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OF REDUCIBLE POLYNOMIALS

Gerald Kuba

(Communicated by Stanislav Jakubec )

ABSTRACT. Let Rn(t) denote the set of all reducible polynomials p(X) over
Z with degree n ≥ 2 and height ≤ t. We determine the true order of magnitude
of the cardinality |Rn(t)| of the set Rn(t) by showing that, as t → ∞, t2 log t �
|R2(t)| � t2 log t and tn � |Rn(t)| � tn for every fixed n ≥ 3. Further, for
1 < n

2
< k < n fixed let Rk,n(t) ⊂ Rn(t) such that p(X) ∈ Rk,n(t) if and

only if p(X) has an irreducible factor in Z[X] of degree k. Then, as t → ∞,
we always have tk+1 � |Rk,n(t)| � tk+1 and hence |Rn−1,n(t)| � |Rn(t)|
so that Rn−1,n(t) is the dominating subclass of Rn(t) since we can show that
|Rn(t)\Rn−1,n(t)| � tn−1(log t)2. On the contrary, if Rs

n(t) is the total number
of all polynomials in Rn(t) which split completely into linear factors over Z, then
t2(log t)n−1 � Rs

n(t) � t2(log t)n−1 (t → ∞) for every fixed n ≥ 2.

c©2009
Mathematical Institute

Slovak Academy of Sciences

1. Introduction and statement of results

For a fixed integer n ≥ 2 and a real parameter t ≥ 1 we consider all polyno-
mials p(X) = anXn +an−1X

n−1 + · · ·+a2X
2 +a1X +a0 with coefficients ai ∈ Z

such that an �= 0 and H(p) ≤ t where H(p) := max
{|ai| : i = 0, 1, . . . , n

}
is

the height of p(X). Of course, the total number of all these polynomials equals
[2t] · [2t + 1]n � tn+1 where [ ] are the Gauss brackets. Let Rn(t) denote the
set of all polynomials p(X) over Z with degree n ≥ 2 and height ≤ t which are
reducible over Q. Note that p(X) is reducible in the ring Q[X] if and only if
p(X) can be written as a product of two polynomials in the ring Z[X] both of
less degree than p(X). In the famous exercise book of P o l y a and S z e g ö [3,
Example 266] one can find the estimate

|Rn(t)| = O
(
tn(log t)2

)
(t → ∞).
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By the method used in D ö r g e [2] this estimate can be improved to |Rn(t)| =
O

(
tn(log t)

)
which still is not best possible when n ≥ 3. Indeed, the true order

of magnitude of the lattice points counting function t �→ |Rn(t)| reads as follows.

������� 1� For every integer n ≥ 3 there is a constant Cn > 0 such that

tn ≤ |Rn(t)| ≤ Cn · tn for all t ≥ 1.

������� 2� As t → ∞, t2 log t 	 |R2(t)| 	 t2 log t.

There is a natural generalization of Theorem 2. Let Rs
n(t) denote the total

number of all polynomials p(X) over Z with degree n and height ≤ t such
that p(X) splits completely into linear factors in the ring Q[X] or, equivalently,
in the ring Z[X]. Naturally, Rs

2(t) = |R2(t)|, so that by Theorem 2 we have
Rs

2(t) � t2 log t as t → ∞. (We often write A � B iff B 	 A 	 B.) Now in
general the following estimation holds.

������� 3� For every fixed n ≥ 2, t2(log t)n−1 	 Rs
n(t) 	 t2(log t)n−1

(t → ∞).

Certainly, Theorem 3 is also true in the trivial case n = 1 where Rs
1(t) =

[2t] · [2t+1] for every t ≥ 1. (Of course, in general the case n = 1 is of no interest
since R1(t) = ∅.)

Theorem 3 demonstrates that the totally splitting polynomials contribute
only very little to the total number of all reducible polynomials of fixed degree
≥ 3 and bounded height. On the other hand there is a special subclass of Rn(t)
whose contribution to |Rn(t)| is absolutely dominating. This class lies on top of
a hierarchy of pairwise disjoint subclasses of Rn(t). For n

2 < k < n fixed and
arbitrary t ≥ 1 let Rk,n(t) ⊂ Rn(t) such that p(X) ∈ Rk,n(t) if and only if p(X)
has an irreducible factor in Z[X] of degree k. The following theorem shows that
Rn−1,n(t) is the mentioned top class.

������� 4� For 1 < n
2 < k < n fixed we have tk+1 	 |Rk,n(t)| 	 tk+1

(t → ∞). Specifically, |Rn−1,n(t)| � |Rn(t)| � tn (t → ∞) for every n ≥ 3.
Moreover, |Rn(t) \ Rn−1,n(t)| 	 tn−1(log t)2 (t → ∞) for every n ≥ 3 and the
factor (log t)2 can be omitted if and only if n ≥ 4.

2. Preparation of the proofs

Since ex > 2x−2
√

x + 1 for x ≥ 0, as an immediate consequence of [4, Theo-
rem 4.2.2] we obtain:

����� 5� If p, q are polynomials over Z with positive degrees deg p and deg q
such that n = deg(pq) = deg p+deg q, then e−nH(p)H(q)≤H(pq)≤nH(p)H(q).
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For T ≥ 1 consider the hyperbola triangle

D(T ) :=
{
(x, y) ∈ R

2 : x, y ≥ 1 ∧ xy ≤ T
}

and define the integral

I(T ; a, b) :=
∫∫

D(T )

xayb d(x, y)

with real exponents a, b ≥ 0. We compute

I(T ; a, b) =
1

(a + 1)(b + 1)
+

1
a − b

(
T a+1

a + 1
− T b+1

b + 1

)
when a �= b

and

I(T ; c, c) =
T c+1 log T

c + 1
− T c+1 − 1

(c + 1)2
for c ≥ 0

and hence we obtain

����� 6� For a, b ≥ 0 fixed we have

I(T ; a, b) � T 1+max{a,b}(log T )ν (T → ∞)

with ν = 0 when a �= b, and ν = 1 when a = b.

As usual, let ϕ(·) denote the Euler totient function. We will use the following
well-known result due to M e r t e n s [1, Theorem 22].

����� 7� As t → ∞,
∑

m≤t

ϕ(m) = 3
π2 t2 + O(t log t).

Further we will need the following lemma which immediately follows from
Lemma 3 via partial summation.

����� 8� As t → ∞, ∑

m≤t

ϕ(m) · m−2 � log t

and ∑

m≤t

ϕ(m) · mα � tmax{0,α+2}

for every real α �= −2. (The two �-constants depend only on α.)

3. Proof of Theorem 1

The lower bound in Theorem 1 is trivial since there are [2t] · [2t + 1]n−1

polynomials p(X) over Z with degree n and height ≤ t such that p(0) = 0.

351



GERALD KUBA

Let Pn(t) denote the set of all pairs (p, q) of non-constant polynomials over
Z such that deg p+deg q = n and H(pq) ≤ t. Then we obviously have |Pn(t)| ≥
|Rn(t)| for all t ≥ 1. In view of Lemma 1 the set

P∗
n(t) :=

{
(p, q) ∈ (Z[X] \ Z)2 : deg p + deg q = n ∧ H(p) · H(q) ≤ ent

}

contains the set Pn(t) and thus we have the estimate |P∗
n(t)| ≥ |Rn(t)| for all

t ≥ 1. In order to prove Theorem 1 we show

|P∗
n(t)| 	 tn (t → ∞) (3.1)

for every n ≥ 3.
For abbreviation we set T = ent. Since obviously

∣∣{p ∈ Z[X] : deg p = k ∧ H(p) = h
}∣∣ ≤ 2 · (2h + 1)k · (k + 1)

we get (3.1) by showing
n−1∑

k=1

∑

(x,y)∈G (T )

2(2x + 1)k(k + 1) · 2(2y + 1)n−k(n − k + 1) 	 Tn (T → ∞)

where G (T ) := D(T ) ∩ Z
2 with D(T ) =

{
(x, y) ∈ R

2 : x, y ≥ 1 ∧ xy ≤ T
}
.

Thus it is enough to verify
∑

(x,y)∈G (T )

xkyn−k 	 Tn (T → ∞) (3.2)

for 1 ≤ k < n and n ≥ 3 fixed.
Now, (3.2) is true because by Lemma 2 for the corresponding integral we have

I(T, k, n − k) 	 Tn

provided that n ≥ 3. (Clearly, the difference between the sum in (3.2) and
I(T, k, n − k) is 	 Tn as T → ∞.) Additionally, I(T ; 1, 1) 	 T 2 log T yields
|P∗

n(t)| 	 tn log t in the exceptional case n = 2 and hence we also obtain the
upper bound in Theorem 2.

4. Proof of Theorem 2

It remains to verify the lower bound in Theorem 2. As usual, we call a linear
polynomial aX + b over Z primitive when a, b are coprime. Then for every
quadratic polynomial q(X) over Z which splits over Q there exists one and only
one set {f, g} of primitive linear polynomials f(X), g(X) such that f(X)g(X)
divides q(X) in the ring Z[X]. Let Q(t) denote the number of all quadratic
polynomials over Z with height ≤ t which split over Z into two primitive linear
factors. Then we have Q(t) ≤ |R2(t)| and 2 · Q(t) is not smaller than the
cardinality of the set

{
(f, g) ∈ Z[X]2 : deg f = deg g = 1 ∧ (f, g primitive) ∧ H(fg) ≤ t

}
,
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which contains the set
{
(f, g) ∈ Z[X]2 : deg f = deg g = 1 ∧ (f, g primitive) ∧ H(f) · H(g) ≤ 1

2 t
}

in view of Lemma 1.
Further, the total number of all primitive linear polynomials in Z[X] with

constant height h ≥ 2 clearly equals 8 · ϕ(h). The number is equal to 6 when
h = 1. Therefore with the new parameter T = 1

2 t we have

|R2(t)| ≥ 18 ·
∑

(x,y)∈G (T )

ϕ(x)ϕ(y)

and the proof of Theorem 2 is finished by showing

T 2 log T 	
∑

(x,y)∈G (T )

ϕ(x)ϕ(y) (T → ∞). (4.1)

Note that (4.1) would immediately follow from m 	 ϕ(m) and the fact that the
sum in (3.2) with k = 1 and n = 2 is � T 2 log T , but of course m 	 ϕ(m) is
false although m1−ε 	 ϕ(m) is true for every ε > 0.

Nevertheless we will reach our goal by applying Lemma 3. As a consequence
of Lemma 3 there exists a constant C > 0 such that

∑

m≤t

ϕ(m) ≥ C · t2 for all

t ≥ 1. (Actually, this estimate is certainly true if we choose C = 1
5 .) Hence we

have
∑

(x,y)∈G (T )

ϕ(x)ϕ(y) =
∑

1≤y≤T

ϕ(y) ·
∑

1≤x≤T/y

ϕ(x) ≥
∑

1≤y≤T

ϕ(y) · C T 2

y2
.

Partial summation yields

∑

1≤y≤T

ϕ(y)
1
y2

=
1
T 2

∑

m≤T

ϕ(m) +

T∫

1

2
u3

( ∑

m≤u

ϕ(m)
)

du ≥ C + 2C log T

and we arrive at (4.1) as requested.

5. Proof of Theorem 3

Since the case n = 2 is already settled by Theorem 2, in order to prove
Theorem 3 we may assume n ≥ 3. Further, by adapting the proof of Theorem 1
it is straightforward to get the upper bound in Theorem 3. Actually, this bound
has the same order of magnitude as the integral

In(T ) =
∫

· · ·
∫

Dn(T )

x1 · · ·xn d(x1, . . . , xn)
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with Dn(T ) :=
{
(x1, . . . , xn) ∈ [1,∞[2: x1 · · ·xn ≤ T

}
and it is plain to verify

In(T ) � T 2(log T )n−1 (T → ∞)
for every n ≥ 2 by induction starting from I2(T ) = I(T, 1, 1) and using the
estimate I(T, 1, 1) � T 2 log T (T → ∞) of Lemma 2.

On the other hand, following the lines of the proof of the lower estimate in
Theorem 2 it is plain that

n! · Rs
n(t) ≥ 6n ·

∑

(x1,...,xn)∈Gn(T )

ϕ(x1) · · ·ϕ(xn)

with T = n1−nt and Gn(T ) := Dn(T ) ∩ Z
n.

Now by applying Lemma 3 and partial summation, induction leads to

T 2(log T )n−1 	
∑

(x1,...,xn)∈Gn(T )

ϕ(x1) · · ·ϕ(xn) (T → ∞)

for every n ≥ 2 since
T∫

1

((
log

T

u

)n−2 2 log(T/u) + n − 1
u3

)
· u2 du =

2
n
· (log T )n + (log T )n−1

for all T ≥ 1 and every n ≥ 2. This concludes the proof of Theorem 3

6. Proof of Theorem 4

The following facts, where always k, h ∈ Z is assumed, are essential for our
proof of Theorem 4.
(F1) For every k ≥ 2 and h ≥ 1 there is at least one irreducible p(X) ∈ Z[X]

with deg p = k and H(p) = h.

P r o o f. This is certainly true because, e.g., Xk − hXk−1 − Xk−2 − · · · − 1 is
irreducible, which follows immediately from [4, Theorem 2.2.6]. �
(F2) For every k ≥ 2 and h ≥ 9 the number of all irreducible p(X) ∈ Z[X] with

deg p = k and H(p) = h is greater than hk/3.

P r o o f. We apply Eisenstein’s Irreduciblity Criterion with 2 as the testing
prime. If h is odd, then obviously all polynomials hXk + 2ak−1X

k−1 + · · ·
+2a1X +2 · (2l− 1) with l, ai ∈ Z and 2|ai| < h and 4|l| < h− 2 are irreducible.
If h is even, then all polynomials (2l−1)Xk+hXk−1 +2ak−2X

k−2+· · ·+2a1X+
2 · (2l′ − 1) with l, l′, ai ∈ Z and 2|ai| ≤ h and 2|l| < h and 4|l′| ≤ h − 2 are
irreducible. Hence the requested number is not less than hk−1(h− 3)/2 when h
is odd and not less than (h + 1)k−2(h − 1)(h − 2)/2 when h is even. �

Combining (F1) and (F2) we derive:
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(F3) For every k ≥ 2 and h ≥ 1 the number of all irreducible p(X) ∈ Z[X] with
deg p = k and H(p) = h is not smaller than 9−k · hk.

On the other hand, since the number of all p(X) ∈ Z[X] with deg p = k and
H(p) = h is certainly not greater than 2(k + 1)(2h + 1)k, we have:
(F4) For every k ≥ 2 and h ≥ 1 the number of all irreducible p(X) ∈ Z[X] with

deg p = k and H(p) = h is not greater than 2(k + 1)3k · hk.
As usual, let us call a polynomial over Z primitive when the greatest common

divisor all of its coefficients is 1.
(F5) For all m ≥ 1 and h ≥ 1 the total number of all primitive polynomials p(X)

over Z with deg p = m and H(p) = h is not greater than 2(m + 1)3m · hm

and not smaller than 2m+1 · ϕ(h) · hm−1.
The upper bound corresponds to the bound in (F4) and is trivial. The lower

bound comes from counting only all polynomials ±hXm+aXm−1+am−2X
m−2+

· · · + a0 with a, ai ∈ Z and |a|, |ai| ≤ h where h and a are coprime.
Further, the following statement is obviously true.

(F6) If 1 < n
2 < k < n then for every p(X) ∈ Rk,n(t) there exists one and only

one pair (f, g) ∈ Z[X]2 such that g(X) is irreducible with deg g = k and
f(X) is primitive and f(X) · g(X) = p(X).

Now we are ready to prove Theorem 4. Assume 1 < n
2 < k < n. Then by

(F6) the mapping (f, g) �→ f(X) · g(X) is a bijection from the set
{
(f, g) ∈ Z[X]2 : deg f = n − k ∧ deg g = k ∧ H(fg) ≤ t

∧ (f primitive) ∧ (g irreducible)
}

onto the set Rk,n(t).
Consequently, with t 	 T 	 t, in view of Lemma 1 and (F4) and (F5) we

have
|Rk,n(t)| 	

∑

(x,y)∈G (T )

xn−k · yk 	 T k+1 (T → ∞) (6.1)

since I(T ; n − k, k) 	 T k+1 for n
2 < k < n by Lemma 2.

On the other hand, again with t 	 T 	 t, by Lemma 1 and by (F3) and (F5),

|Rk,n(t)| �
∑

(x,y)∈G (T )

ϕ(x)xn−k−1 · yk (T → ∞).

By writing
∑

(x,y)∈G (T )

ϕ(x)xn−k−1 · yk =
∑

1≤x≤T

ϕ(x)xn−k−1
∑

1≤y≤T/x

yk

and applying the trivial estimate

∑

1≤y≤u

yk ≥
u∫

0

yk dy − uk =
1

k + 1
uk+1 − uk(u ≥ 1)
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and Lemma 4 with α = n − 2k − 2 < −2 on the one hand and with α =
n − 2k − 1 < −1 on the other, we derive the desired lower estimate

T k+1 	
∑

(x,y)∈G (T )

ϕ(x)xn−k−1 · yk (T → ∞).

Further, the estimate t2(log t)2 	 |R3(t) \ R2,3(t)| 	 t2(log t)2 is equivalent
to Theorem 3 for n = 3. In particular, the factor (log t)2 in the estimate in
Theorem 4 cannot be omitted when n = 3.

In order to verify |Rn(t) \ Rn−1,n(t)| 	 tn−1 for n ≥ 4 we note that

Rn(t) \ Rn−1,n(t) ⊂ R∗
n(t) ∪

⋃

n
2 <k≤n−2

Rk,n(t) (6.2)

where R∗
n(t) is the set of all reducible polynomials p(X) over Z with degree n

and height ≤ t such that the degree of every irreducible factor of p(X) is not
greater than n

2 .
Now, for every p ∈ R∗

n(t) we can write p(X) = f(X)·g(X) with f(X), g(X) ∈
Z[X] such that the degrees of f(X) and g(X) are both not greater than n − 2.
Hence, by following the arguments in Chapter 3 we only have to estimate the
sum in (3.2) for 2 ≤ k ≤ n− 2 in order to obtain |R∗

n(t)| 	 tn−1. Thus, in view
of (6.1) via (6.2) we arrive at |Rn(t) \ Rn−1,n(t)| 	 tn−1 for n ≥ 4 and this
concludes the proof of Theorem 4.

Final Remark� In view of our proofs it is not difficult to find explicit bounds
Cn in Theorem 1 and to produce explicit 	-constants for all estimations in
Theorems 2, 3, 4 which depend only (and in a simple way) on the degree n.
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