Proposition 2.7(8)
bV a =0+ 0. The other direction is analogous.

(3) and (4) are immediate.

(5) Suppose that a < b, then a+0 = aAb. (a+¢)+0 = (a+0)+c = (aAb)+c =
(a+¢c) A (b+ c¢) resulting a + ¢ < b+ ¢. Moreover (aAc)+0=(a+0)Ac=
(anb)Ae = (aN(b+0))A(cA(b+0)) = ((aAb)+0)A((aNc)+0) = (aAb)A((aNc).
In the case of V we use item (2).

(6) (anb)Na=(aNa)ANb=(a+0)Ab=(aAb)+0. In the case of V we
use item (2).

(7) If a <bthena+0=aAb, whence =b+0= (aANb) —a—b=((a—a)A
(b—a)—b=(0—-b)A(0—a)=-bA—a and —b < —a.

(8) Using item (5), if @ < b then 0 < b—a. Using item (7), since —a < —0 = 0.
Therefore b —a < b+ 0 < b. In the second case, using item (5), we see that
a<a+b. O
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DEFINITION 2.10. Let G be a qgl-group. A function u: G — G is a quasi unit
(q-unit for short) iff it satisfies:

(1) 0 <u(0),

(2) u(z+0) = u(0) -z,

3)ifo<x< u(O) then u(0) —u(z) =0+ z,

(4) wu(z) =

It is not hard to verify that every ql-group admits a g-unit. For instance, it

suffices to consider
u(z) =

{—x, if 20

0 otherwise.

Moreover, it can also be seen that if G is an l-group, then, for any a > 0,
the function u,(z) = a — x is a quasi unit in G. It can be noticed that if
a € G is a strong unit for an l-group G, then the function u,(x) is the unique
function which allows us to define the negation of the MV-algebra associated to
the interval [0, a] of G.

PROPOSITION 2.11. Let G be a ql-group and u be a g-unit. Then we have:
1. u(0) €e G+ 0,
2. if v is a g-unit such that v(0) = u(0), then for each x € G, u(x +0) =
v(z +0),
3. ifx <y then u(y +0) < u(x +0).
Moreover if 0 < z,y < u(0) then:
4. if x <y then u(y) < u(x),
5. 0 <u(zr) < u(0),
6. u(0) —z =u(x)+0.

Proof.

1) w(0) = u(0+0) = u(0) — 0 = u(0) 4 0, resulting u(0) € G + 0.

2) v(x+0) =v(0) — 2z =u(0) —x = u(xz + 0).

3) Suppose that < y. Using Proposition 2.9-6 and 4, —y < —z. Thus
u(y +0) = u(0) + (—y) < u(0) + (—z) = u(z + 0).

Suppose that 0 < z,y < u(0).

4) If z < y then x +0 < y + 0. By definition of q-unit, u(0) — (u(z) +0) =
u(0) —u(x) =24+0<y+0=u(0) —u(y) = u0) — (u(y) + 0) and this is an
inequality in the l-group G + 0, whence —(u(z) + 0) < —(u(y) + 0) and then
u(y) + 0 < u(z) + 0, that is u(y) < u(z).

420



CATEGORIES OF SEMIGROUPS IN QUANTUM COMPUTATIONAL STRUCTURES

5) From item 4, if 0 < z then u(z) < u(0) and z < u(0), thus 0 = uu(0)
< u(z).
6) u(z)+0=u(0) — uu(x) = u(0) — x. d

For simplicity we use ug as abbreviation of «(0).

DEFINITION 2.12. Let (G,u) € ¢.£9,,. Let [0,up] ={z € G: 0 <z < wug}, for
each z,y € [0, up] we define:

(1) z@y=uo A (x+1y),
(2) = u(zx).

The structure ([0, ugl, ®,,0,up) will be denoted by I'y(G,w). By basic
l-group properties and Proposition 2.11-5, it is clear that [0, ] is closed w.r.t.
the operations defined above.

ProrosITION 2.13. I'((G,u) is a quasi MV-algebra.

Proof. Let 0 < x,y < u(0) = ug.

Ql: (zdy)@z=uoAN(z+ (uo N (z+Yy))) =(uw A (z+uw))AN(z+y+z)=
upA(z+y+z). By the same argument we prove that 2@ (y®z) = ugA(z+y+z).

Q2 and Q3: Straightforward.

Q4: ~(-zdy) Dy = u(u(r)®y) Dy = uo A (y+u(u(r) ®y)) = uo A (y+u(uo A
(u(@)+9))) = toA(y-+ul(ttg A (u(2)+5)) +0)) = uoA(y-+1io— (oA (u(z) +1))) =
ug A (Y +uo+ (—uo V(—u(z) —y))) = uo A ((y +uo—uo) V (y +uo —u(x) —y)) =
up A ((y +0) V (uo —u(z) +0)) =ug A ((y +0) V (4 0)) = uo A (y V). This
shows that x,y are interchangeable, thus this gMV-axiom is verified.

Qb5: Since ug and = + 0 lies in G 4+ 0 being = + 0 < wug then —(z ® 0) =
w(ug A (x +0)) = u(z +0) = up — . On the other hand, since u(z) < wug,
-2 &0 = ug A (u(z) +0) = u(z) + 0. Using Proposition 2.11-6 we have that
—(z®0)=-2&0.

Q6: (rDy) DO =ug A ((uo A (z+y))+0)=ugA((uo +0)A(z+y+0)) =
ug A(ug A (x+y+0)=ugA(z+y)=1xdy since uyg € G + 0.

Q7: By definition. 0

Let us stress the fact that the image of the operation — is not, in general,
contained in the set of regular element of a qMV-algebra. Therefore, it has been
necessary to define the notion of the function — in I'y(G, u) independently from
any binary function of the ql-group GG. This observation justify the choice of a
function, instead of an element, as a g-unit in a gl-group.

PRrOPOSITION 2.14. Let (G,u) be a gl-group with q-unit, then we have:
I'y(G,u) 0 =T4(G+ 0,u(0))
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Proof. Let z € T'y(G,u) 0 then 0 < 2z = 2®0 = 2 +0 < u(0) whence
z € I'y(G 4 0,u(0)). On the other hand, if x € I';(G + 0,u(0)) then 0 < z =
z+0 < u(0); thus = u(0) A (. +0) =2 @ 0 and then x € I'y(G,u) & 0. O

Example 2.15. If we consider the ql-group Sr of Example 3.3, and for each
z = (x1,x2) € Sg we define
(1 —21,1 —a9), if (z1,22) € SR +00r0<uz; <1
u(xy,x0) = )
(21, x2), otherwise
then u is a g-unit in Sg. In fact:
(1) 0=1(0,1/2) < (1,1/2) = (1 — 0,1 — 1/2) = u(0, 1/2) = u(0).
(2) u(z +0) = u((x1,22) +(0,1/2)) = u(z1,1/2) = (1 — 21,1/2) = (1,1/2) -
(1, 22) = u(0,1/2) — (21, 22) = u(0) — .
(3) (07 1/2) <z= (xlva) < (17 1/2) thenv U(O) - U(LU) = U(Oa 1/2) - u(xlva)
=(1,1/2) = (1 = 21,1 — x3) = (21,1/2) = (21,22) + (0,1/2) = 2+ 0.
(4) vu(z) = u(u(zr,z2)) = u(l — 1,1 — x2) = (x1,22) = x, if 2 = (x1,22) €
Sg +0 or 0 <z <1. The other case is direct.

Moreover it is clear that [0, ug] = [0, 1] x [0, 1], whereby I'; (S, ) is the standard
quasi MV-algebra of Example 2.4.

3. The functor I,

Let G be a ql-group. For each a € G the absolute value of a is defined as
la] =aV —a.

LEmMA 3.1. If G is a ql-group and a € G then |a| = |a + 0].
Proof. l[a+0/=(a+0)V(-a+0)=aV —a=]al O

DEFINITION 3.2. Let G be a gl-group. A g-unit u on G is said to be strong iff
for each « € G there is an integer n > 0 such that |z| < nug.

Ezxample 3.3. Let us consider the gl-group Sg with the g-unit u given in Exam-
ple 2.15. Let = (21,22) and suppose that x; > 0. Since 1 is a strong unit
in the real l-group R, there exists a natural number n such that z; < n = nl.
Thus |z| = (21,1/2) < (n,1/2) = n(1 —0,1/2) = nu(0,1/2) = nu(0). Thus u is
a strong g-unit in Sg.

From Proposition 2.11-2, the following lemma establishes the relation between
l-groups with strong unit and ql-group with strong g-unit.
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LEMMA 3.4. Let G be an l-group. If u is a strong unit in G, then u(x) = ug —x
is the unique quasi strong unit such that u = ug. On the other hand, if u(x) is a
quasi strong unit, then ug is the unique strong unit on G such that u(z) = uo—x.

DEFINITION 3.5. A ¢l-group with strong q-unit (G, u) is called bounded iff for
eachz € G+0, —u(0) <x<0or0<z<u(0).

We denote by ¢. 29, the category whose objects are bounded ql-groups (G, u),
and whose arrows are f: (G1,u1) — (G2, u2) such that f is a homomorphism of
ql-group satisfying f(u1(0)) = u2(0). These homomorphisms are referred to as
unital homomorphisms.

THEOREM 3.6. .29, is a reflective subcategory [1] of LY ,,.

Proof If A€ q2%,, we define .(A,u) = (A + 0,u(0)), and for each unital
qc-homomorphism f: A — A’) we let Z(f): A+ 0 — A" 4+ 0 be defined by
L (f)(x+0) = f(z)+0. Upon noticing that ug is a strong unit in A+0 it is clear
that .7 (f) is an £9,-homomorphism. It is easy to check that .*: ¢.2%, —
£%9 ., is a functor. In view of Lemma 3.4, first consider the unital qc-homorphism
pa: (A,u) = (A4 0,ug — x) such that pa(z) = x + 0. A routinary check will
assure that the following diagram is commutative:

f
A - A
DA = pA
\ \
A+0 - A +0
Z(f)

Suppose that B € £¥9, and f: A — B be a unital qc-homomorphism. The
mapping g = f | A+ 0 defines® a £%,-homomorphism ¢g : A+ 0 — B that
makes the following diagram commutative:

A+0

and it is obvious that ¢ is the only .£%,-homomorphism making the triangle
commutative. Therefore we have proved that . is a reflector. (]

2We will denote by f | A the restriction of a function f to the set A.
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PROPOSITION 3.7. Let (G,u) be a ql-group with strong g-unit, and consider the
following sets:
My ={x¢G+0: 0<z<u(0)},
My ={x¢G+0:—u(0) <z <0}
Then we have:
(1) B(G) ={((G4+0)UM; UMy, +,V,A,—,0) is a bounded sub ql-group of G,
being u | (G +0) U My U My the strong g-unit,
Proof.

1) We first prove that (G +0) U M7 U My is closed w.r.t. w. If x € G+ 0 then
u(z) = u(z +0) = u(0) —z € G+ 0. In view of Proposition 2.11-5, M; U My is
closed w.r.t. u(z). B(G) is a sub gl-group of G since M7 U M, is closed w.r.t.
—, and binary operations in GG have the form G x G — G + 0.

2) It follows from the previous item. 0

The following proposition can be easily proved.

PROPOSITION 3.8. Ifwe definel'y: .9, — q#V such that (G,u) — T'y(G,u)
for each (G,u) € q£¢9 ., and for each unital homomorphism f: (G1,u1) —
(Go,u2), Ty(f) = f 1]0,u0], then Ty is a functor between the category of bounded
ql-groups and the category of quasi MV-algebras.

We are now ready to introduce the notion of quasi good sequence, that will
play an analogous role as the one played by the notion of good sequence with
respect to MV-algebras.

DEFINITION 3.9. Let A be a quasi-MV algebra. A sequence a = (aq,as,...) of
elements on A is said to be quasi good iff

(1) a1 ©as = ay @0,

(2) (a2,as,...) is a good sequence in A @ 0.
We denote by M the set of quasi good sequences in A.
LeEMMA 3.10. Let A be quasi MV-algebra. Then the following assertions are
equivalent:

(1) (a1,...,an,...) is a quasi good sequence in A,

(2) (a1 ®O0,...,an,...) is good sequence in A @ 0.
Proof. Suppose that (ay,...,an,...) is a quasi good sequence in A. Then
(a1 ®0) D as = a1 ® az = a3 ® 0. On the other hand if (a; ®O0,...,a,,...)

is good sequence in A @ 0, then a1 ® 0 = (a1 ©0) ® a2 = a1 D ag, so that
(a1, Gn,...) a good sequence. d
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In view of the above Lemma, if a = (aq,...,a,,...) is a quasi good sequence,
we denote by a® 0 = (a1,...,a,...)®0 the good sequence (a1 $0,...,an,...)
in the MV-algebra A @ 0. It is clear that Mago ={a®0: ac M3} C M].

PrROPOSITION 3.11. Let A be a quasi MV-algebra and consider the structure
(M3, +,V,N\) defined as M1, M2, M3 in the monoid of good sequences. Then
for each a,b € M% we have that:

(1) a+b=(a+b)®0=a+ (b&0),

(2) avb=(avb)®0=aV (b®0),

(3) aAb=(aAnb)d0=aA (b®0).

Thus these operations have the form M§ x M4 — Mago.
Proof. It is a consequence of Lemma 2.2. O
LEMMA 3.12. Leta,b,c € MY then we have:

(1) ifa+b=a+cthenbd0=ch0,

(2) ifa+b=(0) thena®0=b®d0=(0).

Proof. Follows from Proposition 3.11 and [5, Proposition 2.3.1]. (I
DEeFINITION 3.13. Let A be a quasi MV-algebra and a = (a1,...,a4,...),b =
(b1,...,bn,...) € M%. Let us define the binary relation < on M} as:

b<a < b <aq foreach i=1,...,n.

PROPOSITION 3.14. Let A be a quasi MV-algebra then we have:
(1) (M3,<) is a preorder,
(2) For each a, b in MY, b < a iff there exists a good sequence ¢ € A®0 such
that b4+ c=a® 0. The element c is unique and c is noted by a — b.

Proof.

1) Follows from the fact that A is preordered.

2) Suppose that a = (a1,...,a,), b = (b1,...,b,) and assume that there
exists a good sequence c such that b+c =a®0. Then (b®0)+ (c®0) =ad0.
Since b& 0, c®0 and a® 0 are good sequences in A® 0, by [5, Proposition 2.3.2]
we have that b; 0 < a; ® 0 whence b; < a;, for each i = 1,...,n. The converse
uses the same argument. The unicity follows from [5, Proposition 2.3.4i]. O

We consider the following sets:
My, ={((2),0): x &€ A0}
Ma, ={(0,(y)): y & Ad 0}
M(A) = (Mago)®> U Ma, UMu,
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It is clear that M(A) C M4 x M4 and by Lemma 2.3 if ((a),0) € My, then
((—a),0) € M4, and the same obtains for M4,. Also we consider the binary
relation = in M (A) defined as follows:

{a+b’ —a' +b, ifab,a b € Maso

(a,b) = (a’,b) — )
(a,b) = (a’,b’), otherwise.

It is clear that = is reflexive and symmetric. Transitivity follows either from
the fact that (Maqo)? is the monoid of good sequences, or by the transitivity of
the equality. Thus = is transitive, and therefore it is an equivalence relation.

We denote by [a, b] the equivalence class determined by the pair (a,b) and
by G the set of equivalence classes.

PROPOSITION 3.15. Let us define the following operations on GY:
[a,b] + [c,d] = [a+c,b+d],
[a,b]V]c,d]=[(a+d)V(c+b),b+d],

[a,b]Alc,d] =[(a+d)A(c+b),b+d],

—[a,b] = [b, a],
0 =10,0].
Then we have:
(1) [a,b] + [c,d] = [a® 0,b] + [c,d] = [a,b & 0] + [c,d].
(2) [a,b] V[c,d]=[a® 0,b]V]c,d] =[a,b& 0]V [c,d].
(3) [a,b]Alc,d] =[a® 0,b] Alc,d] =[a,b® 0] A [c,d].
(4) The binary operations have the form G% x G% — G aa0.
(5) (G4, +.V, A, —,0) is a ql-group.

Proof. We first note that operations are well defined.

(1), (2), (3) Follow from Propositions 3.11.

(4) Follows from the previous items.

(5) Now we see that (GY,+,V, A, —,0) is a ql-group:

QL1: It is clear that (Gg(A) +0,4,V, A, —,0) is an l-group, more precisely
the Chang’s l-group of the good sequences of A & 0.

QL2, QL3, QL4, QL5, QL6: Straightforward calculation.

QLT7: Using items (2), (3) and the fact that G 44 is an l-group we have that,
[a,b]+([c,d]V]e,f]) = [a®0,b D 0]+ ([cB0,dB0]V][ed®0,f®0]) = ([a®0, bdH0]
+[c®0,d®0])V([a®0,b®0]+ [e®0,f®0]) = ([a,b]+[c,d]) V([a,b] + [e, f]).

Thus (G%,+,V, A, —,0) is gl-group. O

We will refer to (G%,+,V, A, —,0) as Chang’s gl-group.
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Remark 3.16. We can see G% as the Chang’s I-group G ago with new non reg-
ular elements given by the equivalence classes [(a),0] = {((a),0)} and [0, (b)] =
{(0, (b))} with a,b ¢ A® 0. Thus G has a structure

GY = GagoUMa, UMy,.

PROPOSITION 3.17. Let A be a quasi MV-algebra and [a,b] € G%. Then the
following assertions are equivalent:

1. 0 <[a,b].

2. b+ (0) <a+(0).

3. There exists a unique good sequence e = (e1,...,ep,,0,0,...) in ABO such

that [a, b] 4+ [(0), (0)] = [e, (0)].

Moreover in the case [a,b] < [(1),(0)] there exists unique e; € A @ 0 such that:

4. If a,b € G a4g then [a,b] = [(e1),0].

5. Otherwise, [a,b] = [(a),0] and a &0 = e;.

Proof.
1) <= 2) Since G is a gl-group 0 = [(0),(0)] < [a,b] iff [(0),(0)] =

[(0), (0)] A [a, b] = [(b + (0)) A (a+ (0)), b+ (0)] iff b+ (0) + (0) = ((b + (0)) A
(a+(0))+ (0) iff b+ (0) = (b+(0)) A(a+ (0)) iff b+ (0) < a-+ (0) since
b+ (0),a+ (0) € Mago and Mago is a lattice monoid.

2) = 3) Since b+ (0),a+ (0) € Mago and b + (0) < a + (0), by [5,
Proposition 2.3.4] there exists a unique good sequence e = (eq,...,€,,0,0,...)
in A @ 0 such that (b + (0)) + e = a + (0). By Proposition 3.15, [a,b] +
[(0),(0)] = [a® 0,b® 0] +[(0),(0)] = [a® 0,b & 0]. Using Proposition 3.11
(b®0)+e=((b®0)+(0)+e=(b+(0)+e=a+(0)=(a®0)+(0),
resulting [a, b] 4 [(0), (0)] = [a® 0,b & 0] = [e, (0)].

3) = 2) If [a,b] + [(0), (0)] = [e, (0)], then [a 0, b B 0] = [a® 0,b P 0] +
[(0), (0)] = [a, b]+[(0), (0)] = [e, (0)], resulting (b@&0)+e = (ad0)+(0) = a®0.
Using [5, Proposition 2.3.4] we have that b ® 0 < a @ 0. By Proposition 3.15,
b+(0)=Mba0)+(0)=ba0<ad0=(ad0)+(0)=a-+(0).

Suppose also that [a,b] < [(1),(0)]. Then [a,b] + [(0),(0)] = [e, (0)] <
[(1),(0)]. Since [e, (0)] € Gago by [5, Proposition 2.4.5], [e, (0)] = [(e1), (0)].
If a,b € G4, then from the fact that [a,b] + [0,0] = [a, b], it follows that
[a, b] = [(e1),0].

Otherwise, by definition of M(A), [a,b] = [a,b] A [(1),(0)] = [(a + (0)) A
(b+(1)), b+(0)] = [a+(0), b+(0)] = [a, b]+0. By item 3, [a, b] = [a, (0)]. There-
fore [a,0] +[0,0] = [a® 0,0] = [(a1 ©0),0] = [(e1), 0], resulting (ey,0,0,...) =
(a1 ©0,0,...). Finally a; &0 = e; and [a,b] = [(a1,0,...),0]. O
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PROPOSITION 3.18. Let A be quasi MV-algebra. If we consider the ql-group GY

then:
[(1) (O)} [X7Y]7 ZfX,y € MAEBOv
u([x,y]) = 4 [(—a), 0], if (x,y) = ((a),0) € Ma,,
[0, (=b)], if (x,5) =(0,(b)) € Ma,
is a strong q-unit in G%. Thus (G%,u) is an object in ¢.£Y .
Proof.
1) [(0), (0)] < [(1), (0)] = u([(0), (0)]).
2) u([x,y] +[(0),(0)]) = w(x & 0,y & 0] + [(0), (0)]) = w(x & 0,y & 0]) =
[(1), (0)] = [x® 0,y & 0] = u([(0), (0)]) — [x,y].
3) Suppose that 0 < [x,y] < [(1),(0)]. Using Proposition 3.17, [x,y] =
[(a),0]. In this case, u([(0), (0)]) — u([(a),0]) = [(1), (0)] — [(=a),0] = [(1), (0)] +
E , (ma)] = [(1)7(0)H[0 (ma®0)] = [(1), (ma®0)] = [(1), (=(a®0))] = [(1), (1) -

nd the fact that a®0 € A®0. On the
[(a ®0),0] = [(a®0),0]. We need

a®0)], in view of [5, Proposition 2.3.4]
oter Land [0). (0] + (). 0] = [0), o) +
to see that [(1), (1) — (a ® 0)] = [(a & 0), 0], but this follows from the fact that
(1) = (1)+0and (1) = ((1) - (a®0))+(a®0), resulting u([(0), (0)]) —u([(a), 0]) =
[(0), (0)] + [(a), OJ.

4) By definition of w, it is clear that vu([x,y]) = [x,y].

5) Since u([(0), (0)]) = [(1), (0)] is a strong unit of the Chang’s l-group G ago,
it is clear that for each [x,y] € G, |[x,y]| < nu([(0),(0)]) for some integer
n > 0.

Thus v is a strong g-unit in G%. Moreover, by Remark 3.16 and Proposi-
tion 3.17, G% is a bounded ql-group. 0

‘—'99/'\

THEOREM 3.19. Let A be a quasi MV-algebra and consider the gl-group (G, u).
Then ¢: A — T, (G%,u) such that a — p(a) = [(a),0], is a quasi MV-iso-
morphism.

Proof. By Proposition 3.17, ¢ is a bijection. It is not very hard to see that
the restriction ¢ [ag0 is the well known MV-isomorphism from the MV-algebra
A @ 0 onto the MV-algebra I'(G a0, [(1), (0)]) (see [5, Proposition 2.4.5]). Let
2,y € A. Then p(z @ y) = p((z©0) & (y ®0)) = ¢ [as0 (z©0) @ (y ©0)) =
¢ Tago (@ 0) ® ¢ laso (y®0) = [(z©0),0] @ [(y ©0),0] = [(1),(0)] A
([(z ©0),0] + [(y ©0),0]) = [(1), (O] A ([(x), 0] + [(3), 0]) = [(1), (0)] A (o() +
©(y)) = ¢(x) @ p(y). With the same argument we can see that ¢(z Vy) =
e(x) vV o(y).

If 2 € A®0, then p(—x) = ¢ [ago () = [(1), (0)]=[(x), (0)] = u([(z), (0)]) =
(@), (0)] = —¢ Tago (x) = ~p(x). Ifz & A®O, p(-z) = [(-2),0] =
u([(z),0]) = =p(x). Thus ¢ is a quasi MV-isomorphism. d
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4. Inverting the functor I',

LemMMA 4.1. Let A, B be a ¢gMV-algebras and ¢: A — B be a quasi MV-homo-
morphism. If a = (aj,az...an,...) 18 a quasi good sequence in MY, then
o*(a) = (p(a1),p(az),...,p(ay),...) is a quasi good sequence in M}, More-
over:
(1) * define a (+,V, A, 0)-homomorphism ©*: M5 — M},
(2) if we consider the Chang’s ql-group (G%,ua) and (G%,up) then ¥ :
(G%,ua) — (Gh,up) such that o ([a,b]) = [p*(a),¢*(b)] is a unital
ql-group homomorphism.

Proof. Since ¢ is qMV-homomorphism, we have that ¢(a;) @ ¢(az) = ¢(ay
@ az) = ¢(ag ®0) = p(a1) ® p(0) = p(a1) ®0. Since (as...ap,...) is a good
sequence in A @ 0, (p(az2),...,¢(ay),...) is a good sequence in B & 0 (see [5,
§7.1]). Thus ¢*(a) € M},. From this it is clear that ¢*(0) = 0.

1) We first note that p*(a@® 0) = ¢*(a) 0. Let A be a binary operation
in M. Using Proposition 3.11 and [5, §7.1] again, ¢*(alAb) = ¢*((a @ 0)A
(b&0)) = " (a®0)Ap*(b®0) = (¢"(2)20)A(¢"(b)B0) = (¢*(a) Ap* (b)) B0 =
v*(a)Ap*(b). Finally ¢* is a (+, V, A, 0)-homomorphism.

2) Straightforward calculation. O

PROPOSITION 4.2. Z: q.#V — q.£9., such that for each A € q#V, E(A) =
(G, ua) and for each gMV-homomorphism ¢: A — B, Z(¢) = ¢ is a functor.

THEOREM 4.3. The composite functor I'yZE: q.#V — q.#V is naturally equiv-
alent to the identity functor 14 4 .

Proof. Let : A — B be a qMV-homomorphism and pa: A — T';E(A),
vp: B — I';E(B) be the qMV-isomorphisms given in Theorem 3.19. We will
prove that the following diagram is commutative:

(4
A - B
YA ¥B
\ \
I',Z(A) e I',Z2(B)
LyE(Y)

If @ € A then ppy(a) = [(¢(a)),0]. On the other hand, by Lemma 4.1
(CE(W)pa)a) = T2w)([(0),0]) = [((@)),0] € TyZ(B). Since Ty(2(5) is
the restriction of Z(¢) to I';=(B), we can write I'; (2(¢))) (pa(a)) = [(¢(a)),0] =
wpY(a). So the diagram is commutative. O
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PROPOSITION 4.4. If (G,u) is an l-group with strong unit then we have:
(1) For each 0 < a € G there is a unique good sequence g(a) = (a1,...,a,) in
T'(G,u) such that a =ay + -+ + an,
(2) g: Gt = Mp(g,u), such that g(u) = (u), is a (+,V, A)-isomorphism,
(3) to: G = Gr(g,u defined by ho(x) = [g(x™),g(x7)] is an I-group isomor-
phism such that ¥ (u) = [(u), 0].

Proof. See [5, Lemma 7.1.3, Lemma 7.1.5, Corollary 7.16]. d

Taking into account Proposition 2.14 and Remark 3.16 if (G,u) € ¢.£9,,, we
can consider G%q(c ) 8S

GT (@) = Gra(G+o.u0) Y Gr (G, YGr, G,

LEMMA 4.5. Let (G, u) € ¢£9Y ., and consider the map ¢: G — quﬂq(G’u) defined
as follows
vo(z), ifzeG+0,
Y(z) =< [(2),0], ifze G,
[0,(z)], ifxe G
Then © is a L9 ,~isomorphism.

Proof. By definition of bounded ql-group and Chang’s ql-group it is clear that
1) is a bijection.

If x € G+ 0 then Y(—z) = Yo(—x) = —ho(z) = —¢(z). If x € G7 then
—x € Gy, thus Y(—z) = [0, (z)] = —[(x),0] = —¢(x). If x € G5 we use the same
argument.

We first prove that ¢(x +0) = ¢(x) +¢(0). In fact: if x € Gy then 0 <240
< u(0). By Proposition 4.4, g(x+0) = g((x+0)") = (z+0) and g((x+0)") =0
and then 1(z+0) = [(z+0),0]. On the other hand ¢ (x)+0 = [(x),0]+[0,0] =
[(z 4+ 0),0]. Resulting ¢(z + 0) = ¥(z) + ¢(0). If x € G2, —z € G1 and then
(w4 0) = (2 +0)) = —h(—2+0) = —(—(x) + $(0)) = () + ().

If % is a binary operation then ¥(z) * ¥(y) = (¥(z) + 0) * (Y(y) + 0) =
(1b(x) +¥(0)) * (¥ (y) + ¥(0)) = to(z + 0) * Yo(y + 0) = tho((z +0) * (y +0)) =
Yol *y) = Y(z *y).

Since u(0) € G + 0, ¥(u(0)) = [(u(0)),0] whence 1) is unital. Finally 1 is a
q-LY ,-isomorphism. O

THEOREM 4.6. The composite functor Z1'y: ¢.29 ., — ¢£9, is naturally equiv-
alent to the identity functor 1,24, .

Proof. Let (G,u), (H,v) € ¢£%, and f: G — H be a ¢.£%4,-homomorphism.
We will see that the following diagram is commutative:
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f
G - H
va | , Un
El4(G) > Ely(H)
ET(f)

If x € G+0 then f(z) € H+ 0, thus (Bl (f))ve)(z) = (Y f)(x) in view
of [5, Theorem 7.1.7]. If x € G; then Yg(z) = [(z),0] and ((ET(f))va)(x) =
[(f(x)), (f(0))] = [(f(x)),0]. On the other hand, since 0 < f(z) < f(u(0)) =
v(0), ¥p(f(z)) = [(f(x)),0]. If z € G5 then —z € G, since —x = x. Finally the
diagram is commutative. O

THEOREM 4.7. q.ZV is categorically equivalent to q.£9 .

Proof. Follows from the Theorems 4.5, 3.19, 4.3 and 4.6. (]
COROLLARY 4.8. .ZV is a reflective subcategory of q#V .

Acknowledgement. Authors express their gratitude to Roberto Giuntini,
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