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ABSTRACT. In this paper we investigate sequential convergences on a cyclically
ordered group G which are compatible with the group operation and with the
relation of cyclic order; we do not assume the validity of the Urysohn’s axiom.
The system conv G of convergences under consideration is partially ordered by
means of the set-theoretical inclusion. We prove that conv G is a Brouwerian
lattice.
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1. Introduction

The notion of a cyclically ordered group goes back to R i e g e r [13]. A fun-
damental theorem on the structure of cyclically ordered groups was proved by
S w i e r c z k o w s k i [14]; this theorem is presented with a full proof in the mono-
graph [3] by F u c h s . For further results, cf. [1], [4], [6], [9], [10]–[12], [15], [16].

For references concerning sequential convergences cf. the expository article
[2]. Systems of sequential convergences on lattice ordered groups were studied
in several papers; cf. [5], [7], [8] and the quotations in these articles. Analogous
questions for cyclically ordered groups were dealt with in [4].

When investigating sequential convergences on a cyclically ordered group we
have to distinguish between the case when the Urysohn’s axiom is assumed to
be valid, and the case when this axiom is not supposed to hold. An analogous
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JÁN JAKUB́IK

situation occurs when dealing with sequential convergences on lattice ordered
groups (cf. the above quotations).

Let G be a cyclically ordered group. We define a system conv G of sequential
convergences on G which are compatible with the group operation and with
the relation of cyclic order; the Urysohn’s axiom is not assumed to be valid.
The system conv G is partially ordered by the set-theoretical inclusion. (For the
detailed definition, cf. Section 2 below.)

Another definition of sequential convergence on a cyclically ordered group
G was given by H a r m i n c [4]. In his definition, the Urysohn’s axiom was
applied. Let us denote the corresponding system of sequential convergences on
G by Conv G. In [4] it was proved that Conv G is either a one-element set or a
two-element set.

Let us denote by Cycl the class of all cyclically ordered groups. We show
that there exists a proper class K1 of mutually nonisomorphic elements of Cycl
such that for each G ∈ K1, conv G is a one-element set. Further, there exists a
proper class K2 of mutually nonisomorphic cyclically ordered group G such that
conv G if infinite. For each G ∈ Cycl we have Conv G ⊆ conv G and conv G is a
Brouwerian lattice.

2. Preliminaries

We start by recalling the definition of a cyclically ordered group.
Let G be a group. The group operation will be written additively, the com-

mutativity of this operation will not be assumed. Suppose that there is given a
subset C of G3 such that the following axioms are satisfied:

I. If x, y and z are distinct elements of G, then either (x, y, z) ∈ C or
(z, y, x) ∈ C.

II. If (x, y, z) ∈ C, then (y, z, x) ∈ C.
III. If (x, y, z) ∈ C and (y, u, z) ∈ C, then (x, u, z) ∈ C.
IV. If (x, y, z) ∈ C, then the elements x, y and z are mutually distinct.
V. If (x, y, z) ∈ C and u, v ∈ G, then (u + x + v, u + y + v, u + z + v) ∈ C and

(−z,−y,−x) ∈ C.

Under these assumptions we say that G is a cyclically ordered group; in more
detail, we denote it by (G; +, C). We sometimes write [x, y, z] if (x, y, z) ∈ C.
Then the ternary relation under consideration is the relation of cyclic order on G.
Each subgroup of G is cyclically ordered by the relation of cyclic order induced
from the cyclic order in G.

In accordance with [15] we will apply the following terminology and notation.
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Let G be a cyclically ordered group. For x ∈ G we put

|x| =
{

x if either x = −x or (−x, 0, x) ∈ C
−x otherwise.

The set
Pu(G) =

{
x ∈ G : x = |x|}

is the positive cone of G.
If cardG < 3, then the set C must be empty; this case is trivial. In what

follows we assume that card G � 3. In this case we have Pu(G) �= ∅ and
G \ Pu �= ∅.
������� 2.1� (Cf. [15].) The positive cone of a cyclically ordered group
uniquely determines the corresponding cyclic order.

Further, we denote by P (G) the set of all x ∈ Pu(G) such that the relation
x = −x implies x = 0. We often write P instead of P (G).

We define by induction a system S of finite sequences (x1, x2, . . . , xn) of ele-
ments of G (with n � 3) as follows:

1) (x1, x2, x3) ∈ S iff (x1, x2, x3) ∈ C;
2) let n > 3; (x1, x2, . . . , xn) belongs to S iff (x1, x2, . . . , xn−1) ∈ S and

(xn−1, xn, x1) ∈ S.

The following assertions 2.1.1–2.1.4 are easy to verify; the proofs will be
omitted.

2.1.1. Let 0 �= x1 ∈ P , x2 /∈ P . Then (0, x1, x2) ∈ S.

2.1.2. Let (x1, x2, . . . , xn) ∈ S, m ∈ N, 1 � m < n, (xm, y, xm+1) ∈ S. Then
(x1, x2, . . . , xm, y, xm+1, . . . , xn) ∈ S.

The meaning of a subsequence of the sequence (x1, x2, . . . , xn) is obvious.

2.1.3. Let (x1, x2, . . . , xn) ∈ S and let (y1, y2, . . . , ym) (with m � 3) be a subse-
quence of (x1, x2, . . . , xn). Then (y1, y2, . . . , ym) belongs to S.

2.1.4. Let (0, ti, b) ∈ C, (0, t′i, ti) ∈ C for i = 1, 2, and (0, t1 + t2, b) ∈ C. Then
(0, t′1 + t′2, b) ∈ C.

In the sequel, we will apply 2.1.1–2.1.4 without quotation.
For distinct elements x and y of G we put

in(x, y) = {z ∈ G : (x, z, y) ∈ C}.
Let N be the set of all positive integers. The elements of GN will be denoted

as (xn)n∈N or simply (xn). We say that (xn) is a sequence in G. The notion of
subsequence of (xn) has the usual meaning. If (xn) ∈ GN, x ∈ G and xn = x for
each n ∈ N, then we write (xn) = constx.
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Let α be a nonempty subset of GN × G. The relation ((xn), x) ∈ α will be
expressed also by writing xn →α x.

Consider the following conditions for the set α:
(i) If xn →α x and (yn) is a subsequence of (xn), then yn →α x.
(ii) If xn →α x and yn →α y, then xn + yn →α x + y and −xn →α −x.
(iii) If each subsequence (yn) of (xn) has a subsequence (zn) such that zn →α x,

then xn →α x.
(iv) If (xn) = constx, then xn →α x.
(v) If xn →α x and xn →α y, then x = y.
(vi) If xn →α x and (0, |yn − x|, |xn − x|) ∈ C for each n ∈ N, then yn →α x.
(vi’) If xn →α x and for each n ∈ N either (0, |yn − x|, |xn − x|) ∈ C or

|yn − x| ∈ {0, |xn − x|}, then yn →α x.
(vii) If ((xn), x) ∈ GN × G and if there exists m ∈ N such that xm+n →α x,

then xn →α x.
(viii) For each (xn) ∈ GN, xn →α 0 iff |xn| →α 0.

Recall that (iii) is the well-known Urysohn’s condition.

���	�
�� 2.2.1� (Cf. [4].) The system of all α ⊆ GN × G, α �= ∅, satisfying
the conditions (i)–(vi) will be denoted by Conv G.

���	�
�� 2.2.2� The system of all α ⊆ GN×G, α �= ∅, satisfying the conditions
(i), (ii), (iv), (v), (vi’), (vii) and (viii) will be denoted by conv G.

The elements of conv G will be called sequential convergences on G.

���
��
�
�� 2.3� Conv G ⊆ conv G for each cyclically ordered group G.

P r o o f. Let α ∈ Conv G. We have to verify that α satisfies the conditions (vi’),
(vii) and (viii).

First, let us deal with the condition (viii). Assume that xn →α 0 and let (zn)
be a subsequence of the sequence (|xn|). Then either

a) there is a subsequence (tn) of (zn) such that (tn) is a subsequence of (xn),
or

b) there is a subsequence (t′n) of (zn) such that (t′n) is a subsequence of (−xn).

In the case a) it suffices to apply (iii); in the case b) we have to apply (iii)
and (ii). We obtain that the relation |xn| →α 0 is valid. Conversely, assume
that |xn| →α 0. By an analogous argument we get that xn →α 0. Therefore
(viii) is valid.

Let the assumptions of (vi’) be satisfied. Suppose that (zn) is a subsequence
of (yn). Then there exists a subsequence (tn) of (zn) such that some of the
following conditions is valid:
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a) for each n ∈ N, (0, |tn − x|, |xn − x|) ∈ C;
b) for each n ∈ N, |tn − x| ∈ {0, |xn − x|}.

Further, if b) holds, then there is a subsequence (qn) of (tn) such that either
|qn−x| = 0 for each n ∈ N, or |qn−x| = |xn−x| for each n ∈ N. By applying (vi),
(iv), (ii), (viii) and (iii) we obtain that (vi’) holds. Finally, (vii) is a consequence
of (iii). �

We remark that below we will write simply “in view of 2.3” instead of “in
view of Proposition 2.3”, and analogously for other quotations.

For α ∈ conv G we set

α0 =
{
(xn) ∈ GN : xn →α 0

}
.

Next, we denote

conv0 G = {α0 : α ∈ conv G}, Conv0 G = {α0 : α ∈ Conv G}.
Each of the systems conv G, ConvG, conv0 G, Conv0 G is partially ordered by
the set-theoretical inclusion.

If ((xn), x) ∈ GN × G and α ∈ conv G, then

xn →α x ⇐⇒ xn − x →α 0;

thus we have conv G � conv0 G. Analogously, Conv G � Conv0 G.
Let us consider the following condition for a sequence (xn) in G:

(p) There exists m ∈ N such that xm+n ∈ P for each n ∈ N.

Let α0 ∈ conv0 G. We denote by α+
0 the set of all (xn) ∈ α0, which satisfy

the condition (p). We put

conv+
0 G = {α+

0 : α0 ∈ conv0 G}.

Similarly as the systems considered above, conv+
0 G is partially ordered by the

set-theoretical inclusion. In view of (viii) we obtain

conv+
0 G � conv0 G.

Therefore we have

conv+
0 G � conv G. (+)

The relation (+) and Theorem 2.1 are a motivation for a more detailed in-
vestigation of the partially ordered system conv+

0 G.
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3. Basic properties of conv G and conv+
0 G

For a cyclically ordered group G we apply the notation as above. In this
section there is given an internal characterization of the system conv+

0 G. We
prove that whenever xn →α x, yn →α y, zn →α z, where x, y, z are mutually
distinct and (xn, yn, zn) ∈ C for each n ∈ N, then (x, y, z) ∈ C. Further, we
show that conv G is a complete lattice.

����	 3.1� Let α ∈ conv G. Then α+
0 satisfies the following conditions:

(i1) If (xn) ∈ α+
0 , then each subsequence of (xn) belongs to α+

0 .

(ii1) If (xn) and (yn) belong to α+
0 , then (xn + yn) belongs to α+

0 as well.

(iii1) Let x ∈ G. Then constx ∈ α+
0 if and only if x = 0.

(iv1) Let (xn) ∈ α+
0 and (yn) ∈ GN. If either yn ∈ {0, xn} or (0, yn, xn) ∈ C for

each n ∈ N, then (yn) ∈ α+
0 .

(v1) If (xn) ∈ α+
0 and y ∈ G, then (−y + xn + y) ∈ α+

0 .

(vi1) Let (xn) ∈ GN. If there exists m ∈ N such that (xm+n) ∈ α+
0 , then

(xn) ∈ α+
0 .

P r o o f. We start by dealing with the condition (v1). Let (xn) ∈ α+
0 and y ∈ G.

For each n ∈ N we put zn = −y + xn + y. Since xn →α 0, in view of (ii) and
(iv) we obtain zn →α 0. There exists m ∈ N such that xn ∈ P for each n > m.
Thus for each n > m we have either xn = 0 or (−xn, 0, xn) ∈ C. Therefore for
each n > m either zn = 0 or (−zn, 0, zn) ∈ C. This yields that (zn) ∈ α+

0 . We
verified that the condition (v1) is valid.

Let (xn), (yn) ∈ α+
0 . In proving that (ii1) holds, it suffices to deal with the

case when (xn) ∈ P and (yn) ∈ P for each n ∈ N. Put zn = xn + yn. Then
according to (ii), zn →α 0. By way of contradiction, let us assume that there is
a subsequence (tn) of (zn) such that tn /∈ P for each n ∈ N. We have P �= ∅ and
hence there is 0 �= a ∈ P . Thus (tn, 0, a) for each n ∈ N. We obtain (0, a, tn) for
each n ∈ N. Since tn →α 0, the condition (vi) yields const a →α 0, which is a
contradiction. Thus α+

0 satisfies (ii1).
The condition (i1) is a consequence of (i). From (iv) we get that (iii1) is

valid. Further, (iv1) follows from (vi’). Finally, in view of (vii), the condition
(vi1) holds. �

Let β be a nonempty subset of GN. Assume that the conditions (i1)–(vi1)
are satisfied if α+

0 is replaced by β. Further, suppose that for each (xn) ∈ β the
condition (p) is valid.

By means of β, we define a subset γ of GN × G as follows. First, we put
((xn), 0) ∈ γ if there exists (yn) ∈ β such that xn ∈ {yn,−yn, 0} for each n ∈ N.

Thus we have ((xn), 0) ∈ γ for each (xn) ∈ β. Moreover, if ((xn), 0) ∈ γ, then
((−xn), 0) ∈ γ.
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Further, for ((xn), x) ∈ GN×G, x �= 0, we set ((xn), x) ∈ γ if ((xn−x), 0) ∈ γ.
The relation ((xn), x) ∈ γ will be expressed by writing xn →γ x.

����	 3.2� γ ∈ conv G and β = γ+
0 .

P r o o f. For proving the relation γ ∈ conv G we have to verify that the condi-
tions (i), (ii), (iv), (v), (vi’), (vii) and (viii) from the definition of convG are
satisfied (cf. 2.2.2).

The condition (i) is a consequence of (i1).
Assume that xn →γ x and yn →γ y. Hence xn − x →γ 0 and yn − y →γ 0.

In view of (v1) we obtain

−x + (xn − x) + x →γ 0,

hence −x + xn →γ 0. Thus (ii1) yields

(−x + xn) + (yn − y) →γ 0.

Applying (v1) again we get

x + (−x + xn + yn − y) − x →γ 0,

(xn + yn) − (x + y) →γ 0.

Again, suppose that xn →γ x. Hence xn−x →γ 0 and this yields x−xn →γ 0.
We obtain

−x + x − xn + x →γ 0,

hence −xn+x →γ 0 and so −xn →γ −x. Therefore the condition (ii) is satisfied.
Let (xn) = constx, (xn) ∈ β. Then according to (iii1), x = 0. Thus (iv)

holds.
Assume that xn →γ x and xn →γ y. Hence xn − x →γ 0 and xn − y →γ 0.

Then the definitions of β and γ yield −(xn −x) →γ 0, i.e., x−xn →γ 0. We get

(x − xn) + (xn − y) →γ 0.

Thus tn →γ 0, where tn = const(x − y). Therefore x − y = 0. Hence the
condition (v) is satisfied.

The condition (vii) is a consequence of (vi1).
The validity of the condition (viii) follows immediately from the definitions of

β and γ. In view of (iv1) and (viii), the condition (vi’) is satisfied. We verified
that γ ∈ conv G.

It remains to verify that β = γ+
0 is valid.

Let (tn) ∈ β. Then tn →γ 0. Further (tn) satisfies the condition (p), hence
there is m ∈ N such that tm+n ∈ P for each n ∈ N. Thus (tn) ∈ γ+

0 . Therefore
β ⊆ γ+

0 .
Conversely, assume that (tn) belongs to γ+

0 . Thus tn →γ 0 and there is m ∈ N

such that tm+n ∈ P for each n ∈ N. In view of the definition of the relation
tn →γ 0 we obtain that there exists (yn) ∈ β such that tn ∈ {yn,−yn, 0} for
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each n ∈ N. There is m1 ∈ N such that ym1+n ∈ P for each n ∈ N. Put
m2 = max{m1, m}. For each n ∈ N we must have tm2+n ∈ {ym2+n, 0}. In view
of (iv1) we obtain (tm2+n) ∈ β. Applying (vi1) we get (tn) ∈ β. Hence γ+

0 ⊆ β.
Summarizing, β = γ+

0 . �

From 3.1 and 3.2 we obtain the following proposition.

���
��
�
�� 3.3� Let β be a nonempty subset of GN. Then β belongs to
conv+

0 G if and only if the conditions (i1)–(vi1) from 3.1 and the condition (p)
are satisfied.

����	 3.4� Let α ∈ conv G, xn →α 0. Assume that (a, 0, b) ∈ C. Then there
exists m ∈ N such that (a, xm+n, b) ∈ C for each n ∈ N.

P r o o f. Suppose that there exists a subsequence (x′
n) of (xn) such that xn ∈ P

and (0, x′
n, b) /∈ C for each n ∈ N. Then we have (0, b, x′

n) ∈ C for each n ∈ N.
Since x′

n →α 0, in view of (vi’) and (iv) we obtain b = 0 which is a contradiction.
Thus there exists only a finite number of n ∈ N such that x′

n has the mentioned
property.

Similarly, there is only a finite number of n ∈ N such that xn /∈ P and
(a, xn, 0) /∈ C. This completes the proof. �
����	 3.5� Let α ∈ conv G, xn →α x. Assume that (a′, x, b′) ∈ C. Then there
is m ∈ N such that (a′, xm+n, b′) ∈ C for each n ∈ N.

P r o o f. It suffices to consider the sequence (yn) with yn = xn − x and to apply
Lemma 3.4. �
���
��
�
�� 3.6� Let α ∈ conv G, xn →α x, yn →α y, zn →α z. Assume that
(xn, yn, zn) ∈ C for each n ∈ N and that x, y and z are mutually distinct. Then
(x, y, z) ∈ C.

P r o o f. By way of contradiction, suppose that (x, y, z) does not belong to C.
Then (x, z, y) ∈ C. Consider the sets

in(x, z), in(z, y), in(y, x). (∗)
We distinguish the following cases.

1) Assume that all sets (∗) are nonempty. Then there exist elements c1, c2

and c3 in G such that

c1 ∈ in(x, z), c1 ∈ in(z, y), c3 ∈ in(y, x).

We obtain
(x, c1, z, c2, y, c3) ∈ S.

Hence in view of 3.5, there is m ∈ N such that for each n ∈ N we have

(c3, xm+n, c1) ∈ C, (c1, zm+n, c2) ∈ C, (c2, ym+n, c3) ∈ C,

(c3, xm+n, c1, zm+n, c2, ym+n) ∈ S.
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Thus (xm+n, zm+n, ym+n) ∈ C, which is a contradiction.
2) Assume that one of the sets (∗) is empty and that the remaining two are

nonempty. Without loss of generality we can take

in(x, z) = ∅, in(z, y) �= ∅, in(y, x) �= ∅.
Let c2 and c3 be as in 1). We have

(x, z, c2, y, c3, x) ∈ S.

From 3.5 and from the relation in(x, z) = ∅ we infer that there is m ∈ N such
that for each n ∈ N we have

(c1, zm+n, c2) ∈ C, (c2, ym+n, c3) ∈ C,

thus either xm+n = x or (c3, ym+n, x) ∈ C. From this we obtain

(zm+n, ym+n, xm+n) ∈ C,

which is impossible.
3) Assume that two of the sets in (∗) are empty and the remaining one is

nonempty. Without loss of generality we can put

in(x, z) = ∅, in(z, y) = ∅, in(y, x) �= ∅.
Let c3 be as in 1). Then in view of 3.5 there is m ∈ N such that for each n ∈ N

we have zm+n = z (since in(x, y) = {z} and (x, zm+n, y) ∈ C); further, the
following conditions are satisfied:

(i) either ym+n = y or (y, ym+n, c3) ∈ C,
(ii) either xm+n = x or (c3, xm+n, x) ∈ C.

In all these cases we have (xm+n, zm+n, ym+n) ∈ C, which is a contradiction. �

We denote by αmin the set of all ((xn), x) ∈ GN × G such that there exists
m ∈ N (depending on (xn)) with (xm+n) = const x. In view of condition (iv) in
Section 2 we obtain:

����	 3.7� αmin is the least element in both conv G and Conv G. Consequently,
(αmin)0 is the least element of conv0 G and of Conv0 G.

����	 3.8� Let I be a nonempty set and for each i ∈ I let βi be an element of
conv+

0 G. Put β =
⋂
i∈I

βi. Then β ∈ conv+
0 G.

P r o o f. Let αmin be as in 3.7; put β0 = (αmin)+0 . In view of 3.7 we have β0 ⊆ βi

for each i ∈ I. Thus β0 ⊆ β and hence β �= ∅.
Let us consider the conditions (i1)–(vi1) from 3.1 where α+

0 is replaced by β.
All these conditions are obviously valid. Thus β ∈ conv+

0 G. �
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JÁN JAKUB́IK

Under the notation as in 3.8, β is the greatest lower bound of the system
{βi}i∈I in conv+

0 G. Hence we write, in the usual way, β =
∧
i∈I

βi.

We denote by β1 the set of all (xn) ∈ conv+
0 G which satisfy the following

condition:

(c1) Whenever (a, 0, b) ∈ C, then there exists m ∈ N such that (a, xm+n, b) ∈ C
for each n ∈ N.

����	 3.9� β1 is an element of conv+
0 G.

P r o o f. Again, we consider the conditions (i1)–(vi1) from 3.1; we have to verify
that these conditions hold for β1.

Let us deal with the condition (ii1) (the validity of the remaining conditions
is easy to verify). Let (a, 0, b) ∈ C.

1) Suppose that there exists b1 ∈ P , b1 �= 0 such that in(0, b1) = ∅. Then we
have either b1 = b or (0, b1, b). There exists m ∈ N such that (a, xm+n, b1) ∈ C
and (a, ym+n, b1) ∈ C for each n ∈ N. This yields that xm+n = 0 = ym+n, hence
xm+n +ym+n = 0 for each n ∈ N. Therefore (a, xm+n +ym+n, b) for each n ∈ N.

2) Now suppose that there does not exist any b1 ∈ P , b1 �= 0, with
in(0, b1) = ∅. Hence for each b1 ∈ P with (a, 0, b1) ∈ C there exists b2 ∈ G such
that (0, b2, b1) ∈ C. Put b3 = b1 − b2. Then b3 ∈ P , b3 �= 0 and (0, b3, b1) ∈ C.
There exists b4 ∈ G such that (0, b4, b2) ∈ C and (0, b4, b3) ∈ C. Further, there
exists m ∈ N such that

(0, xm+n, b4) ∈ C, (0, ym+n, b4) ∈ C

for each n ∈ N. We obtain

(0, xm+n + ym+n, b4 + b4, b2 + b3, b) ∈ S

for each n ∈ N. Hence
(a, xm+n + ym+n, b) ∈ C

for each n ∈ N, completing the proof. �

����	 3.10� β1 is the greatest element of conv+
0 G.

P r o o f. This is a consequence of 3.9 and 3.4. �

In view of 3.7, 3.8 and 3.10 we obtain:

���
��
�
�� 3.11� conv+
0 G is a complete lattice.

Since conv G � conv+
0 G we have:

������	�� 3.12� conv G is a complete lattice.
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4. The classes K1 and K2

In this section we prove the following assertions:

(A1) There exists a proper class K1 of mutually nonisomorphic cyclically ordered
groups such that for each G ∈ K1, conv G is a one-element set.

(A2) There exists a proper class K2 of mutually nonisomorphic cyclically ordered
groups such that for each G ∈ K2, conv G is infinite.

We prove (A1) and (A2) by using linearly ordered groups.
For linearly ordered groups we apply the terminology and the notation as

in [3] with the distinction that the group operation is written additively.
Let G be a linearly ordered group having more than two elements. We denote

by C the set of all triples (x, y, z) of elements of G such that some of the following
relations is valid:

x < y < z, y < z < x, z < x < y. (1)

It is well-known that C determines a cyclic order on G and that (G; +, C) is
a cyclically ordered group. The linearly ordered group (G; +, �) can be recon-
structed from (G; +, C). (Cf. [3].)

In this sense we consider each linearly ordered group G as to be cyclically
ordered; hence we have G ∈ Cycl.

In accordance with this we conclude that the number of convergences on the
linearly ordered group G is the same as the number of convergences on G when
we consider G as a cyclically ordered group.

If I is a linearly ordered set and for each i ∈ I, Gi is a linearly ordered group,
then

Γi∈IGi

denotes the lexicographic product of the system (Gi)i∈I . (Cf., e.g., [3].)
Let R be the additive group of all reals with the natural linear order.
For each infinite cardinal m let ω(m) be the first ordinal having the car-

dinality m. Further, let I(m) be the linearly ordered set dual to ω(m). We
denote

G(m) = Γi∈I(m)Gi,

where Gi = R for each i ∈ I(m).

����	 4.1� Let m be a cardinal, m > ℵ0. Then conv+
0 G(m) is a one-element

set.

P r o o f. By way of contradiction, assume that there exists β ∈ conv G(m) such
that β �= αmin. Hence there exists (xn) ∈ β such that xn �= xm whenever
n, m ∈ N, n �= m and xn �= 0, xn ∈ P . We have xn →β 0.
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For 0 < x ∈ G(m) and i ∈ I(m) let xi be the component of x in Gi. There
exists i(x) ∈ I(m) such that xi(x) �= 0 and xi = 0 for each i < i(x). Then we
must have xi(x) > 0.

Consider the system (i(xn))n∈N. In view of the definition of I(m) there
exists i0 ∈ I(m) such that i0 < i(xn) for each n ∈ I(m). Further, there exists
x ∈ G(m) such that xi0 = 1, xi = 0 for each i ∈ I(m), i �= i0. Then we have

(−x, 0, x) ∈ C,

(−x, xn, x) /∈ C for each n ∈ N.

Thus in view of 3.4, the relation xn →β 0 does not hold; we arrived at a contra-
diction. �

If m1 and m2 are distinct infinite cardinals then it is easy to verify that
G(m1) is not isomorphic to G(m2).

Let K1 be the class of all G(m), where m runs over all cardinals larger that
ℵ0. We verified that K1 has the properties desired in (A1). Hence (A1) is valid.

Let m and I(m) be as above. Put J(m) = {t}∪I(m), where t is any element
not belonging to I(m). We define a linear order on J(m) as follows: t is the least
element of J(m); for elements of I(m) we consider the linear order as above.
Again, for each j ∈ J(m) let Gj = R and

H(m) = Γj∈J(m)Gj.

We denote by K2 the class of all H(m), where m runs over the class of all
infinite cardinals. If m1 and m2 are distinct infinite cardinals, then H(m1) is
not isomorphic to H(m2).

For proving (A2) it remains to verify that conv H(m) is infinite for each
infinite cardinal m.

First, we deal with certain sequential convergences on R. We consider R as
a cyclically ordered group in view of the cyclic order mentioned above. Put
R = G.

Let n(1) ∈ N. Let (xn) ∈ GN. Assume that for each k ∈ N there exists
m(k) ∈ N such that

0 � kxm(k)+n <
1

nn(1)
for each n ∈ N.

The set of all sequences (xn) in G satisfying this condition will be denoted
by βn(1).

����	 4.2� For each n(1) ∈ N, βn(1) belongs to conv+
0 G.

P r o o f. If suffices to verify that conditions (i1)–(vi1) from 3.1 are valid for βn(1);
the detailed steps will be omitted. �
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����	 4.3� Let n(1) ∈ N, n(1) > 1. Put xn = 1
nn(1)−1 . Then (xn) does not

belong to βn(1).

P r o o f. Let k ∈ N. By way of contradiction, assume that there exists m(k) ∈ N

such that

kxm(k)+n <
1

nn(1)
for each n ∈ N.

Thus for each n ∈ N we have
k

(m(k) + n)n(1)−1
<

1
nn(1)

,

k

(
n

m(k) + n

)n(1)−1

<
1
n

. (1)

Since
lim

n→∞
n

m(k) + n
= 1,

we obtain

lim
n→∞ k

(
n

m(k) + n

)n(1)−1

= k > 0.

Hence in view of (1) we arrived at a contradiction. �

On the other hand, we clearly have
(

1
nn(1)

) ∈ βn(1). Therefore we get:

������	�� 4.4� For each n(1) > 1, βn(1)−1 �= βn(1).

From this we easily obtain that all βn(1) (n(1) ∈ N) are mutually distinct.
Hence the set conv+

0 G is infinite.
Let H(m) be as above. For x ∈ H(m) and j ∈ J(m) we denote by xj the

component of x in Gj. Also, let t be as above and G = R.
Assume that β ∈ Conv+

0 G. We denote by β′ the system of all sequences (xn)
of elements of H(m) such that the following conditions are satisfied:

a) there exists m ∈ N (depending on (xn)) such that xj
m+n = 0 for each

j ∈ I(m) and each n ∈ N;
b) (xt

m+n) ∈ β.

By applying 4.2 and 3.3 we obtain:

����	 4.5� For each β ∈ Conv+
0 G, β′ is an element of conv+

0 (H(m)).

If β1 and β2 are distinct elements of conv+
0 G, then clearly β′

1 �= β′
2. Thus

from 4.5 and from the fact that conv+
0 G is infinite we conclude that conv+

0 H(m)
is infinite. Therefore the assertion (A2) is valid.

751
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5. Further properties of the lattice conv G

In this section we give a constructive description of the operation of join in
the complete lattice conv+

0 G. Next, we prove that for each cyclically ordered
group G, the lattice conv G is Brouwerian. We apply the isomorphism between
conv G and conv+

0 G.

����	 5.1� Let x1, x2 and x be nonzero elements of P such that x = x1 + x2.
Then (0, x1, x) ∈ C and (0, x2, x) ∈ C.

P r o o f. Since x2 �= 0 we get x1 �= x. By way of contradiction, assume that
(0, x1, x) does not belong to C. Then (0, x, x1) ∈ C. This yields (−x1, x2, 0) ∈ C.
Since −x1 /∈ P , we obtain (−x1, 0, x2) ∈ C, which is a contradiction. For proving
the relation (0, x2, x) ∈ C we proceed analogously. �
����	 5.2� Let x1, x2 ∈ G. Assume that x1 + x2 ∈ P , (0, y, x1 + x2) ∈ C.
Then there are elements y1 and y2 in G such that y = y1 + y2 and

either (0, y1, x1) ∈ C or y1 ∈ {0, x1},
either (0, y2, x2) ∈ C or y2 ∈ {0, x2}.

P r o o f. If x1 = 0, then we put y1 = 0 and y2 = y. The case x2 = 0 is analogous.
Next, suppose that x1 �= 0 �= x2. In view of 5.1, we have (0, x1, x) ∈ C and
(0, x2, x) ∈ C. In the case y = x1 we set y1 = x1, y2 = 0. Similarly, in the case
y = x2 we set y1 = 0 and y2 = x2.

Assume that x1 �= y �= x2. The elements 0, x1 and y are mutually distinct,
hence we have either (0, y, x1) or (0, x1, y). In the first case we put y1 = y and
y2 = 0. In the second case we get

(0, x1, y, x1 + x2) ∈ S,

hence (x1, y, x1 + x2) ∈ C. This yields

(0,−x1 + y, x2) ∈ C.

Now it suffices to put y1 = x1 and y2 = −x1 + y. �

From 5.2 we obtain by the obvious induction:

����	 5.3� Let x1 + x2 + · · · + xk ∈ P , (0, y, x1 + · · · + xk) ∈ C. Then
there are elements y1, . . . , yk in G such that for each j ∈ {1, 2, . . . , k} either
(0, yj, xj) ∈ C, or yj ∈ {0, xj}, and y = y1 + · · · + yk.

For elements (xn) and (yn) of GN we write, as usual, (xn)+ (yn) = (xn + yn).
Let I be a nonempty set and for each i ∈ I let βi ∈ conv+

0 G. We denote by β
the set of all sequences (xn) of elements of G which have the following property:
there exist i(1), . . . , i(k) ∈ I and sequences (x1

n) ∈ βi(1), . . . , (xk
n) ∈ βi(k) such

that
(xn) = (x1

n) + · · · + (xk
n). (1)
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����	 5.4� β ∈ conv+
0 G.

P r o o f. In view of 3.3, we have to verify that conditions (i1)–(vi1) from 3.1 are
satisfied for β. The case of (i1), (ii1) and (iii1) is clear.

Let us consider the condition (iv1). Assume that (xn) ∈ β, (yn) ∈ GN, and
for each n ∈ N, either (0, yn, xn) ∈ C or yn ∈ {0, xn}. If (0, yn, xn) ∈ C, then
we get (0, yn, x1

n + · · · + xk
n) ∈ C; thus in view of 5.3 there exist y1

n, . . . , yk
n in

G such that yn = y1
n + · · · + yk

n and either (0, yj
n, xj

n) ∈ C or yj
n ∈ {0, xj

n} for
j = 1, 2, . . . , k. We apply condition (iv1) for βi(j) and we obtain (yj

n) ∈ βi(j) for
j = 1, 2, . . . , k. According to the definition of β we get (yn) ∈ β.

Let (xn) ∈ β and y ∈ G. We have

(−y + xn + y) = (−y + x1
n + y) + · · · + (−y + xk

n + y).

Each βi(j) satisfies (v1), thus (−y +x1
n + y) ∈ βi(j); hence (−y +xn + y) belongs

to β. Therefore (v1) holds for β.
The validity of conditions (vi1) follows from the fact that this condition is

valid for each βi (i ∈ I). �

���
��
�
�� 5.5� Let βi (i ∈ I) and β be as above. Then β =
∨
i∈I

βi in the
lattice conv+

0 G.

P r o o f. Let us now write � and � instead of ⊆ or ⊇, respectively. In view
of the definition of β, we have βi ⊆ β for each i ∈ I. According to 5.4, β ∈
conv+

0 G. Let γ ∈ conv+
0 G, γ � βi for each i ∈ I. Let (xn) be as in (1). Since

(x1
n) ∈ βi(1), . . . , (xk

n) ∈ βi(x), and since γ is closed with respect to the operation
+, we obtain (xn) ∈ γ. Thus β ⊆ γ. Therefore β =

∨
i∈I

βi. �

Let βi (i ∈ I) and β be as above. Further, let γ be any element of conv+
0 G.

We will deal with the elements

δ1 = γ ∧
( ∨

i∈I

βi

)
, δ2 =

∨
i∈I

(γ ∧ βi).

����	 5.6� The relation δ1 = δ2 is valid.

P r o o f. We have clearly δ1 � δ2. Let (xn) ∈ δ1. Then (xn) ∈ γ and (xn) ∈∨
i∈I

β1. From the last relation and from 5.5 we conclude that (xn) can be ex-

pressed in the form (1).
Now, let us deal with the relation (xn) ∈ γ. Let j ∈ {1, 2, . . . , k}. Consider

the element (xj
n) of GN. From (1), 5.3 and (iv1) we obtain that (xj

n) belongs
to γ.

Hence (xj
n) is an element of γ∧βi. Then (1) and 5.5 yield (xn) ∈ δ2. Therefore

δ1 � δ2. Summarizing, we obtain δ1 = δ2. �
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It is well-known that a complete lattice L is Brouwerian if and only if for any
x ∈ L and {yn}i∈I ⊆ L the relation x ∧ ∨

i∈I

yi =
∨
i∈I

(x ∧ yi) is valid.

Hence from 3.11 and 5.6 we obtain:

������	�� 5.7� conv G is a Brouwerian lattice.
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