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Introduction

Recently, increasing attention has been paid to algebraic structures arising
from quantum computation [3], [4], [8]. More precisely these structures stem
from mathematical description of circuits obtained by combinations of quantum
gates and operations acting in the bidimensional complex Hilbert space C2 ([9]).
In this case the information processed by means of quantum gates is represented
by qubits (unit vectors in the bidimensional complex Hilbert space C2) or by
qumixes (density operators1 in C2) according as they correspond to maximal
or to possibly incomplete pieces of information. As is well known, each density
operator 𝜎 in C2 has a matrix representation via the Pauli matrices

𝜎 =
1

2
(𝐼 + 𝑟1𝜎1 + 𝑟2𝜎2 + 𝑟3𝜎3)

where:

𝐼 =

(
1 0
0 1

)
, 𝜎1 =

(
0 1
1 0

)
, 𝜎2 =

(
0 −i
i 0

)
, 𝜎3 =

(
1 0
0 −1

)

and 𝑟1, 𝑟2, 𝑟3 are real numbers s.t. 𝑟21+𝑟22+𝑟23 ≤ 1. We will denote by D(C2) the
set of all density operators of C2. It can be noticed that density operators are
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in one-one correspondence with the points of the Poincaré sphere D3 of radius
1. An interesting feature of density operators is the fact that any real number
0 ≤ 𝜆 ≤ 1 uniquely determines a density operator 𝜌𝜆 = 1

2 (𝐼 + (1 − 2𝜆)𝜎3). For

each 𝜎 = 1
2 (𝐼+𝑟1𝜎1+𝑟2𝜎2+𝑟3𝜎3) in D(C2) we can associate, as dictated by the

Born rule, a probability value p(𝜎) in the following manner: p(𝜎) = Tr(𝜌1𝜎) =
1−𝑟3
2 . In this perspective, quantum gates can be represented (in a probabilistic

way) as operations in D3. The analysis of the structural properties of these
transformations, fully described in [3], [7], [6], has suggested the introduction
of appropriate algebraic structures in order to provide an abstract overview of
them. In previous works [8], [10], the most basic of such class of structures is
motivated by the following operations in D(C2):

∙ 𝜎 ⊕ 𝜏 = 𝜌p(𝜎)⊕p(𝜏) , where p(𝜎)⊕ p(𝜏) = min{p(𝜎) + p(𝜏), 1},
∙ NOT(𝜏) = 𝜎1𝜏𝜎1,

∙ 𝜌0 and 𝜌1 as constant operations.

For sake of notational simplicity, in what follows, D(C2) will denote the
structure ⟨D(C2),⊕, NOT, 𝜌0⟩. It has been shown in [8] that the equational theory
of D(C2) is algebraically represented by the class of quasi MV-algebras.

In this paper we provide a categorial duality between quasi MV-algebras and
a category of semigroups, which turns out to be a reflective subcategory of the
category of l-groups with strong unit.

The paper is organized as follows: in §1 we recall some basic definitions and
properties about MV-algebras and l-groups. In §2 we introduce the notion of
quasi l-group and we outline its relations with quasi MV-algebras. In Section §3
we introduce an analogous for quasi MV-algebras of the Γ functor for MV-al-
gebras [5]. Finally, section §4 is dedicated to the study of categorical duality
between these quasi l-groups and quasi MV-algebras.

1. Basic notions

We recall from [2] and [5] some basic notions about l-groups and MV-algebras,
respectively.

A lattice ordered abelian group or l-group for short, [2] is an algebra
⟨𝐺,+,−,∨,∧, 0⟩, of type ⟨2, 1, 2, 2, 0⟩, which satisfies the following conditions:

(1) ⟨𝐺,+,−, 0⟩ is an abelian group,

(2) ⟨𝐺,∧,∨⟩ is a lattice,

(3) 𝑤 + (𝑥 ∨ 𝑦) = (𝑤 + 𝑥) ∨ (𝑤 + 𝑦),

(4) 𝑤 + (𝑥 ∧ 𝑦) = (𝑤 + 𝑥) ∧ (𝑤 + 𝑦).
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If 𝑥 is an element of a l-group 𝐺 we define the absolute value of 𝑥 as ∣𝑥∣ =
(𝑥 ∨ 0) + (−𝑥 ∨ 0). Moreover an element 𝑢 ≥ 0 in 𝐺 is a strong unit of 𝐺 iff for
each 𝑥 ∈ 𝐺 there exists a natural number 𝑛 such that ∣𝑥∣ ≤ 𝑛𝑢. We denote by
L G 𝑢 the category of l-groups whose objects are l-groups with strong unit and
whose arrows are l-groups homomorphisms preserving strong units.

An MV-algebra [5] is an algebra ⟨𝐴,⊕,¬, 0⟩ of type ⟨2, 1, 0⟩ satisfying the
following axioms:

(1) ⟨𝐴,⊕, 0⟩ is an abelian monoid,

(2) ¬¬𝑥 = 𝑥,

(3) 𝑥⊕ ¬0 = ¬0,

(4) ¬(¬𝑥⊕ 𝑦)⊕ 𝑦 = ¬(¬𝑦 ⊕ 𝑥)⊕ 𝑥. (L̷ukasiewicz axiom)

By means of the primitive MV-algebraic functions, we can define:

1 = ¬0, 𝑥 ∨ 𝑦 = ¬(¬𝑥⊕ 𝑦)⊕ 𝑦,

𝑥⊙ 𝑦 = ¬(¬𝑥⊕ ¬𝑦), 𝑥 ∧ 𝑦 = ¬(¬𝑥 ∨ ¬𝑦).
An important example of an MV-algebra is given by the algebra L̷[0,1] =

⟨[0, 1],⊕,¬, 0, 1⟩, where 𝑥⊕ 𝑦 = min{𝑥+ 𝑦, 1} and ¬𝑥 = 1− 𝑥. It is well known
that if 𝐺 is an l-group and 𝑢 ∈ 𝐺 is a strong unit then the interval algebra
⟨[0, 𝑢],⊕,¬, 0, 𝑢⟩ where 𝑥 ⊕ 𝑦 = (𝑥 + 𝑦) ∧ 𝑢 and ¬𝑥 = 𝑢 − 𝑥 is an MV-algebra.
In this way, L̷[0,1] can be obtained from the l-group R of the real numbers with
strong unit 1.

On the other hand, it is possible to construct out of an MV-algebra an l-group
as we will see in what follows. Let 𝐴 be an MV-algebra. A good sequence in 𝐴
is a sequence a = (𝑎1, 𝑎2, . . . ) of elements of 𝐴 such that 𝑎𝑖 ⊕ 𝑎𝑖+1 = 𝑎𝑖 for each
𝑖 = 1, 2 . . . and there exists an integer 𝑛 such that 𝑎𝑖 = 0 if 𝑖 > 𝑛. We denote
by (𝑎) the sequence (𝑎, 0 . . . ). The set of good sequences of 𝐴 is noted by 𝑀𝐴.

Let a = (𝑎1, 𝑎2, . . . ) and b = (𝑏1, 𝑏2, . . . ) be arbitrary good sequences. If we
consider the following operations in 𝑀𝐴:

M1: a + b = (𝑐1, 𝑐2, . . . ) where 𝑐𝑖 = 𝑎𝑖 ⊕ (𝑎𝑖−1 ⊙ 𝑏1) ⊕ (𝑎𝑖−2 ⊙ 𝑏2) ⊕ ⋅ ⋅ ⋅
⊕ (𝑎2 ⊙ 𝑏𝑖−2)⊕ (𝑎1 ⊙ 𝑏𝑖−1)⊕ 𝑏𝑖 for each 𝑖 = 1, 2, . . . ,

M2: a ∨ b = (𝑎1 ∨ 𝑏1, 𝑎2 ∨ 𝑏2, . . . ),

M3: a ∧ b = (𝑎1 ∧ 𝑏1, 𝑎2 ∧ 𝑏2, . . . ),

then ⟨𝑀𝐴,+,∨,∧, (0)⟩ is an abelian cancellative lattice monoid whose order is
given as a ≤ b iff 𝑎𝑖 ≤ 𝑏𝑖 for each 𝑖 = 1, 2 . . . . This order is translation invariant,
in the sense that a ≤ b implies that a + d ≤ b + d for each good sequence d.

From the abelian lattice monoid 𝑀𝐴 we can obtain an l-group as follows: we
consider the equivalence relation ≡ in 𝑀𝐴 × 𝑀𝐴 given by (a,b) ≡ (a′,b′) iff
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a + b′ = a′ + b. Denoting by [a,b] the equivalence class of (a,b), and by 𝐺𝐴

the set of equivalence classes we can consider the following operations in 𝐺𝐴:

[a,b] + [c,d] = [a + c,b + d],

[a,b] ∨ [c,d] = [(a + d) ∨ (c + b),b + d],

[a,b] ∧ [c,d] = [(a + d) ∧ (c + b),b + d],

−[a,b] = [b, a],

0 = [(0), (0)].

In this case ⟨𝐺𝐴,+,∨,∧,−, 0⟩ is an l-group called Chang’s l-group of the
MV-algebra 𝐴 and the order in 𝐺𝐴 is given by [a,b] ≤𝐺 [c,d] iff a+d ≤ b+ c.

2. Quantum computational structures

In this section we introduce quasi MV-algebras ([8]). From an intuitive point
of view, a quasi MV-algebra can be seen as an MV-algebra which fails to satisfy
the equation 𝑥⊕ 0 = 𝑥.

���������� 2.1� A quasi MV-algebra ([8]) is an algebra ⟨𝐴,⊕,¬, 0, 1⟩ of type
⟨2, 1, 0, 0⟩ satisfying the following equations:

Q1: 𝑥⊕ (𝑦 ⊕ 𝑧) = (𝑥⊕ 𝑧)⊕ 𝑦,

Q2: ¬¬𝑥 = 𝑥,

Q3: 𝑥⊕ 1 = 1,

Q4: ¬(¬𝑥⊕ 𝑦)⊕ 𝑦 = ¬(¬𝑦 ⊕ 𝑥)⊕ 𝑥,

Q5: ¬(𝑥⊕ 0) = ¬𝑥⊕ 0,

Q6: (𝑥⊕ 𝑦)⊕ 0 = 𝑥⊕ 𝑦,

Q7: ¬0 = 1.

Axioms Q5 and Q6 are introduced for the sake of mathematical smoothness,
due to the general failure of 𝑥 ⊕ 0 = 𝑥. We denote by 𝑞MV the variety of
qMV-algebras. We define ⊙,∨,∧ as we did for MV-algebras. The following
lemma can be easily proved:

��		
 2.2� Let 𝐴 be a quasi MV-algebra. Then we have:

(1) 𝑥 ∨ 𝑦 = 𝑥 ∨ (𝑦 ⊕ 0) = (𝑥 ∨ 𝑦) ⊕ 0,

(2) 𝑥 ∧ 𝑦 = 𝑥 ∧ (𝑦 ⊕ 0) = (𝑥 ∧ 𝑦) ⊕ 0,

(3) 𝑥⊙ 𝑦 = 𝑥⊙ (𝑦 ⊕ 0) = (𝑥⊙ 𝑦)⊕ 0.
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Let 𝐴 be a quasi MV-algebra. Then we define a binary relation ≤ on 𝐴 as
follows:

𝑎 ≤ 𝑏 ⇐⇒ 1 = ¬𝑎⊕ 𝑏.

It is clear that ⟨𝐴,≤⟩ is a preorder. One can also easily prove that 𝑎 ≤ 𝑏 iff
𝑎 ∧ 𝑏 = 𝑎⊕ 0 iff 𝑎 ∨ 𝑏 = 𝑏⊕ 0. Moreover 𝑎 ≤ 𝑎 ⊕ 0 and 𝑎⊕ 0 ≤ 𝑎. If we define
𝐴 ⊕ 0 = {𝑥⊕ 0 : 𝑥 ∈ 𝐴} it is not very hard to see that ⟨𝐴⊕ 0,⊕,¬, 0, 1⟩ is an
MV-algebra. An element 𝑎 ∈ 𝐴 is regular iff 𝑎⊕ 0 = 0. Clearly, 𝐴⊕ 0 is the set
of regular elements.

��		
 2.3� Let 𝐴 be quasi MV-algebra and 𝑎 ∈ 𝐴. Then, 𝑎 ∈ 𝐴 ⊕ 0 iff
¬𝑎 ∈ 𝐴⊕ 0.

P r o o f. It follows from the fact that, 𝑎 = 𝑎⊕ 0 iff ¬𝑎 = ¬(𝑎⊕ 0) = ¬𝑎⊕ 0. □

Example 2.4. Given the standard L̷ukasiewicz algebra L̷[0,1], the standard
qMV-algebra is built from [0, 1]× [0, 1] with the following operations:

(𝑎, 𝑏) ⊕ (𝑐, 𝑑) = (𝑎⊕ 𝑐, 1/2),

0 = (0, 1/2),

1 = (1, 1/2),

¬(𝑎, 𝑏) = (¬𝑎,¬𝑏).
The standard qMV-algebra is particularly important since an equation holds

in the whole variety 𝑞MV if ad only if it holds in the standard qMV-algebra,
see [8].

���������� 2.5� A quasi l-group (shortly, ql-group) is an algebra ⟨𝐺,+,∨,∧,
−, 0⟩ of type ⟨2, 2, 2, 1, 0⟩ such that, upon defining 𝐺+0 = {𝑥+0 : 𝑥 ∈ 𝐺}, the
following conditions are satisfied:

QL1: ⟨𝐺 + 0,+,∨,∧,−, 0⟩ is an l-group,

QL2: 𝑥 + (−𝑥) = 0,

QL3: −(−𝑥) = 𝑥,

QL4: −(𝑥 + 0) = −𝑥 + 0,

QL5: 𝑥 + 𝑦 = (𝑥 + 0) + (𝑦 + 0),

QL6: 𝑥 ∨ 𝑦 = (𝑥 + 0) ∨ (𝑦 + 0),

QL7: 𝑥 + (𝑦 ∨ 𝑧) = (𝑥 + 𝑦) ∨ (𝑥 + 𝑧).

We denote by 𝑞L G the variety of ql-groups. For sake of notational clarity in
what follows we will write 𝑥− 𝑦 instead of 𝑥 + (−𝑦). We inductively define 𝑛𝑥
as follows 1𝑥 = 𝑥 and (𝑛 + 1)𝑥 = 𝑛𝑥 + 𝑥. It can be easily seen that a ql-group
is an l-group iff it satisfies the equation 𝑥 + 0 = 𝑥.
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Example 2.6. Let ℝ be the set of real number. We consider the ql-group 𝑆ℝ

given by (ℝ× {1/2})∪ ([−1, 1]× [0, 1]) equipped with the following operations:

(1) (𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 1/2),

(2) (𝑥1, 𝑦1) ∨ (𝑥2, 𝑦2) = (𝑥1 ∨ 𝑥2, 1/2),

(3) (𝑥1, 𝑦1) ∧ (𝑥2, 𝑦2) = (𝑥1 ∧ 𝑥2, 1/2),

(4) −(𝑥, 𝑦) = (−𝑥, 1− 𝑦),

(5) 0 = (0, 1/2).

We note that 𝑆ℝ + 0 = ℝ× {1/2}. As we shall see in what follows the ql-group
𝑆ℝ is the natural dual of the standard qMV-algebra introduced in Example 2.4.

���
������� 2.7� Let 𝐺 be a ql-group and let 𝑎, 𝑏, 𝑐 ∈ 𝐺 then we have:

(1) −(𝑥 ∨ 𝑦) = −𝑥 ∧ −𝑦,

(2) −(𝑥 ∧ 𝑦) = −𝑥 ∨ −𝑦,

(3) 𝑥 ∧ 𝑦 = (𝑥 + 0) ∧ (𝑦 + 0),

(4) ⟨𝐺,+⟩, ⟨𝐺,∨⟩ and ⟨𝐺,∧⟩ are abelian semigroups,
(5) (𝑥 + 𝑦) + 0 = 𝑥 + (𝑦 + 0) = 𝑥 + 𝑦,

(6) −(𝑥 + 𝑦) = −𝑥− 𝑦,

(7) 𝑥 ∨ 𝑥 = 𝑥 ∧ 𝑥 = 𝑥 + 0,

(8) 𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥 + 0,

(9) 𝑥 + (𝑦 ∧ 𝑧) = (𝑥 + 𝑦) ∧ (𝑥 + 𝑧),

(10) 𝑥 ∨ 𝑦 = 𝑥 ∨ (𝑦 + 0) = (𝑥 ∨ 𝑦) + 0,

(11) 𝑥 ∧ 𝑦 = 𝑥 ∧ (𝑦 + 0) = (𝑥 ∧ 𝑦) + 0.

P r o o f.

(1) By axioms QL3 and QL4, −(𝑥 ∨ 𝑦) = −((𝑥 + 0) ∨ (𝑦 + 0)) = −(𝑥 + 0) ∧
−(𝑦 + 0) = (−𝑥+ 0)∧ (−𝑦 +0) = −𝑥∧−𝑦 since 𝐺+ 0 is an l-group. The same
argument allows to prove (2).

(3) Using item (2) we have that 𝑥∧𝑦 = −(−𝑥∨−𝑦) = −((−𝑥+0)∨(−𝑦+0)) =
−(−(𝑥 + 0) ∨ −(𝑦 + 0)) = (𝑥 + 0) ∧ (𝑦 + 0).

(4) We prove that ⟨𝐺,+⟩ is an abelian semigroup. Since 𝑥+0, 𝑦+0 ∈ 𝐺+0 then
using axiom QL4 we have that 𝑥+𝑦 = (𝑥+0)+(𝑦+0) = (𝑦+0)+(𝑥+0) = 𝑦+𝑥
and (𝑥+𝑦)+𝑧 = ((𝑥+0)+(𝑦+0))+(𝑧+0) = (𝑥+0)+((𝑦+0)+(𝑧+0)) = 𝑥+(𝑦+𝑧).
In similar manner we can prove that ⟨𝐺,∨⟩ and ⟨𝐺,∧⟩ are abelian monoids.

(5) By axiom QL5, 𝑥+ 𝑦 ∈ 𝐺+ 0. Therefore 𝑥+ 𝑦 = (𝑥+ 𝑦) + 0 = (𝑥+ 0) +
(𝑦 + 0) = (𝑥 + 0) + ((𝑦 + 0) + 0) = 𝑥 + (𝑦 + 0).
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(6) −(𝑥+𝑦) = −((𝑥+0)+(𝑦+0)) = −(𝑥+0)−(𝑦+0) = (−𝑥+0)+(−𝑦+0) =
−𝑥− 𝑦.

The remaining items are left to the reader. □

���������� 2.8� Let 𝐺 be a ql-group. Then we define the binary relation ≤ on
𝐺 as

𝑎 ≤ 𝑏 ⇐⇒ 𝑎+ 0 = 𝑎 ∧ 𝑏.

���
������� 2.9� Let 𝐺 be a ql-group 𝑎, 𝑏, 𝑐 ∈ 𝐺. Then we have:

(1) ⟨𝐺,≤⟩ is a preorder,
(2) 𝑎 ≤ 𝑏 iff 𝑏+ 0 = 𝑎 ∨ 𝑏,

(3) 𝑎 ≤ 𝑎+ 0 and 𝑎 + 0 ≤ 𝑎,

(4) if 𝑎 ≤ 𝑏 then, for any 𝑐 ∈ 𝐺, 𝑎+ 𝑐 ≤ 𝑏 + 𝑐, 𝑎 ∧ 𝑐 ≤ 𝑏 ∧ 𝑐, 𝑎 ∨ 𝑐 ≤ 𝑏 ∨ 𝑐,

(5) 𝑎 ∧ 𝑏 ≤ 𝑎 ≤ 𝑎 ∨ 𝑏,

(6) if 𝑎 ≤ 𝑏 then −𝑏 ≤ −𝑎,

(7) if 0 ≤ 𝑎 ≤ 𝑏 then 0 ≤ 𝑏− 𝑎 ≤ 𝑏, 𝑎+ 0 = 𝑎 ∧ (𝑎 + 𝑏).

P r o o f.

(1) It is clear that 𝑎 ≤ 𝑎. Now we prove that if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 then 𝑎 ≤ 𝑐. In
fact if 𝑎 ≤ 𝑏 then 𝑎+0 = 𝑎∧𝑏 and 𝑏 ≤ 𝑐 then 𝑏+0 = 𝑏∧𝑐. By Proposition 2.7(11),
𝑎+ 0 = 𝑎 ∧ 𝑏 = 𝑎∧ (𝑏+ 0) = 𝑎∧ (𝑏 ∧ 𝑐) = (𝑎∧ 𝑏) ∧ 𝑐 = (𝑎+ 0)∧ 𝑐 = 𝑎∧ 𝑐. Thus
𝑎 ≤ 𝑐.

(2) If 𝑎∧ 𝑏 then 𝑎+0 = 𝑎∧ 𝑏 and 𝑏∨ (𝑎+0) = (𝑎∧ 𝑏). By Proposition 2.7(8)
𝑏 ∨ 𝑎 = 𝑏 + 0. The other direction is analogous.

(3) and (4) are immediate.

(5) Suppose that 𝑎 ≤ 𝑏, then 𝑎+0 = 𝑎∧𝑏. (𝑎+𝑐)+0 = (𝑎+0)+𝑐 = (𝑎∧𝑏)+𝑐 =
(𝑎 + 𝑐) ∧ (𝑏 + 𝑐) resulting 𝑎 + 𝑐 ≤ 𝑏 + 𝑐. Moreover (𝑎 ∧ 𝑐) + 0 = (𝑎 + 0) ∧ 𝑐 =
(𝑎∧𝑏)∧𝑐 = (𝑎∧(𝑏+0))∧(𝑐∧(𝑏+0)) = ((𝑎∧𝑏)+0)∧((𝑎∧𝑐)+0) = (𝑎∧𝑏)∧((𝑎∧𝑐).
In the case of ∨ we use item (2).

(6) (𝑎 ∧ 𝑏) ∧ 𝑎 = (𝑎 ∧ 𝑎) ∧ 𝑏 = (𝑎 + 0) ∧ 𝑏 = (𝑎 ∧ 𝑏) + 0. In the case of ∨ we
use item (2).

(7) If 𝑎 ≤ 𝑏 then 𝑎+ 0 = 𝑎 ∧ 𝑏, whence −𝑏 + 0 = (𝑎 ∧ 𝑏) − 𝑎− 𝑏 = ((𝑎− 𝑎) ∧
(𝑏− 𝑎))− 𝑏 = (0 − 𝑏) ∧ (0− 𝑎) = −𝑏 ∧ −𝑎 and −𝑏 ≤ −𝑎.

(8) Using item (5), if 𝑎 ≤ 𝑏 then 0 ≤ 𝑏−𝑎. Using item (7), since −𝑎 ≤ −0 = 0.
Therefore 𝑏 − 𝑎 ≤ 𝑏 + 0 ≤ 𝑏. In the second case, using item (5), we see that
𝑎 ≤ 𝑎+ 𝑏. □
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���������� 2.10� Let 𝐺 be a ql-group. A function 𝑢 : 𝐺 → 𝐺 is a quasi unit
(q-unit for short) iff it satisfies:

(1) 0 ≤ 𝑢(0),

(2) 𝑢(𝑥 + 0) = 𝑢(0)− 𝑥,

(3) if 0 ≤ 𝑥 ≤ 𝑢(0) then 𝑢(0)− 𝑢(𝑥) = 0 + 𝑥,

(4) 𝑢𝑢(𝑥) = 𝑥.

It is not hard to verify that every ql-group admits a q-unit. For instance, it
suffices to consider

𝑢(𝑥) =

{
−𝑥, if 𝑥 ∕= 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Moreover, it can also be seen that if 𝐺 is an l-group, then, for any 𝑎 ≥ 0,
the function 𝑢𝑎(𝑥) = 𝑎 − 𝑥 is a quasi unit in 𝐺. It can be noticed that if
𝑎 ∈ 𝐺 is a strong unit for an l-group 𝐺, then the function 𝑢𝑎(𝑥) is the unique
function which allows us to define the negation of the MV-algebra associated to
the interval [0, 𝑎] of 𝐺.

���
������� 2.11� Let 𝐺 be a ql-group and 𝑢 be a q-unit. Then we have:

1. 𝑢(0) ∈ 𝐺 + 0,

2. if 𝑣 is a q-unit such that 𝑣(0) = 𝑢(0), then for each 𝑥 ∈ 𝐺, 𝑢(𝑥 + 0) =
𝑣(𝑥 + 0),

3. if 𝑥 ≤ 𝑦 then 𝑢(𝑦 + 0) ≤ 𝑢(𝑥 + 0).

Moreover if 0 ≤ 𝑥, 𝑦 ≤ 𝑢(0) then:

4. if 𝑥 ≤ 𝑦 then 𝑢(𝑦) ≤ 𝑢(𝑥),

5. 0 ≤ 𝑢(𝑥) ≤ 𝑢(0),

6. 𝑢(0)− 𝑥 = 𝑢(𝑥) + 0.

P r o o f.

1) 𝑢(0) = 𝑢(0 + 0) = 𝑢(0)− 0 = 𝑢(0) + 0, resulting 𝑢(0) ∈ 𝐺 + 0.

2) 𝑣(𝑥 + 0) = 𝑣(0)− 𝑥 = 𝑢(0)− 𝑥 = 𝑢(𝑥 + 0).

3) Suppose that 𝑥 ≤ 𝑦. Using Proposition 2.9-6 and 4, −𝑦 ≤ −𝑥. Thus
𝑢(𝑦 + 0) = 𝑢(0) + (−𝑦) ≤ 𝑢(0) + (−𝑥) = 𝑢(𝑥 + 0).

Suppose that 0 ≤ 𝑥, 𝑦 ≤ 𝑢(0).

4) If 𝑥 ≤ 𝑦 then 𝑥 + 0 ≤ 𝑦 + 0. By definition of q-unit, 𝑢(0) − (𝑢(𝑥) + 0) =
𝑢(0) − 𝑢(𝑥) = 𝑥 + 0 ≤ 𝑦 + 0 = 𝑢(0) − 𝑢(𝑦) = 𝑢(0) − (𝑢(𝑦) + 0) and this is an
inequality in the l-group 𝐺 + 0, whence −(𝑢(𝑥) + 0) ≤ −(𝑢(𝑦) + 0) and then
𝑢(𝑦) + 0 ≤ 𝑢(𝑥) + 0, that is 𝑢(𝑦) ≤ 𝑢(𝑥).
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5) From item 4, if 0 ≤ 𝑥 then 𝑢(𝑥) ≤ 𝑢(0) and 𝑥 ≤ 𝑢(0), thus 0 = 𝑢𝑢(0)
≤ 𝑢(𝑥).

6) 𝑢(𝑥) + 0 = 𝑢(0)− 𝑢𝑢(𝑥) = 𝑢(0)− 𝑥. □

For simplicity we use 𝑢0 as abbreviation of 𝑢(0).

���������� 2.12� Let (𝐺, 𝑢) ∈ 𝑞L G 𝑢. Let [0, 𝑢0] = {𝑥 ∈ 𝐺 : 0 ≤ 𝑥 ≤ 𝑢0}, for
each 𝑥, 𝑦 ∈ [0, 𝑢0] we define:

(1) 𝑥⊕ 𝑦 = 𝑢0 ∧ (𝑥 + 𝑦),

(2) ¬𝑥 = 𝑢(𝑥).

The structure ⟨[0, 𝑢0],⊕,¬, 0, 𝑢0⟩ will be denoted by Γ𝑞(𝐺, 𝑢). By basic
l-group properties and Proposition 2.11-5, it is clear that [0, 𝑢0] is closed w.r.t.
the operations defined above.

���
������� 2.13� Γ𝑞(𝐺, 𝑢) is a quasi MV-algebra.

P r o o f. Let 0 ≤ 𝑥, 𝑦 ≤ 𝑢(0) = 𝑢0.

Q1: (𝑥⊕ 𝑦)⊕ 𝑧 = 𝑢0 ∧ (𝑧 + (𝑢0 ∧ (𝑥 + 𝑦))) = (𝑢0 ∧ (𝑧 + 𝑢0)) ∧ (𝑧 + 𝑦 + 𝑥) =
𝑢0∧(𝑧+𝑦+𝑥). By the same argument we prove that 𝑥⊕(𝑦⊕𝑧) = 𝑢0∧(𝑧+𝑦+𝑥).

Q2 and Q3: Straightforward.

Q4: ¬(¬𝑥⊕𝑦)⊕𝑦 = 𝑢(𝑢(𝑥)⊕𝑦)⊕𝑦 = 𝑢0∧(𝑦+𝑢(𝑢(𝑥)⊕𝑦)) = 𝑢0∧(𝑦+𝑢(𝑢0∧
(𝑢(𝑥)+𝑦))) = 𝑢0∧(𝑦+𝑢((𝑢0∧(𝑢(𝑥)+𝑦))+0)) = 𝑢0∧(𝑦+𝑢0−(𝑢0∧(𝑢(𝑥)+𝑦))) =
𝑢0∧ (𝑦+𝑢0 +(−𝑢0∨ (−𝑢(𝑥)− 𝑦))) = 𝑢0∧ ((𝑦+𝑢0−𝑢0)∨ (𝑦+𝑢0−𝑢(𝑥)− 𝑦)) =
𝑢0 ∧ ((𝑦 + 0) ∨ (𝑢0 − 𝑢(𝑥) + 0)) = 𝑢0 ∧ ((𝑦 + 0) ∨ (𝑥 + 0)) = 𝑢0 ∧ (𝑦 ∨ 𝑥). This
shows that 𝑥, 𝑦 are interchangeable, thus this qMV-axiom is verified.

Q5: Since 𝑢0 and 𝑥 + 0 lies in 𝐺 + 0 being 𝑥 + 0 ≤ 𝑢0 then ¬(𝑥 ⊕ 0) =
𝑢(𝑢0 ∧ (𝑥 + 0)) = 𝑢(𝑥 + 0) = 𝑢0 − 𝑥. On the other hand, since 𝑢(𝑥) ≤ 𝑢0,
¬𝑥 ⊕ 0 = 𝑢0 ∧ (𝑢(𝑥) + 0) = 𝑢(𝑥) + 0. Using Proposition 2.11-6 we have that
¬(𝑥⊕ 0) = ¬𝑥⊕ 0.

Q6: (𝑥⊕ 𝑦)⊕ 0 = 𝑢0 ∧ ((𝑢0 ∧ (𝑥 + 𝑦)) + 0) = 𝑢0 ∧ ((𝑢0 + 0) ∧ (𝑥 + 𝑦 + 0)) =
𝑢0 ∧ (𝑢0 ∧ (𝑥 + 𝑦 + 0) = 𝑢0 ∧ (𝑥 + 𝑦) = 𝑥⊕ 𝑦 since 𝑢0 ∈ 𝐺 + 0.

Q7: By definition. □

Let us stress the fact that the image of the operation ¬ is not, in general,
contained in the set of regular element of a qMV-algebra. Therefore, it has been
necessary to define the notion of the function ¬ in Γ𝑞(𝐺, 𝑢) independently from
any binary function of the ql-group 𝐺. This observation justify the choice of a
function, instead of an element, as a q-unit in a ql-group.

���
������� 2.14� Let (𝐺, 𝑢) be a ql-group with q-unit, then we have:

Γ𝑞(𝐺, 𝑢)⊕ 0 = Γ𝑞(𝐺+ 0, 𝑢(0))
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P r o o f. Let 𝑥 ∈ Γ𝑞(𝐺, 𝑢) ⊕ 0 then 0 ≤ 𝑥 = 𝑥 ⊕ 0 = 𝑥 + 0 ≤ 𝑢(0) whence
𝑥 ∈ Γ𝑞(𝐺 + 0, 𝑢(0)). On the other hand, if 𝑥 ∈ Γ𝑞(𝐺 + 0, 𝑢(0)) then 0 ≤ 𝑥 =
𝑥 + 0 ≤ 𝑢(0); thus 𝑥 = 𝑢(0) ∧ (𝑥 + 0) = 𝑥⊕ 0 and then 𝑥 ∈ Γ𝑞(𝐺, 𝑢)⊕ 0. □

Example 2.15. If we consider the ql-group 𝑆ℝ of Example 3.3, and for each
𝑥 = (𝑥1, 𝑥2) ∈ 𝑆ℝ we define

𝑢(𝑥1, 𝑥2) =

{
(1 − 𝑥1, 1 − 𝑥2), if (𝑥1, 𝑥2) ∈ 𝑆𝑅 + 0 or 0 ≤ 𝑥1 ≤ 1

(𝑥1, 𝑥2), otherwise

then 𝑢 is a q-unit in 𝑆ℝ. In fact:

(1) 0 = (0, 1/2) ≤ (1, 1/2) = (1 − 0, 1 − 1/2) = 𝑢(0, 1/2) = 𝑢(0).

(2) 𝑢(𝑥 + 0) = 𝑢((𝑥1, 𝑥2) + (0, 1/2)) = 𝑢(𝑥1, 1/2) = (1 − 𝑥1, 1/2) = (1, 1/2)−
(𝑥1, 𝑥2) = 𝑢(0, 1/2)− (𝑥1, 𝑥2) = 𝑢(0)− 𝑥.

(3) (0, 1/2) ≤ 𝑥 = (𝑥1, 𝑥2) ≤ (1, 1/2) then, 𝑢(0)− 𝑢(𝑥) = 𝑢(0, 1/2)− 𝑢(𝑥1, 𝑥2)
= (1, 1/2)− (1 − 𝑥1, 1− 𝑥2) = (𝑥1, 1/2) = (𝑥1, 𝑥2) + (0, 1/2) = 𝑥 + 0.

(4) 𝑢𝑢(𝑥) = 𝑢(𝑢(𝑥1, 𝑥2)) = 𝑢(1 − 𝑥1, 1 − 𝑥2) = (𝑥1, 𝑥2) = 𝑥, if 𝑥 = (𝑥1, 𝑥2) ∈
𝑆ℝ + 0 or 0 ≤ 𝑥1 ≤ 1. The other case is direct.

Moreover it is clear that [0, 𝑢0] = [0, 1]× [0, 1], whereby Γ𝑞(𝑆ℝ, 𝑢) is the standard
quasi MV-algebra of Example 2.4.

3. The functor Γ𝑞

Let 𝐺 be a ql-group. For each 𝑎 ∈ 𝐺 the absolute value of 𝑎 is defined as
∣𝑎∣ = 𝑎 ∨ −𝑎.

��		
 3.1� If 𝐺 is a ql-group and 𝑎 ∈ 𝐺 then ∣𝑎∣ = ∣𝑎 + 0∣.
P r o o f. ∣𝑎 + 0∣ = (𝑎+ 0) ∨ (−𝑎+ 0) = 𝑎 ∨ −𝑎 = ∣𝑎∣. □

���������� 3.2� Let 𝐺 be a ql-group. A q-unit 𝑢 on 𝐺 is said to be strong iff
for each 𝑥 ∈ 𝐺 there is an integer 𝑛 ≥ 0 such that ∣𝑥∣ ≤ 𝑛𝑢0.

Example 3.3. Let us consider the ql-group 𝑆ℝ with the q-unit 𝑢 given in Exam-
ple 2.15. Let 𝑥 = (𝑥1, 𝑥2) and suppose that 𝑥1 > 0. Since 1 is a strong unit
in the real l-group ℝ, there exists a natural number 𝑛 such that 𝑥1 ≤ 𝑛 = 𝑛1.
Thus ∣𝑥∣ = (𝑥1, 1/2) ≤ (𝑛, 1/2) = 𝑛(1 − 0, 1/2) = 𝑛𝑢(0, 1/2) = 𝑛𝑢(0). Thus 𝑢 is
a strong q-unit in 𝑆ℝ.

From Proposition 2.11-2, the following lemma establishes the relation between
l-groups with strong unit and ql-group with strong q-unit.
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��		
 3.4� Let 𝐺 be an l-group. If 𝑢 is a strong unit in 𝐺, then 𝑢(𝑥) = 𝑢0−𝑥
is the unique quasi strong unit such that 𝑢 = 𝑢0. On the other hand, if 𝑢(𝑥) is a
quasi strong unit, then 𝑢0 is the unique strong unit on 𝐺 such that 𝑢(𝑥) = 𝑢0−𝑥.

���������� 3.5� A ql-group with strong q-unit (𝐺, 𝑢) is called bounded iff for
each 𝑥 ∕∈ 𝐺 + 0, −𝑢(0) ≤ 𝑥 ≤ 0 or 0 ≤ 𝑥 ≤ 𝑢(0).

We denote by 𝑞L G 𝑢 the category whose objects are bounded ql-groups (𝐺, 𝑢),
and whose arrows are 𝑓 : (𝐺1, 𝑢1) → (𝐺2, 𝑢2) such that 𝑓 is a homomorphism of
ql-group satisfying 𝑓(𝑢1(0)) = 𝑢2(0). These homomorphisms are referred to as
unital homomorphisms.

������	 3.6� 𝑞L G 𝑢 is a reflective subcategory [1] of L G 𝑢.

P r o o f. If 𝐴 ∈ 𝑞L G 𝑢, we define S (𝐴, 𝑢) = (𝐴 + 0, 𝑢(0)), and for each unital
qc-homomorphism 𝑓 : 𝐴 → 𝐴′, we let S (𝑓) : 𝐴 + 0 → 𝐴′ + 0 be defined by
S (𝑓)(𝑥+0) = 𝑓(𝑥)+0. Upon noticing that 𝑢0 is a strong unit in 𝐴+0 it is clear
that S (𝑓) is an L G 𝑢-homomorphism. It is easy to check that S : 𝑞L G 𝑢 →
L G 𝑢 is a functor. In view of Lemma 3.4, first consider the unital qc-homorphism
𝑝𝐴 : (𝐴, 𝑢) → (𝐴 + 0, 𝑢0 − 𝑥) such that 𝑝𝐴(𝑥) = 𝑥 + 0. A routinary check will
assure that the following diagram is commutative:

�

�
�

�

𝐴 𝐴′

𝐴 + 0 𝐴′ + 0

≡

𝑓

𝑝𝐴

S (𝑓)

𝑝𝐴′

Suppose that 𝐵 ∈ L G 𝑢 and 𝑓 : 𝐴 → 𝐵 be a unital qc-homomorphism. The
mapping 𝑔 = 𝑓 ↾ 𝐴 + 0 defines2 a L G 𝑢-homomorphism 𝑔 : 𝐴 + 0 → 𝐵 that
makes the following diagram commutative:

�

� �
��≡

𝐴 𝐵

𝐴 + 0

𝑓

𝑝𝐴
𝑔

and it is obvious that 𝑔 is the only L G 𝑢-homomorphism making the triangle
commutative. Therefore we have proved that S is a reflector. □

2We will denote by 𝑓 ↾ 𝐴 the restriction of a function 𝑓 to the set 𝐴.
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���
������� 3.7� Let (𝐺, 𝑢) be a ql-group with strong q-unit, and consider the
following sets:

𝑀1 = {𝑥 /∈ 𝐺 + 0 : 0 ≤ 𝑥 ≤ 𝑢(0)},
𝑀2 = {𝑥 ∕∈ 𝐺 + 0 : −𝑢(0) ≤ 𝑥 ≤ 0}.

Then we have:

(1) 𝐵(𝐺) = ⟨(𝐺+ 0)∪𝑀1 ∪𝑀2,+,∨,∧,−, 0⟩ is a bounded sub ql-group of 𝐺,
being 𝑢 ↾ (𝐺 + 0) ∪𝑀1 ∪𝑀2 the strong q-unit,

(2) Γ𝑞(𝐺, 𝑢) = Γ𝑞(𝐵(𝐺), 𝑢).

P r o o f.

1) We first prove that (𝐺+0)∪𝑀1 ∪𝑀2 is closed w.r.t. 𝑢. If 𝑥 ∈ 𝐺+0 then
𝑢(𝑥) = 𝑢(𝑥 + 0) = 𝑢(0)− 𝑥 ∈ 𝐺 + 0. In view of Proposition 2.11-5, 𝑀1 ∪𝑀2 is
closed w.r.t. 𝑢(𝑥). 𝐵(𝐺) is a sub ql-group of 𝐺 since 𝑀1 ∪ 𝑀2 is closed w.r.t.
−, and binary operations in 𝐺 have the form 𝐺×𝐺 → 𝐺 + 0.

2) It follows from the previous item. □

The following proposition can be easily proved.

���
������� 3.8� If we define Γ𝑞 : 𝑞L G 𝑢 → 𝑞MV such that (𝐺, 𝑢) → Γ𝑞(𝐺, 𝑢)
for each (𝐺, 𝑢) ∈ 𝑞L G 𝑢, and for each unital homomorphism 𝑓 : (𝐺1, 𝑢1) →
(𝐺2, 𝑢2), Γ𝑞(𝑓) = 𝑓 ↾ [0, 𝑢0], then Γ𝑞 is a functor between the category of bounded
ql-groups and the category of quasi MV-algebras.

We are now ready to introduce the notion of quasi good sequence, that will
play an analogous role as the one played by the notion of good sequence with
respect to MV-algebras.

���������� 3.9� Let 𝐴 be a quasi-MV algebra. A sequence a = (𝑎1, 𝑎2, . . . ) of
elements on 𝐴 is said to be quasi good iff

(1) 𝑎1 ⊕ 𝑎2 = 𝑎1 ⊕ 0,

(2) (𝑎2, 𝑎3, . . . ) is a good sequence in 𝐴⊕ 0.

We denote by 𝑀 𝑞
𝐴 the set of quasi good sequences in 𝐴.

��		
 3.10� Let 𝐴 be quasi MV-algebra. Then the following assertions are
equivalent:

(1) (𝑎1, . . . , 𝑎𝑛, . . . ) is a quasi good sequence in 𝐴,

(2) (𝑎1 ⊕ 0, . . . , 𝑎𝑛, . . . ) is good sequence in 𝐴⊕ 0.

P r o o f. Suppose that (𝑎1, . . . , 𝑎𝑛, . . . ) is a quasi good sequence in 𝐴. Then
(𝑎1 ⊕ 0) ⊕ 𝑎2 = 𝑎1 ⊕ 𝑎2 = 𝑎1 ⊕ 0. On the other hand if (𝑎1 ⊕ 0, . . . , 𝑎𝑛, . . . )
is good sequence in 𝐴 ⊕ 0, then 𝑎1 ⊕ 0 = (𝑎1 ⊕ 0) ⊕ 𝑎2 = 𝑎1 ⊕ 𝑎2, so that
(𝑎1, . . . , 𝑎𝑛, . . . ) a good sequence. □
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In view of the above Lemma, if a = (𝑎1, . . . , 𝑎𝑛, . . . ) is a quasi good sequence,
we denote by a⊕ 0 = (𝑎1, . . . , 𝑎𝑛 . . . )⊕ 0 the good sequence (𝑎1 ⊕ 0, . . . , 𝑎𝑛, . . . )
in the MV-algebra 𝐴⊕ 0. It is clear that 𝑀𝐴⊕0 = {a⊕ 0 : a ∈ 𝑀 𝑞

𝐴} ⊆ 𝑀 𝑞
𝐴.

���
������� 3.11� Let 𝐴 be a quasi MV-algebra and consider the structure
⟨𝑀 𝑞

𝐴,+,∨,∧⟩ defined as M1, M2, M3 in the monoid of good sequences. Then
for each a,b ∈ 𝑀 𝑞

𝐴 we have that:

(1) a + b = (a + b)⊕ 0 = a + (b⊕ 0),

(2) a ∨ b = (a ∨ b)⊕ 0 = a ∨ (b⊕ 0),

(3) a ∧ b = (a ∧ b)⊕ 0 = a ∧ (b⊕ 0).

Thus these operations have the form 𝑀 𝑞
𝐴 ×𝑀 𝑞

𝐴 → 𝑀𝐴⊕0.

P r o o f. It is a consequence of Lemma 2.2. □
��		
 3.12� Let a,b, c ∈ 𝑀 𝑞

𝐴 then we have:

(1) if a + b = a + c then b⊕ 0 = c⊕ 0,

(2) if a + b = (0) then a⊕ 0 = b⊕ 0 = (0).

P r o o f. Follows from Proposition 3.11 and [5, Proposition 2.3.1]. □
���������� 3.13� Let 𝐴 be a quasi MV-algebra and a = (𝑎1, . . . , 𝑎𝑛, . . . ),b =
(𝑏1, . . . , 𝑏𝑛, . . . ) ∈ 𝑀 𝑞

𝐴. Let us define the binary relation ≤ on 𝑀 𝑞
𝐴 as:

b ≤ a ⇐⇒ 𝑏𝑖 ≤ 𝑎𝑖 for each 𝑖 = 1, . . . , 𝑛.

���
������� 3.14� Let 𝐴 be a quasi MV-algebra then we have:

(1) ⟨𝑀 𝑞
𝐴,≤⟩ is a preorder,

(2) For each a, b in 𝑀 𝑞
𝐴, b ≤ a iff there exists a good sequence c ∈ 𝐴⊕0 such

that b + c = a⊕ 0. The element c is unique and c is noted by a− b.

P r o o f.

1) Follows from the fact that 𝐴 is preordered.

2) Suppose that a = (𝑎1, . . . , 𝑎𝑛), b = (𝑏1, . . . , 𝑏𝑚) and assume that there
exists a good sequence c such that b+c = a⊕0. Then (b⊕0)+(c⊕0) = a⊕0.
Since b⊕0, c⊕0 and a⊕0 are good sequences in 𝐴⊕0, by [5, Proposition 2.3.2]
we have that 𝑏𝑖 ⊕ 0 ≤ 𝑎𝑖 ⊕ 0 whence 𝑏𝑖 ≤ 𝑎𝑖, for each 𝑖 = 1, . . . , 𝑛. The converse
uses the same argument. The unicity follows from [5, Proposition 2.3.4 i]. □

We consider the following sets:

𝑀𝐴1
= {((𝑥),0) : 𝑥 ∕∈ 𝐴⊕ 0}

𝑀𝐴2
= {(0, (𝑦)) : 𝑦 ∕∈ 𝐴⊕ 0}

𝑀 (𝐴) = (𝑀𝐴⊕0)
2 ∪𝑀𝐴1

∪𝑀𝐴2
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It is clear that 𝑀 (𝐴) ⊆ 𝑀 𝑞
𝐴 ×𝑀 𝑞

𝐴 and by Lemma 2.3 if ((𝑎),0) ∈ 𝑀𝐴1
then

((¬𝑎),0) ∈ 𝑀𝐴1
and the same obtains for 𝑀𝐴2

. Also we consider the binary
relation ≡ in 𝑀 (𝐴) defined as follows:

(a,b) ≡ (a′,b′) ⇐⇒
{
a + b′ = a′ + b, if a,b, a′,b′ ∈ 𝑀𝐴⊕0

(a,b) = (a′,b′), otherwise.

It is clear that ≡ is reflexive and symmetric. Transitivity follows either from
the fact that (𝑀𝐴⊕0)

2 is the monoid of good sequences, or by the transitivity of
the equality. Thus ≡ is transitive, and therefore it is an equivalence relation.

We denote by [a,b] the equivalence class determined by the pair (a,b) and
by 𝐺𝑞

𝐴 the set of equivalence classes.

���
������� 3.15� Let us define the following operations on 𝐺𝑞
𝐴:

[a,b] + [c,d] = [a + c,b + d],

[a,b] ∨ [c,d] = [(a + d) ∨ (c + b),b + d],

[a,b] ∧ [c,d] = [(a + d) ∧ (c + b),b + d],

−[a,b] = [b, a],

0 = [0,0].

Then we have:

(1) [a,b] + [c,d] = [a⊕ 0,b] + [c,d] = [a,b⊕ 0] + [c,d].

(2) [a,b] ∨ [c,d] = [a⊕ 0,b] ∨ [c,d] = [a,b⊕ 0] ∨ [c,d].

(3) [a,b] ∧ [c,d] = [a⊕ 0,b] ∧ [c,d] = [a,b⊕ 0] ∧ [c,d].

(4) The binary operations have the form 𝐺𝑞
𝐴 ×𝐺𝑞

𝐴 → 𝐺𝐴⊕0.

(5) ⟨𝐺𝑞
𝐴,+,∨,∧,−, 0⟩ is a ql-group.

P r o o f. We first note that operations are well defined.

(1), (2), (3) Follow from Propositions 3.11.

(4) Follows from the previous items.

(5) Now we see that ⟨𝐺𝑞
𝐴,+,∨,∧,−, 0⟩ is a ql-group:

QL1: It is clear that ⟨𝐺𝑄(𝐴) + 0,+,∨,∧,−, 0⟩ is an l-group, more precisely
the Chang’s l-group of the good sequences of 𝐴⊕ 0.

QL2, QL3, QL4, QL5, QL6: Straightforward calculation.

QL7: Using items (2), (3) and the fact that 𝐺𝐴+0 is an l-group we have that,
[a,b]+([c,d]∨[e, f ]) = [a⊕0,b⊕ 0]+([c⊕0,d⊕0]∨[e⊕0, f⊕0]) = ([a⊕0,b⊕0]
+ [c⊕ 0,d⊕ 0])∨ ([a⊕ 0,b⊕ 0]+ [e⊕ 0, f⊕ 0]) = ([a,b]+ [c,d])∨ ([a,b]+ [e, f ]).

Thus ⟨𝐺𝑞
𝐴,+,∨,∧,−, 0⟩ is ql-group. □

We will refer to ⟨𝐺𝑞
𝐴,+,∨,∧,−, 0⟩ as Chang’s ql-group.
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Remark 3.16� We can see 𝐺𝑞
𝐴 as the Chang’s l-group 𝐺𝐴⊕0 with new non reg-

ular elements given by the equivalence classes [(𝑎),0] = {((𝑎),0)} and [0, (𝑏)] =
{(0, (𝑏))} with 𝑎, 𝑏 ∕∈ 𝐴⊕ 0. Thus 𝐺𝑞

𝐴 has a structure

𝐺𝑞
𝐴 = 𝐺𝐴⊕0 ∪𝑀𝐴1

∪𝑀𝐴2
.

���
������� 3.17� Let 𝐴 be a quasi MV-algebra and [a,b] ∈ 𝐺𝑞
𝐴. Then the

following assertions are equivalent:

1. 0 ≤ [a,b].

2. b + (0) ≤ a + (0).

3. There exists a unique good sequence e = (𝑒1, . . . , 𝑒𝑛, 0, 0, . . . ) in 𝐴⊕0 such
that [a,b] + [(0), (0)] = [e, (0)].

Moreover in the case [a,b] ≤ [(1), (0)] there exists unique 𝑒1 ∈ 𝐴⊕ 0 such that:

4. If a,b ∈ 𝐺𝐴+0 then [a,b] = [(𝑒1), 0].

5. Otherwise, [a,b] = [(𝑎),0] and 𝑎⊕ 0 = 𝑒1.

P r o o f.

1) ⇐⇒ 2) Since 𝐺𝑞
𝐴 is a ql-group 0 = [(0), (0)] ≤ [a,b] iff [(0), (0)] =

[(0), (0)] ∧ [a,b] = [(b + (0)) ∧ (a + (0)),b + (0)] iff b + (0) + (0) = ((b + (0)) ∧
(a + (0))) + (0) iff b + (0) = (b + (0)) ∧ (a + (0)) iff b + (0) ≤ a + (0) since
b + (0), a + (0) ∈ 𝑀𝐴⊕0 and 𝑀𝐴⊕0 is a lattice monoid.

2) =⇒ 3) Since b + (0), a + (0) ∈ 𝑀𝐴⊕0 and b + (0) ≤ a + (0), by [5,
Proposition 2.3.4] there exists a unique good sequence e = (𝑒1, . . . , 𝑒𝑛, 0, 0, . . . )
in 𝐴 ⊕ 0 such that (b + (0)) + e = a + (0). By Proposition 3.15, [a,b] +
[(0), (0)] = [a ⊕ 0,b ⊕ 0] + [(0), (0)] = [a ⊕ 0,b ⊕ 0]. Using Proposition 3.11
(b ⊕ 0) + e = ((b ⊕ 0) + (0)) + e = (b + (0)) + e = a + (0) = (a ⊕ 0) + (0),
resulting [a,b] + [(0), (0)] = [a⊕ 0,b⊕ 0] = [e, (0)].

3) =⇒ 2) If [a,b] + [(0), (0)] = [e, (0)], then [a⊕ 0,b⊕ 0] = [a⊕ 0,b⊕ 0] +
[(0), (0)] = [a,b]+[(0), (0)] = [e, (0)], resulting (b⊕0)+e = (a⊕0)+(0) = a⊕0.
Using [5, Proposition 2.3.4] we have that b ⊕ 0 ≤ a ⊕ 0. By Proposition 3.15,
b + (0) = (b⊕ 0) + (0) = b⊕ 0 ≤ a⊕ 0 = (a⊕ 0) + (0) = a + (0).

Suppose also that [a,b] ≤ [(1), (0)]. Then [a,b] + [(0), (0)] = [e, (0)] ≤
[(1), (0)]. Since [e, (0)] ∈ 𝐺𝐴⊕0 by [5, Proposition 2.4.5], [e, (0)] = [(𝑒1), (0)].
If a,b ∈ 𝐺𝐴+0, then from the fact that [a,b] + [0,0] = [a,b], it follows that
[a,b] = [(𝑒1), 0].

Otherwise, by definition of 𝑀 (𝐴), [a,b] = [a,b] ∧ [(1), (0)] = [(a + (0)) ∧
(b+(1)),b+(0)] = [a+(0),b+(0)] = [a,b]+0. By item 3, [a,b] = [a, (0)]. There-
fore [a,0] + [0,0] = [a⊕ 0,0] = [(𝑎1 ⊕ 0),0] = [(𝑒1),0], resulting (𝑒1, 0, 0, . . . ) =
(𝑎1 ⊕ 0, 0, . . . ). Finally 𝑎1 ⊕ 0 = 𝑒1 and [a,b] = [(𝑎1, 0, . . . ),0]. □
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���
������� 3.18� Let 𝐴 be quasi MV-algebra. If we consider the ql-group 𝐺𝑞
𝐴

then:

𝑢([x,y]) =

⎧⎨
⎩

[(1), (0)]− [x,y], if x,y ∈ 𝑀𝐴⊕0,

[(¬𝑎),0], if (x,y) = ((𝑎),0) ∈ 𝑀𝐴1
,

[0, (¬𝑏)], if (x,y) = (0, (𝑏)) ∈ 𝑀𝐴2

is a strong q-unit in 𝐺𝑞
𝐴. Thus (𝐺𝑞

𝐴, 𝑢) is an object in 𝑞L G 𝑢.

P r o o f.

1) [(0), (0)] ≤ [(1), (0)] = 𝑢([(0), (0)]).

2) 𝑢([x,y] + [(0), (0)]) = 𝑢([x ⊕ 0,y ⊕ 0] + [(0), (0)]) = 𝑢([x ⊕ 0,y ⊕ 0]) =
[(1), (0)]− [x⊕ 0,y⊕ 0] = 𝑢([(0), (0)])− [x,y].

3) Suppose that 0 ≤ [x,y] ≤ [(1), (0)]. Using Proposition 3.17, [x,y] =
[(𝑎),0]. In this case, 𝑢([(0), (0)])−𝑢([(𝑎),0]) = [(1), (0)]− [(¬𝑎),0] = [(1), (0)]+
[0, (¬𝑎)] = [(1), (0)]+[0, (¬𝑎⊕0)] = [(1), (¬𝑎⊕0)] = [(1), (¬(𝑎⊕0))] = [(1), (1)−
(𝑎⊕ 0)], in view of [5, Proposition 2.3.4] and the fact that 𝑎⊕ 0 ∈ 𝐴⊕ 0. On the
other hand [(0), (0)] + [(𝑎),0] = [(0), (0)] + [(𝑎 ⊕ 0),0] = [(𝑎 ⊕ 0),0]. We need
to see that [(1), (1)− (𝑎⊕ 0)] = [(𝑎 ⊕ 0),0], but this follows from the fact that
(1) = (1)+0 and (1) = ((1)−(𝑎⊕0))+(𝑎⊕0), resulting 𝑢([(0), (0)])−𝑢([(𝑎),0]) =
[(0), (0)] + [(𝑎),0].

4) By definition of 𝑢, it is clear that 𝑢𝑢([x,y]) = [x,y].

5) Since 𝑢([(0), (0)]) = [(1), (0)] is a strong unit of the Chang’s l-group 𝐺𝐴⊕0,
it is clear that for each [x,y] ∈ 𝐺𝑞

𝐴, ∣[x,y]∣ ≤ 𝑛𝑢([(0), (0)]) for some integer
𝑛 ≥ 0.

Thus 𝑢 is a strong q-unit in 𝐺𝑞
𝐴. Moreover, by Remark 3.16 and Proposi-

tion 3.17, 𝐺𝑞
𝐴 is a bounded ql-group. □

������	 3.19� Let 𝐴 be a quasi MV-algebra and consider the ql-group ⟨𝐺𝑞
𝐴, 𝑢⟩.

Then 𝜑 : 𝐴 → Γ𝑞(𝐺
𝑞
𝐴, 𝑢) such that 𝑎 → 𝜑(𝑎) = [(𝑎),0], is a quasi MV-iso-

morphism.

P r o o f. By Proposition 3.17, 𝜑 is a bijection. It is not very hard to see that
the restriction 𝜑 ↾𝐴⊕0 is the well known MV-isomorphism from the MV-algebra
𝐴 ⊕ 0 onto the MV-algebra Γ(𝐺𝐴⊕0, [(1), (0)]) (see [5, Proposition 2.4.5]). Let
𝑥, 𝑦 ∈ 𝐴. Then 𝜑(𝑥⊕ 𝑦) = 𝜑((𝑥⊕ 0) ⊕ (𝑦 ⊕ 0)) = 𝜑 ↾𝐴⊕0 ((𝑥⊕ 0) ⊕ (𝑦 ⊕ 0)) =
𝜑 ↾𝐴⊕0 (𝑥 ⊕ 0) ⊕ 𝜑 ↾𝐴⊕0 (𝑦 ⊕ 0) = [(𝑥 ⊕ 0),0] ⊕ [(𝑦 ⊕ 0),0] = [(1), (0)] ∧
([(𝑥 ⊕ 0),0] + [(𝑦 ⊕ 0),0]) = [(1), (0)] ∧ ([(𝑥),0] + [(𝑦),0]) = [(1), (0)] ∧ (𝜑(𝑥) +
𝜑(𝑦)) = 𝜑(𝑥) ⊕ 𝜑(𝑦). With the same argument we can see that 𝜑(𝑥 ∨ 𝑦) =
𝜑(𝑥) ∨ 𝜑(𝑦).

If 𝑥 ∈ 𝐴⊕0, then 𝜑(¬𝑥) = 𝜑 ↾𝐴⊕0 (¬𝑥) = [(1), (0)]−[(𝑥), (0)] = 𝑢([(𝑥), (0)]) =
¬[(𝑥), (0)] = ¬𝜑 ↾𝐴⊕0 (𝑥) = ¬𝜑(𝑥). If 𝑥 ∕∈ 𝐴 ⊕ 0, 𝜑(¬𝑥) = [(¬𝑥),0] =
𝑢([(𝑥),0]) = ¬𝜑(𝑥). Thus 𝜑 is a quasi MV-isomorphism. □
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4. Inverting the functor Γ𝑞

��		
 4.1� Let 𝐴,𝐵 be a qMV-algebras and 𝜑 : 𝐴 → 𝐵 be a quasi MV-homo-
morphism. If a = (𝑎1, 𝑎2 . . . 𝑎𝑛, . . . ) is a quasi good sequence in 𝑀 𝑞

𝐴, then
𝜑∗(a) = (𝜑(𝑎1), 𝜑(𝑎2), . . . , 𝜑(𝑎𝑛), . . . ) is a quasi good sequence in 𝑀 𝑞

𝐵. More-
over:

(1) 𝜑∗ define a ⟨+,∨,∧,0⟩-homomorphism 𝜑∗ : 𝑀 𝑞
𝐴 → 𝑀 𝑞

𝐵,

(2) if we consider the Chang’s ql-group ⟨𝐺𝑞
𝐴, 𝑢𝐴⟩ and ⟨𝐺𝑞

𝐵, 𝑢𝐵⟩ then 𝜑# :

⟨𝐺𝑞
𝐴, 𝑢𝐴⟩ → ⟨𝐺𝑞

𝐵, 𝑢𝐵⟩ such that 𝜑#([a,b]) = [𝜑∗(a), 𝜑∗(b)] is a unital
ql-group homomorphism.

P r o o f. Since 𝜑 is qMV-homomorphism, we have that 𝜑(𝑎1) ⊕ 𝜑(𝑎2) = 𝜑(𝑎1
⊕ 𝑎2) = 𝜑(𝑎1 ⊕ 0) = 𝜑(𝑎1) ⊕ 𝜑(0) = 𝜑(𝑎1) ⊕ 0. Since (𝑎2 . . . 𝑎𝑛, . . . ) is a good
sequence in 𝐴 ⊕ 0, (𝜑(𝑎2), . . . , 𝜑(𝑎𝑛), . . . ) is a good sequence in 𝐵 ⊕ 0 (see [5,
§7.1]). Thus 𝜑∗(a) ∈ 𝑀 𝑞

𝐵. From this it is clear that 𝜑∗(0) = 0.

1) We first note that 𝜑∗(a ⊕ 0) = 𝜑∗(a) ⊕ 0. Let △ be a binary operation
in 𝑀 𝑞

𝐴. Using Proposition 3.11 and [5, §7.1] again, 𝜑∗(a△b) = 𝜑∗((a ⊕ 0)△
(b⊕0)) = 𝜑∗(a⊕0)△𝜑∗(b⊕0) = (𝜑∗(a)⊕0)△(𝜑∗(b)⊕0) = (𝜑∗(a)△𝜑∗(b))⊕0 =
𝜑∗(a)△𝜑∗(b). Finally 𝜑∗ is a ⟨+,∨,∧,0⟩-homomorphism.

2) Straightforward calculation. □

���
������� 4.2� Ξ: 𝑞MV → 𝑞L G 𝑢 such that for each 𝐴 ∈ 𝑞MV , Ξ(𝐴) =
⟨𝐺𝑞

𝐴, 𝑢𝐴⟩ and for each qMV-homomorphism 𝜑 : 𝐴 → 𝐵, Ξ(𝜑) = 𝜑# is a functor.

������	 4.3� The composite functor Γ𝑞Ξ: 𝑞MV → 𝑞MV is naturally equiv-
alent to the identity functor 1𝑞MV .

P r o o f. Let 𝜓 : 𝐴 → 𝐵 be a qMV-homomorphism and 𝜑𝐴 : 𝐴 → Γ𝑞Ξ(𝐴),
𝜑𝐵 : 𝐵 → Γ𝑞Ξ(𝐵) be the qMV-isomorphisms given in Theorem 3.19. We will
prove that the following diagram is commutative:

�

�
�

�

𝐴 𝐵

Γ𝑞Ξ(𝐴) Γ𝑞Ξ(𝐵)

𝜓

𝜑𝐴

Γ𝑞Ξ(𝜓)

𝜑𝐵

If 𝑎 ∈ 𝐴 then 𝜑𝐵𝜓(𝑎) = [(𝜓(𝑎)),0]. On the other hand, by Lemma 4.1
(Γ𝑞Ξ(𝜓)𝜑𝐴)(𝑎) = Γ𝑞Ξ(𝜓)([(𝑎),0]) = [(𝜓(𝑎)),0] ∈ Γ𝑞Ξ(𝐵). Since Γ𝑞(Ξ(𝜓)) is
the restriction of Ξ(𝜓) to Γ𝑞Ξ(𝐵), we can write Γ𝑞(Ξ(𝜓))(𝜑𝐴(𝑎)) = [(𝜓(𝑎)),0] =
𝜑𝐵𝜓(𝑎). So the diagram is commutative. □
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���
������� 4.4� If (𝐺, 𝑢) is an l-group with strong unit then we have:

(1) For each 0 ≤ 𝑎 ∈ 𝐺 there is a unique good sequence 𝑔(𝑎) = (𝑎1, . . . , 𝑎𝑛) in
Γ(𝐺, 𝑢) such that 𝑎 = 𝑎1 + ⋅ ⋅ ⋅+ 𝑎𝑛,

(2) 𝑔 : 𝐺+ → 𝑀Γ(𝐺,𝑢), such that 𝑔(𝑢) = (𝑢), is a (+,∨,∧)-isomorphism,

(3) 𝜓0 : 𝐺 → 𝐺Γ(𝐺,𝑢) defined by 𝜓0(𝑥) = [𝑔(𝑥+), 𝑔(𝑥−)] is an l-group isomor-
phism such that 𝜓(𝑢) = [(𝑢),0].

P r o o f. See [5, Lemma 7.1.3, Lemma 7.1.5, Corollary 7.16]. □

Taking into account Proposition 2.14 and Remark 3.16 if (𝐺, 𝑢) ∈ 𝑞L G 𝑢, we
can consider 𝐺𝑞

Γ𝑞(𝐺,𝑢) as

𝐺𝑞
Γ𝑞(𝐺,𝑢) = 𝐺Γ𝑞(𝐺+0,𝑢(0)) ∪𝐺Γ𝑞(𝐺,𝑢)1

∪𝐺Γ𝑞(𝐺,𝑢)2
.

��		
 4.5� Let (𝐺, 𝑢) ∈ 𝑞L G 𝑢 and consider the map 𝜓 : 𝐺 → 𝐺𝑞
Γ𝑞(𝐺,𝑢) defined

as follows

𝜓(𝑥) =

⎧⎨
⎩
𝜓0(𝑥), if 𝑥 ∈ 𝐺 + 0,

[(𝑥),0], if 𝑥 ∈ 𝐺1,

[0, (𝑥)], if 𝑥 ∈ 𝐺2.

Then 𝜓 is a 𝑞L G 𝑢-isomorphism.

P r o o f. By definition of bounded ql-group and Chang’s ql-group it is clear that
𝜓 is a bijection.

If 𝑥 ∈ 𝐺 + 0 then 𝜓(−𝑥) = 𝜓0(−𝑥) = −𝜓0(𝑥) = −𝜓(𝑥). If 𝑥 ∈ 𝐺1 then
−𝑥 ∈ 𝐺2, thus 𝜓(−𝑥) = [0, (𝑥)] = −[(𝑥),0] = −𝜓(𝑥). If 𝑥 ∈ 𝐺2 we use the same
argument.

We first prove that 𝜓(𝑥+0) = 𝜓(𝑥)+𝜓(0). In fact: if 𝑥 ∈ 𝐺1 then 0 ≤ 𝑥+0
≤ 𝑢(0). By Proposition 4.4, 𝑔(𝑥+0) = 𝑔((𝑥+0)+) = (𝑥+0) and 𝑔((𝑥+0)−) = 0
and then 𝜓(𝑥+0) = [(𝑥+0),0]. On the other hand 𝜓(𝑥)+0 = [(𝑥),0]+ [0,0] =
[(𝑥 + 0),0]. Resulting 𝜓(𝑥 + 0) = 𝜓(𝑥) + 𝜓(0). If 𝑥 ∈ 𝐺2, −𝑥 ∈ 𝐺1 and then
𝜓(𝑥 + 0) = 𝜓(−(𝑥 + 0)) = −𝜓(−𝑥+ 0) = −(−𝜓(𝑥) + 𝜓(0)) = 𝜓(𝑥) + 𝜓(0).

If ∗ is a binary operation then 𝜓(𝑥) ∗ 𝜓(𝑦) = (𝜓(𝑥) + 0) ∗ (𝜓(𝑦) + 0) =
(𝜓(𝑥) + 𝜓(0)) ∗ (𝜓(𝑦) + 𝜓(0)) = 𝜓0(𝑥 + 0) ∗ 𝜓0(𝑦 + 0) = 𝜓0((𝑥 + 0) ∗ (𝑦 + 0)) =
𝜓0(𝑥 ∗ 𝑦) = 𝜓(𝑥 ∗ 𝑦).

Since 𝑢(0) ∈ 𝐺 + 0, 𝜓(𝑢(0)) = [(𝑢(0)),0] whence 𝜓 is unital. Finally 𝜓 is a
𝑞L G 𝑢-isomorphism. □

������	 4.6� The composite functor ΞΓ𝑞 : 𝑞L G 𝑢 → 𝑞L G 𝑢 is naturally equiv-
alent to the identity functor 1𝑞L G𝑢

.

P r o o f. Let (𝐺, 𝑢), (𝐻, 𝑣) ∈ 𝑞L G 𝑢 and 𝑓 : 𝐺 → 𝐻 be a 𝑞L G 𝑢-homomorphism.
We will see that the following diagram is commutative:
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�

�
�

�

𝐺 𝐻

ΞΓ𝑞(𝐺) ΞΓ𝑞(𝐻)

𝑓

𝜓𝐺

ΞΓ𝑞(𝑓)

𝜓𝐻

If 𝑥 ∈ 𝐺 + 0 then 𝑓(𝑥) ∈ 𝐻 + 0, thus ((ΞΓ𝑞(𝑓))𝜓𝐺)(𝑥) = (𝜓𝐻𝑓)(𝑥) in view
of [5, Theorem 7.1.7]. If 𝑥 ∈ 𝐺1 then 𝜓𝐺(𝑥) = [(𝑥),0] and ((ΞΓ𝑞(𝑓))𝜓𝐺)(𝑥) =
[(𝑓(𝑥)), (𝑓(0))] = [(𝑓(𝑥)),0]. On the other hand, since 0 ≤ 𝑓(𝑥) ≤ 𝑓(𝑢(0)) =
𝑣(0), 𝜓ℎ(𝑓(𝑥)) = [(𝑓(𝑥)),0]. If 𝑥 ∈ 𝐺2 then −𝑥 ∈ 𝐺1, since −𝑥 = 𝑥. Finally the
diagram is commutative. □

������	 4.7� 𝑞MV is categorically equivalent to 𝑞L G 𝑢.

P r o o f. Follows from the Theorems 4.5, 3.19, 4.3 and 4.6. □

������
�� 4.8� MV is a reflective subcategory of 𝑞MV .
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