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A HYPERGEOMETRIC APPROACH,
VIA LINEAR FORMS INVOLVING LOGARITHMS,
TO CRITERIA FOR IRRATIONALITY
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ABSTRACT. Using an integral of a hypergeometric function, we give necessary
and sufficient conditions for irrationality of Euler’s constant . The proof is by
reduction to known irrationality criteria for + involving a Beukers-type double
integral. We show that the hypergeometric and double integrals are equal by
evaluating them. To do this, we introduce a construction of linear forms in
1, v, and logarithms from Nesterenko-type series of rational functions. In the
Appendix, S. Zlobin gives a change-of-variables proof that the series and the
double integral are equal.

©2009
Mathematical Institute
Slovak Academy of Sciences

1. Introduction

In [12] we gave criteria for irrationality of Euler’s constant +, which is defined
by the limit
~v:= lim (Hy —logN),

N—oo
where

N
HN ::Zk
k=1

is the Nth harmonic number. The criteria involve a double integral I,, modeled
on Beukers’ integrals ([2]) for (2) and ((3), and the main step in the proof
was to show that

donly € Z+ Zry + Zlog(n + 1) + Zlog(n + 2) + - - - + Zlog(2n), (1)
where
d, :=LCM(1,2,...,n)
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denotes the least common multiple of the first n natural numbers.

Here we define [, instead as an integral involving a hypergeometric function;
we prove that the same criteria hold with this new I,,. The proof is by show-
ing that the old and new definitions of I,, are equivalent. (Alternatively, one
could give a self-contained proof along the lines of [12]; the required inequal-
ity I, < 27%" follows easily from Lemma 1 below.) To show the equivalence,
we introduce a series modeled on the one Nesterenko used in [8] to give a
new proof of Apéry’s theorem that ((3) is irrational. (We modify Nesterenko’s
rational function, and where he differentiates in order to go “up” from ((2) to
¢(3), we integrate to go “down” to -, which one may think of as “((1).”) We
prove that both versions of I, are equal to the sum of our series, by evaluating
them. In the Appendix, Sergey Zlobin gives a change-of-variables proof that the
double integral and the series are equal, without evaluating them.

The chronology of discovery, different from what one might expect from the
above, was as follows. After reading Nesterenko’s paper [8], we constructed
the series and derived irrationality criteria for ~ from it. Later, Huyle-
brouck’s survey [6] of multiple integrals in irrationality proofs led us to find
the double integral, and using it we rederived the criteria. Zudilin’s work
[18] gave us the idea to express the series in hypergeometric form. Here we
use Thomae’s transformation to simplify the hypergeometric function (compare
[11]). We hope that the variety of expressions for I,, will turn out to be useful
in determining the arithmetic nature of -.

After seeing [11], the Hessami Pilehroods [5] extended our non-hyper-
geometric results to generalized Euler constants. In particular, they used our
construction (in Section 4 below) of linear forms involving v and logarithms from
series.

For an approach to irrationality criteria for v using Padé approximations, see
Prévost’s preprint [10].

Recently, Zudilin and the author obtained results [17] analogous to those
n [12], but using ¢-logarithms instead of ordinary logarithms.

2. Hypergeometric irrationality criteria
for Euler’s constant

We state the criteria. First recall that the hypergeometric function sF5 is
defined by the series

b
3F> <a& ,ec
where (a)o :=1 and (a); :=a(a+1)---(a+k —1) for £ > 0. The only case we

need is when a, b, ¢, d, e are positive real numbers and z = 1. In that case, the
series converges if a + b+ ¢ < d+e. Note that a permutation of either the upper

i (a)k(b)k(c)kzk
) =2 hdelen

k=0
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parameters a, b, ¢ or the lower parameters d, e does not change the value of the
sum.

Now for n > 0, let .S,, be the positive integer

n min{m—1n—-m} n—k

Sn = 1__[1 ,}1 I (n+m)®5

Jj=k+1
and let I,, be the “hypergeometric integral”

I (n)*T'(t) m(rtlotlme1] ),
") @+ )@ 146) 7 2 242, 20+ 14t 7
n+1

whose convergence follows immediately from the proof of Lemma 1.

THEOREM 1 (Hypergeometric (ir)rationality criteria for ). The following
statements are equivalent:

(1) The fractional part of log Sy, is equal to dayI,, for some n > 0.
(2) The assertion is true for all n sufficiently large.
(3) Euler’s constant is a rational number.

After establishing some preliminary results, we give the proof in Section 6.

3. A series for I,,

We express the integral [,, as a series.

LemMA 1. Ifn > 0, then

Proof. Fix n > 0. We claim that

_ [ )T t,1,¢
In = / T(t+n+1)2 sk t+n+1,t+n+1 1)dt.
n+1
To show this, we apply Thomae’s transformation ([1, p. 14], [4, p. 104], [7])
F(a) F a, b7 & _ F(S) F S, d_ a, e a 1
T(d)T(e) >\ d e T(s+b)T(s+c) > 2\ s+bs+c ’

where s := d+ e —a — b — c¢. After permuting the upper parameters in the
resulting function g F5, we obtain the integrand in the definition of I,,, proving
the claim.
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Now since
t2 2 (t+ 1)
3Fb t t,l,t 1 ::1+' + ( + )
+n+lt+n+1 (t+n+1)2 (t+n+1)2(t+n+2)2

we can use the identity I'(x + 1) = 2T'(z ) to write

[ (m)2T(t + /
I, = ,dt = (t
/Zr( +I/+n+ ZOR tv)d
v n+1u
where

Ry (t) := (t(t +1) n' (t+mn) )2

is the rational function in (2). Interchanging integral and summation, and re-
placing t with ¢ — v, and v by v —n — 1, we arrive at (2). O

4. Constructing linear forms in 1, v and logarithms
from series

We give a method for constructing linear forms involving v and logarithms
from certain series of rational functions.

PROPOSITION 1. Fizn > 0 and let R(t) be a rational function over C of the

form
= B Bia
R(t) = . 3
0= (et ) @
If R(t) = O(t™3) as t — oo, then
> /R(t)dt—B7+L—A,
V:n+1y
where
B:=)Y Bi,  L:=)Y_ > Bulogn+m), A=) BuH. . (4)
k=0 m=1k=m k=0

Proof. From (3), for |t| large we obtain an expansion R(t) = Y b;t™¢, with
i=1

by = > Bii and by = > (Br2 — kBk1). The asymptotic hypothesis implies

that bi_: by = 0, so we have the relations

n

> Bu=0, Y (Bra—kBp)=0. (5.1, 5.2)
k=0

k=0
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In view of (5.1), the sums Y Byilog(t + k) and > By log(1 + kt™1) are
k=0 k=0
equal. Hence for N > n we have

Z / £y dt Z Z <VBfk — By log(v + k)) . (6)

v=n+17, v=n+1k=0
n n+k
Define B, L, A by (6), and rewrite L as L = >, >, Byilogm. Evidently
k=1m=n+1
the double sum in (6) differs from the expression
n N+k
BHy+L—-A+> Y ( —Bkllogm) (7)
k=1 m=N+1
n N

by the quantity >° . By logm, which vanishes by (5.1). Since n is fixed

k=0m=n+1
and k < n, the double sum in (7) equals — Z kByilog N +O(N~1) as N — oo.

k=0
Using (5.2), it follows that the left-hand side of (6) is equal to B(Hy —log N) +

L — A+ O(N7!'), and we obtain the required formula by letting N tend to
infinity. (]

5. Summing the series for I,

Applying Proposition 1 to the rational function R(t), we sum series (2) for I,,.

LEmMMA 2. Ifn >0, then
2
I, = < n>7+Ln_An7
n

where L, is the linear form in logarithms

n min{m—1n—-m} n—k
Z Z Z ()jlogn+m)

j=k+1

and A,, is the rational number

k=
Moreover, inclusion (1) holds and da, L
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Proof. The partial fraction decomposition of the integrand in (2) is given by
the right-hand side of (3) with

Bio = (t + k)’ Ry (t)[1=—& = (Z>2

and
2
By = (?t ((t + k’)QRn(t))|t:_k: 2(7;) (Hp — Hop)

where Hy = 0. Using the relations Z ( ) = (27’;“) and B,_p1 = —Bja, the

result follows from Proposition 1 and the definition of S,,. (|

6. A double integral for I,, and proof of the Criteria

We obtain another representation of 1,,, as a double integral, and prove The-
orem 1.

LeEMMA 3. For n > 0, the following equality holds:

S o™ ) - // Al i (PP

v= n+1

Proof. By Lemmas 1, 2, and [12, (8)], the series and the double integral,
respectively, are both equal to (277?)7 + L, — A,. O

ProofofTheorem 1. This follows immediately from Lemmas 1 and 3 to-
gether with the main result of [12], which is the same as Theorem 1, except that
in [12] we defined I,, to be the double integral in (8). O

Remark. There exist representations of many constants as double integrals of
the same shape as the one in (8) — see [3], [14], [15], [16].

Acknowledgement. I am grateful to Wadim Zudilin for several suggestions.
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Appendix by Sergey Zlobin

In this appendix we prove the statement of Lemma 1 without expanding
integrals to linear forms. First, we develop 1/(1 — zy) in a geometric series

(I—2)"y"(1—y)"
dzd
// (1—zy)(~logay) 7
n+k n n+k 1 — )"
—logxy
k=0 [0,1]2

(To justify the interchange of the sum and the double integral, one can expand
1/(1 — zy) in a finite sum with remainder and make the same estimations as
n [12].) Further, we substitute

xy)k yi
_ ( y) — /(xy)t dt
k

log zy

and obtain

k=0

> < k/ 2" — )"y T — )" dt) dz dy

[0,1]?
-y / ( / / 2" (1 — )yt (L — y)" dxdy) at,
k=0% 0,12

where we can change the order of integration because the integrand is nonnega-
tive and all the integrals converge. Since
1

n!
0/ T = )t tn+2) - (t+2n+1)

we have
oo

n! 2
/ dt
) \(E+n+1)(t+n+2)-(t+2n+1)2

k
Z /( tt+1)- t+n)>2dt’

and we get the desired identity.

The same method can be applied to prove that (minus) the series Neste-
renko used in [8] is equal to Beukers’ triple integral in [2]. Another proof of
that fact is given in [9] and uses an identity with a complex integral.
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