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SEQUENTIAL CONVERGENCES
ON CYCLICALLY ORDERED GROUPS
WITHOUT URYSOHN’S AXIOM
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ABSTRACT. In this paper we investigate sequential convergences on a cyclically
ordered group G which are compatible with the group operation and with the
relation of cyclic order; we do not assume the validity of the Urysohn’s axiom.
The system conv G of convergences under consideration is partially ordered by
means of the set-theoretical inclusion. We prove that conv G is a Brouwerian
lattice.
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1. Introduction

The notion of a cyclically ordered group goes back to Rieger [13]. A fun-
damental theorem on the structure of cyclically ordered groups was proved by
Swierczkowski [14]; this theorem is presented with a full proof in the mono-
graph [3] by Fuchs. For further results, cf. [1], [4], [6], [9], [10]-[12], [15], [16].

For references concerning sequential convergences cf. the expository article
[2]. Systems of sequential convergences on lattice ordered groups were studied
in several papers; cf. [5], [7], [8] and the quotations in these articles. Analogous
questions for cyclically ordered groups were dealt with in [4].

When investigating sequential convergences on a cyclically ordered group we
have to distinguish between the case when the Urysohn’s axiom is assumed to
be valid, and the case when this axiom is not supposed to hold. An analogous
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situation occurs when dealing with sequential convergences on lattice ordered
groups (cf. the above quotations).

Let G be a cyclically ordered group. We define a system conv G of sequential
convergences on GG which are compatible with the group operation and with
the relation of cyclic order; the Urysohn’s axiom is not assumed to be valid.
The system conv G is partially ordered by the set-theoretical inclusion. (For the
detailed definition, cf. Section 2 below.)

Another definition of sequential convergence on a cyclically ordered group
G was given by Harminec [4]. In his definition, the Urysohn’s axiom was
applied. Let us denote the corresponding system of sequential convergences on
G by Conv G. In [4] it was proved that Conv G is either a one-element set or a
two-element set.

Let us denote by Cycl the class of all cyclically ordered groups. We show
that there exists a proper class K7 of mutually nonisomorphic elements of Cycl
such that for each G € K7, conv G is a one-element set. Further, there exists a
proper class K5 of mutually nonisomorphic cyclically ordered group G such that
conv G if infinite. For each G € Cycl we have Conv G C conv G and conv G is a
Brouwerian lattice.

2. Preliminaries

We start by recalling the definition of a cyclically ordered group.

Let G be a group. The group operation will be written additively, the com-
mutativity of this operation will not be assumed. Suppose that there is given a
subset C of G such that the following axioms are satisfied:

I. If 2,y and z are distinct elements of G, then either (z,y,z) € C or
(z,y,2) € C.
II. If (x,y,2) € C, then (y,z,x) € C.
II. If (z,y,2) € C and (y,u,z2) € C, then (x,u,z) € C.
IV. If (x,y, 2) € C, then the elements z, y and z are mutually distinct.
V. If (z,y,2) € C and u,v € G, then (u+z+v,u+y+v,u+z+v) € C and
(—z,—y,—x) e C.

Under these assumptions we say that G is a cyclically ordered group; in more
detail, we denote it by (G;+,C). We sometimes write [z,y, 2] if (z,y,z) € C.
Then the ternary relation under consideration is the relation of cyclic order on G.
Each subgroup of G is cyclically ordered by the relation of cyclic order induced
from the cyclic order in G.

In accordance with [15] we will apply the following terminology and notation.
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SEQUENTIAL CONVERGENCES ON CYCLICALLY ORDERED GROUPS

Let G be a cyclically ordered group. For z € G we put

x if either z = —z or (—=2,0,2) € C
] = { —x otherwise.
The set
PYG)={zeG: z=z|}

is the positive cone of G.

If card G < 3, then the set C' must be empty; this case is trivial. In what
follows we assume that card G = 3. In this case we have P“(G) # () and
G\ P* #10).

THEOREM 2.1. (Cf. [15].) The positive cone of a cyclically ordered group
uniquely determines the corresponding cyclic order.

Further, we denote by P(G) the set of all x € P*(G) such that the relation
x = —x implies x = 0. We often write P instead of P(G).

We define by induction a system S of finite sequences (x1, 2, ..., z,) of ele-
ments of G (with n 2 3) as follows:

1) (x1,29,23) € S iff (21,22, 23) € C;|

2) let n > 3; (x1,22,...,2,) belongs to S iff (z1,22,...,2,-1) € S and
(xn—laxnaxl) S S.

The following assertions 2.1.1-2.1.4 are easy to verify; the proofs will be
omitted.

2.1.1. Let 0 #£x1 € P, 22 ¢ P. Then (0,21,22) € S.
2.1.2. Let (z1,22,...,2,) € S, meN, 1 =m <n, (m,y,Tms+1) € S. Then
(IlaIQa'")xmay)xm+1)"~amn) €S

The meaning of a subsequence of the sequence (x1, g, ..., 2, ) is obvious.

2.1.3. Let (z1,x2,...,2,) € S and let (y1,¥2,---,Ym) (with m = 3) be a subse-
quence of (z1,2a,...,2,). Then (y1,¥2,...,ym) belongs to S.

2.1.4. Let (0,t;,b) € C, (0,t,t;) € C for i = 1,2, and (0,t; + t2,b) € C. Then
(0,t) +1t5,b) € C.

In the sequel, we will apply 2.1.1-2.1.4 without quotation.
For distinct elements z and y of G we put
in(z,y) ={z€G: (z,2,y) € C}.
Let N be the set of all positive integers. The elements of GN will be denoted
as (zp)nen or simply (z,). We say that (x,,) is a sequence in G. The notion of

subsequence of (z,,) has the usual meaning. If (z,,) € GN, x € G and z,, = z for
each n € N, then we write (z,,) = const z.
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Let o be a nonempty subset of GN x G. The relation ((z,),z) € o will be
expressed also by writing z,, —, .
Consider the following conditions for the set a:
(i) If 2, —o = and (y,,) is a subsequence of (z,), then y,, —4 .
(i) If z,, —4 x and y,, —4 y, then x,, + y, — ¢+ y and —z, —4 —x.
(iii) If each subsequence (yy,) of (z,) has a subsequence (z,) such that z, —, z,
then z,, —, .

(iv) If (x,) = const x, then z,, —, .

(v) If ,, —4 x and z,, —, y, then z = y.

(vi) If z, =  and (0, |y, — x|, |z, — z|) € C for each n € N, then y, — .
(vi’) If x, —4 x and for each n € N either (0, |y, — z|, |z, — 2|) € C or
|y, — | €10, |z, — x|}, then y,, —4 .

(vii) If ((x,),2) € GN x G and if there exists m € N such that x,,1, —a T,

then z,, —, .
(viii) For each (x,) € GN, z, —¢ 0 iff |2,] —4 0.
Recall that (iii) is the well-known Urysohn’s condition.

NOTATION 2.2.1. (Cf. [4].) The system of all &« C GY x G, a # 0, satisfying
the conditions (i)—(vi) will be denoted by Conv G.

NOTATION 2.2.2. The system of all @« C GNx G, o # ), satisfying the conditions
(1), (ii), (iv), (v), (vi’), (vii) and (viii) will be denoted by conv G.

The elements of conv G will be called sequential convergences on G.

ProrosITION 2.3. Conv G C conv GG for each cyclically ordered group G.

Proof. Let a € ConvG. We have to verify that « satisfies the conditions (vi’),
(vii) and (viii).

First, let us deal with the condition (viii). Assume that x,, —, 0 and let (z,)
be a subsequence of the sequence (|x,|). Then either

a) there is a subsequence (t,,) of (z,) such that (¢,) is a subsequence of (z,,),
or

b) there is a subsequence (t!,) of (z,,) such that (¢/,) is a subsequence of (—z,,).

In the case a) it suffices to apply (iii); in the case b) we have to apply (iii)
and (ii). We obtain that the relation |z,| —4 0 is valid. Conversely, assume
that |z,| —4 0. By an analogous argument we get that x,, —, 0. Therefore
(viii) is valid.

Let the assumptions of (vi’) be satisfied. Suppose that (z,) is a subsequence
of (y,). Then there exists a subsequence (t,) of (z,) such that some of the
following conditions is valid:
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a) for each n € N, (0, |t, — x|, |z, — z|) € C;
b) for each n € N, ¢, — z| € {0, |, — z|}.

Further, if b) holds, then there is a subsequence (g,) of (¢,) such that either
|gn—x| = 0 for each n € N, or |g, —x| = |z, — x| for each n € N. By applying (vi),
(iv), (ii), (viii) and (iii) we obtain that (vi’) holds. Finally, (vii) is a consequence
of (iii). 0

We remark that below we will write simply “in view of 2.3” instead of “in
view of Proposition 2.3”, and analogously for other quotations.

For o € conv G we set
ap = {(zn) € GN: oz, —a 0}.
Next, we denote
convg G = {ap : « € conv G}, Convy G ={ap: a € ConvG}.

Each of the systems conv G, Conv G, convg GG, Convg GG is partially ordered by
the set-theoretical inclusion.

If ((x,),2) € GN x G and « € conv G, then
Ty —a T < XTp— T —4 0;

thus we have conv G ~ convy G. Analogously, Conv G ~ Convg G.
Let us consider the following condition for a sequence (z,,) in G:

(p) There exists m € N such that z,,4, € P for each n € N.

Let ag € convg G. We denote by oz(‘)" the set of all (z,,) € ap, which satisfy
the condition (p). We put

convy G = {af : ag € convyg G}.

Similarly as the systems considered above, convy G is partially ordered by the
set-theoretical inclusion. In view of (viii) we obtain

convar G ~ convy G.

Therefore we have

convg G ~ conv G. (+)

The relation (4) and Theorem 2.1 are a motivation for a more detailed in-
vestigation of the partially ordered system convy G.
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3. Basic properties of convG and convy G

For a cyclically ordered group G we apply the notation as above. In this
section there is given an internal characterization of the system conVE)Ir G. We
prove that whenever z,, —o =, ¥n —a ¥, 2n —a 2, Where x,y, z are mutually
distinct and (2, yn, 2n) € C for each n € N, then (z,y,z) € C. Further, we
show that conv GG is a complete lattice.

LEMMA 3.1. Let a € conv G. Then o satisfies the following conditions:

(i1) If (z,) € af , then each subsequence of (z,,) belongs to ag .

) If (z) and (yn) belong to of , then (z, + yn) belongs to of as well.
(iiiy) Let z € G. Then constz € o if and only if x = 0.

) Let (z,) € af and (y,) € GN. If either y, € {0,2,} or (0,yn,,) € C for
each n € N, then (y,) € af .
(v1) If (zn) € ad andy € G, then (—y +x, +y) € a .
Vi et (x,,) € . there exists m € such that (Ty4n) € ay, then

i) L GN. If th j N such th " T, th

(zn) € af .

Proof. We start by dealing with the condition (v1). Let (z,) € of and y € G.
For each n € N we put z, = —y + z,, + y. Since x,, —, 0, in view of (ii) and
(iv) we obtain z, —, 0. There exists m € N such that x,, € P for each n > m.
Thus for each n > m we have either x,, = 0 or (—z,,0,z,) € C. Therefore for
each n > m either z, = 0 or (—2,,0,z,) € C. This yields that (z,) € af . We
verified that the condition (v;) is valid.

Let (zy,), (yn) € ag . In proving that (ii;) holds, it suffices to deal with the
case when (z,) € P and (y,) € P for each n € N. Put z, = x, + y,. Then
according to (ii), z, —« 0. By way of contradiction, let us assume that there is
a subsequence (t,,) of (z,) such that ¢, ¢ P for each n € N. We have P # () and
hence there is 0 # a € P. Thus (,,0, a) for each n € N. We obtain (0, a, t,,) for
each n € N. Since t,, —, 0, the condition (vi) yields const a —, 0, which is a
contradiction. Thus ag satisfies (iiy).

The condition (i;) is a consequence of (i). From (iv) we get that (iiiy) is
valid. Further, (ivy) follows from (vi’). Finally, in view of (vii), the condition
(vi1) holds. O

Let 3 be a nonempty subset of GN. Assume that the conditions (ij)—(vi;)
are satisfied if oz(‘)" is replaced by . Further, suppose that for each (z,,) € § the
condition (p) is valid.

By means of 3, we define a subset v of GN x G as follows. First, we put
((xy),0) € 7 if there exists (yy) € § such that x,, € {yn, —yn,0} for each n € N.

Thus we have ((z,,),0) € v for each (z,,) € 5. Moreover, if ((z,),0) € v, then
((_In)ao) €.
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Further, for ((z,,),z) € GNxG, x # 0, we set ((x,,), z) € v if ((z,, —x),0) € 7.
The relation ((zy,),z) € v will be expressed by writing z,, —- .

LEMMA 3.2. v € convG and 8 =7 .

Proof. For proving the relation v € conv G we have to verify that the condi-
tions (i), (i), (iv), (v), (vi’), (vii) and (viii) from the definition of conv G are
satisfied (cf. 2.2.2).

The condition (i) is a consequence of (ij).

Assume that z, —~ = and y, —, y. Hence z,, —2 —, 0 and y, —y — 0.
In view of (v1) we obtain

—x+ (v — )+ 2 —, 0,
hence —z + z, — 0. Thus (ii;) yields
(=2 +zn) + (yn —y) =+ 0.
Applying (v1) again we get
T4 (—r4+xy +yn —y) —x —4 0,

(mn + yn) - (1‘ + y) — 0.
Again, suppose that z,, —~ . Hence x,, —x —, 0 and this yields x —,, —- 0.
We obtain
—r+T—T,+T—40,
hence —z,+2 —, 0 and so —z,, —~ —z. Therefore the condition (ii) is satisfied.
Let (z,) = constz, (z,) € . Then according to (iii;), « = 0. Thus (iv)
holds.

Assume that z, —, = and z, —~ y. Hence z,, — 2 —, 0 and z,, —y — 0.
Then the definitions of 3 and ~ yield —(z,, —z) —, 0, i.e., z — x,, —, 0. We get
(. —2n) + (T —y) —4 0.

Thus ¢, —, 0, where t,, = const(z — y). Therefore x —y = 0. Hence the
condition (v) is satisfied.

The condition (vii) is a consequence of (viy).

The validity of the condition (viii) follows immediately from the definitions of

B and 7. In view of (ivy) and (viii), the condition (vi’) is satisfied. We verified
that v € conv G.

It remains to verify that 8 = v is valid.

Let (t,) € 8. Then t, —, 0. Further (¢,) satisfies the condition (p), hence
there is m € N such that t,,,,, € P for each n € N. Thus (t,) € 74 . Therefore
8-

Conversely, assume that (¢,,) belongs to ’y{f . Thus ¢, —~ 0 and thereis m € N
such that t,,4+, € P for each n € N. In view of the definition of the relation
tn, —~ 0 we obtain that there exists (y,) € § such that t, € {yn, —yn,0} for
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each n € N. There is m; € N such that y,,,+n € P for each n € N. Put
mo = max{my, m}. For each n € N we must have t,,,1n € {Ymyt+n,0}. In view
of (ivy) we obtain (t,,+,) € 3. Applying (vi;) we get (¢,) € 8. Hence 7 C 3.
Summarizing, 8 = v . O

From 3.1 and 3.2 we obtain the following proposition.

PROPOSITION 3.3. Let 3 be a nonempty subset of GN. Then 3 belongs to
convg G if and only if the conditions (i1)—(viy) from 3.1 and the condition (p)
are satisfied.

LEMMA 3.4. Let o € conv G, z,, — 0. Assume that (a,0,b) € C. Then there
exists m € N such that (a, Zy4n,b) € C for each n € N.

Proof. Suppose that there exists a subsequence () of (z,,) such that z, € P
and (0,z),,b) ¢ C for each n € N. Then we have (0,b,z,) € C for each n € N.
Since z, —4 0, in view of (vi’) and (iv) we obtain b = 0 which is a contradiction.
Thus there exists only a finite number of n € N such that x/, has the mentioned
property.

Similarly, there is only a finite number of n € N such that z,, ¢ P and
(a,zn,0) ¢ C. This completes the proof. O

LEMMA 3.5. Let a € conv G, x,, —4 x. Assume that (a’,x,b') € C. Then there
is m € N such that (a, pyin,b') € C for each n € N.

Proof. It suffices to consider the sequence (y,) with y,, = x,, — 2z and to apply
Lemma 3.4. (]

PROPOSITION 3.6. Let o € conv G, T —a T, Yn —a Y, Zn —a 2. Assume that
(Tn, Yn, 2n) € C for each n € N and that x,y and z are mutually distinct. Then
(z,y,2) € C.

Proof. By way of contradiction, suppose that (z,y, z) does not belong to C.
Then (z,z,y) € C. Consider the sets

in(z,z),  in(zy), in(y ). (%)
We distinguish the following cases.

1) Assume that all sets (x) are nonempty. Then there exist elements ¢, o
and c3 in G such that

¢ €in(z,2), ¢ €in(z,y), c3€in(y,z).
We obtain
("L‘7 C1,%,C2,Y, C3) €S
Hence in view of 3.5, there is m € N such that for each n € N we have
(03> Tm+n, Cl) €C, (Cb Zm+4n, 62) eC, (027 Ym+n, 63) e,

(637 Tm+mns Cly Bm+n, C2, ym+n) S S.
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Thus (Zm+ns Zm+n, Ymtn) € C, which is a contradiction.
2) Assume that one of the sets () is empty and that the remaining two are
nonempty. Without loss of generality we can take

in(z,2) =0, in(z,y)#0, in(y,z)#0.
Let co and ¢3 be as in 1). We have
(z,2,¢2,y,c3,x) € S.
From 3.5 and from the relation in(z, z) = 0 we infer that there is m € N such
that for each n € N we have
(c1, Zmtn, c2) € C, (2, Ymn, c3) € C,

thus either x4+, = = or (¢3, Ym+tn, ) € C. From this we obtain

(Zm—i-na Ym+4n, Im-‘rn) S 07

which is impossible.

3) Assume that two of the sets in (%) are empty and the remaining one is
nonempty. Without loss of generality we can put

in(z,z) =0, in(z,y) =0, in(y,z)#0.

Let ¢3 be as in 1). Then in view of 3.5 there is m € N such that for each n € N
we have 2,4, = 2 (since in(z,y) = {z} and (z, 2;min,y) € C); further, the
following conditions are satisfied:

(i) either ypymyn, =y or (ya Ym+n, 63) eC,
(ii) either Xy =2 or (c3,Tmin,x) € C.

In all these cases we have (L1, Zman, Ym+n) € C, which is a contradiction. [

We denote by amin the set of all ((z,,),2) € GY x G such that there exists
m € N (depending on (z,,)) with (2,+,) = const z. In view of condition (iv) in
Section 2 we obtain:

LEMMA 3.7. api, is the least element in both conv G and Conv G. Consequently,
(Otmin)o 48 the least element of convy G and of Convy G.

LEMMA 3.8. Let I be a nonempty set and for each i € I let 3; be an element of

convg G. Put 3= () B;. Then 3 € convy G.
il

Proof. Let ami, be asin 3.7; put By = (Qumin)g - In view of 3.7 we have 3y C 3;
for each ¢ € I. Thus 8y C (8 and hence 3 # (.

Let us consider the conditions (i;)—(vi;) from 3.1 where o is replaced by 3.
All these conditions are obviously valid. Thus 8 € conv] G. O
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Under the notation as in 3.8, (§ is the greatest lower bound of the system
{Bi}ier in convd G. Hence we write, in the usual way, 8= A S;.
iel
We denote by 3; the set of all (z,,) € convy G which satisfy the following
condition:

(c1) Whenever (a,0,b) € C, then there exists m € N such that (a, Zp4n,b) € C
for each n € N.

LEMMA 3.9. 3 is an element of convy G.

Proof. Again, we consider the conditions (i )—(vi) from 3.1; we have to verify
that these conditions hold for (7.

Let us deal with the condition (ii;) (the validity of the remaining conditions
is easy to verify). Let (a,0,b) € C.

1) Suppose that there exists by € P, by # 0 such that in(0,b;) = (. Then we
have either by = b or (0, b1,b). There exists m € N such that (a, Zpy4n,b1) € C
and (a, Ymn,b1) € C for each n € N. This yields that Z,,+n = 0 = Ysm4n, hence
Tmtn + Ym+n = 0 for each n € N. Therefore (a, Zm+n + Ym+n, b) for each n € N.

2) Now suppose that there does not exist any by € P, by # 0, with
in(0,b1) = 0. Hence for each b; € P with (a,0,b1) € C there exists by € G such
that (O,bg,bl) € C. Put b3 = bl — bg. Then b3 € P, bg 7é 0 and (0,63,b1) eC.
There exists by € G such that (0,by,b2) € C and (0, by, b3) € C. Further, there
exists m € N such that

(0, Zyygn, ba) € C, (0, Yrmtn,ba) € C
for each n € N. We obtain

(0, Zmtn + Ymtn, ba + bg, by + b3, b) € S
for each n € N. Hence

(a, Tm4n + Ymtn, b) eC
for each n € N, completing the proof. O

LEMMA 3.10. (3; is the greatest element of convy G.
Proof. This is a consequence of 3.9 and 3.4. (]

In view of 3.7, 3.8 and 3.10 we obtain:

ProrosiTIiON 3.11. conva_ G is a complete lattice.

Since conv G ~ convy G we have:

COROLLARY 3.12. conv GG is a complete lattice.
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4. The classes K; and K,

In this section we prove the following assertions:

(A1) There exists a proper class K; of mutually nonisomorphic cyclically ordered
groups such that for each G € K7, conv G is a one-element set.

(Ag) There exists a proper class K5 of mutually nonisomorphic cyclically ordered
groups such that for each G € Ks, conv G is infinite.

We prove (A1) and (Az) by using linearly ordered groups.

For linearly ordered groups we apply the terminology and the notation as
in [3] with the distinction that the group operation is written additively.

Let G be a linearly ordered group having more than two elements. We denote
by C the set of all triples (z,y, z) of elements of G such that some of the following
relations is valid:

r<y<z y<z<z, z<z<y. (1)

It is well-known that C determines a cyclic order on G and that (G;+,C) is
a cyclically ordered group. The linearly ordered group (G;+, <) can be recon-
structed from (G;+,C). (Cf. [3].)

In this sense we consider each linearly ordered group G as to be cyclically
ordered; hence we have G € Cycl.

In accordance with this we conclude that the number of convergences on the
linearly ordered group G is the same as the number of convergences on G when
we consider G as a cyclically ordered group.

If I is a linearly ordered set and for each ¢ € I, G; is a linearly ordered group,
then

LierGi
denotes the lexicographic product of the system (G;);er. (Cf., e.g., [3].)

Let R be the additive group of all reals with the natural linear order.

For each infinite cardinal m let w(m) be the first ordinal having the car-
dinality m. Further, let I(m) be the linearly ordered set dual to w(m). We
denote

G(m) = Cicr(m)Gis
where G; = R for each i € I(m).

LEMMA 4.1. Let m be a cardinal, m > Rq. Then convy G(m) is a one-element
set.

Proof. By way of contradiction, assume that there exists 8 € conv G(m) such
that 0 # Qmin. Hence there exists (z,) € § such that z, # x, whenever
n,m €N, n # m and z, # 0, x,, € P. We have z,, —3 0.
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For 0 < z € G(m) and i € I(m) let 2% be the component of = in G;. There
exists i(z) € I(m) such that 2°(*) # 0 and 2° = 0 for each i < i(z). Then we
must have z%(*) > 0.

Consider the system (i(z,))nen. In view of the definition of I(m) there
exists i9 € I(m) such that ig < i(x,) for each n € I(m). Further, there exists
r € G(m) such that z%c = 1, 2° = 0 for each i € I(m), i # i9. Then we have

(—x,0,z) € C,
(—z,zp,x) ¢ C for each n € N.

Thus in view of 3.4, the relation z, —3 0 does not hold; we arrived at a contra-
diction. (|

If m; and my are distinct infinite cardinals then it is easy to verify that
G(m;) is not isomorphic to G(ms).

Let K7 be the class of all G(m), where m runs over all cardinals larger that
No. We verified that K3 has the properties desired in (A;). Hence (A1) is valid.

Let m and I(m) be as above. Put J(m) = {t} UI(m), where ¢ is any element
not belonging to I(m). We define a linear order on J(m) as follows: t is the least
element of J(m); for elements of I(m) we consider the linear order as above.
Again, for each j € J(m) let G; = R and

H(m) = Tjcjm)G-

We denote by K the class of all H(m), where m runs over the class of all
infinite cardinals. If m; and msy are distinct infinite cardinals, then H(m;) is
not isomorphic to H(my).

For proving (As) it remains to verify that conv H(m) is infinite for each
infinite cardinal m.

First, we deal with certain sequential convergences on R. We consider R as
a cyclically ordered group in view of the cyclic order mentioned above. Put
R=G.

Let n(1) € N. Let (x,) € GY. Assume that for each k¥ € N there exists
m(k) € N such that

0 = k2 (k) 1n for each n € N.

< a

The set of all sequences (z,) in G satisfying this condition will be denoted
by B,1)-

LEMMA 4.2. For each n(1) € N, 3,1y belongs to conv(‘)" G.

Proof. If suffices to verify that conditions (i1)—(vi1) from 3.1 are valid for 3,,(1);
the detailed steps will be omitted. O
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LEMMA 4.3. Let n(1) € N, n(1) > 1. Put #, = —qay—=. Then (z,) does not
belong to Bp1)-

Proof. Let k € N. By way of contradiction, assume that there exists m(k) € N
such that

KT () 4n < TG for each n € N.
Thus for each n € N we have
k 1
< )
(m(k) + n)»M=1 = pn)
n(l)—1
n 1
k| ———— —. 1
o) < 2
Since
n
lim ——— =1
nl—{go m(k}) +n ’
we obtain
n n(l)—1
lim k| ———— =k>0.
n—oo  \m(k)+n
Hence in view of (1) we arrived at a contradiction. O

On the other hand, we clearly have ( ﬁ) € Bn(1)- Therefore we get:
COROLLARY 4.4. For each n(1) > 1, By1)—1 # Bn(1)-

From this we easily obtain that all 3,y (n(1) € N) are mutually distinct.
Hence the set convy G is infinite.

Let H(m) be as above. For x € H(m) and j € J(m) we denote by 27 the
component of z in G;. Also, let ¢ be as above and G = R.

Assume that 8 € Convy G. We denote by 3’ the system of all sequences ()
of elements of H(m) such that the following conditions are satisfied:

a) there exists m € N (depending on (x,)) such that z’ = 0 for each

m+n
j € I(m) and each n € N;
By applying 4.2 and 3.3 we obtain:

LEMMA 4.5. For each (3 € Convy G, (3 is an element of convy (H(m)).

If 81 and By are distinct elements of conva' G, then clearly 5 # (5. Thus
from 4.5 and from the fact that convy G is infinite we conclude that convy H(m)
is infinite. Therefore the assertion (As) is valid.
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5. Further properties of the lattice convG

In this section we give a constructive description of the operation of join in
the complete lattice convar G. Next, we prove that for each cyclically ordered
group G, the lattice conv G is Brouwerian. We apply the isomorphism between
conv G and convy G.

LEMMA 5.1. Let x1, xo and x be nonzero elements of P such that x = x1 + x5.
Then (0,z1,x) € C and (0,z3,2) € C.

Proof. Since zo # 0 we get 1 # x. By way of contradiction, assume that
(0, 21, x) does not belong to C. Then (0, x,x1) € C. This yields (—z1,z2,0) € C.
Since —x1 ¢ P, we obtain (—z1,0, z2) € C, which is a contradiction. For proving
the relation (0, z2, ) € C' we proceed analogously. O

LEMMA 5.2. Let x1,29 € G. Assume that v1 + x2 € P, (0,y,21 + 22) € C.
Then there are elements y1 and ys in G such thaty = y1 + y2 and

either (0,y1,21) € C or 1y € {0,21},

either (0,ya,22) € C or ys € {0,22}.

Proof. If z; =0, then we put y; = 0 and y2 = y. The case x5 = 0 is analogous.
Next, suppose that z; # 0 # zo. In view of 5.1, we have (0,z1,z) € C and
(0,29,2) € C. In the case y = x1 we set y; = x1, y2 = 0. Similarly, in the case
y = a9 we set y; = 0 and yo = .

Assume that x1 # y # z2. The elements 0,z; and y are mutually distinct,
hence we have either (0,y,x1) or (0,2z1,%). In the first case we put y; = y and
12 = 0. In the second case we get

(0,21,y,x1 + 22) € S,
hence (z1,y, 1 + x2) € C. This yields
(0, —z1 + y,x9) € C.
Now it suffices to put y; = 21 and yo = —x1 + ¥. O

From 5.2 we obtain by the obvious induction:

LEMMA 5.3. Let vy + 29+ -+ x € P, (0,y,21 + -+ xx) € C. Then
there are elements y1,...,yx in G such that for each j € {1,2,...,k} either
(0,y5,25) € C, ory; € {0,z;}, and y =y1 + -+ + Y.

For elements (z,,) and (y,,) of GY we write, as usual, (z,,) + (yn) = (Tn + yn)-
Let I be a nonempty set and for each ¢ € I let 3; € Convar G. We denote by 3
the set of all sequences (x,,) of elements of G which have the following property:
there exist i(1),...,i(k) € I and sequences (z.) € Bi1)s -+ +» (zk) € Bik) such

that
(wn) = () + -+ (z3). (1)
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LEMMA 5.4. (3 € convg G.

Proof. In view of 3.3, we have to verify that conditions (i )—(vi;) from 3.1 are
satisfied for 3. The case of (i1), (ii;) and (iii) is clear.

Let us consider the condition (ivy). Assume that (x,) € 3, (y,) € GV, and
for each n € N, either (0,y,,x,) € C or y, € {0,2,}. If (0,yn,z,) € C, then
we get (0,yn,zk + -+ +2F) € C; thus in view of 5.3 there exist y.,...,y* in
G such that y, = y. +--- +9* and either (0,y},27) € C or y) € {0,27} for
j=1,2,...,k. We apply condition (ivy) for §;(;) and we obtain (y}) € 8;;) for
j=1,2,... k. According to the definition of 3 we get (y,) € 0.

Let (z,) € f and y € G. We have

(~y+an+y)=(~y+a, +y)+ -+ (~y+a; +y).
Each f3;(; satisfies (v1), thus (—y+azl+y) e Bi(j); hence (—y +x, +y) belongs
to (. Therefore (vy) holds for 3.

The validity of conditions (vi;) follows from the fact that this condition is
valid for each 3; (i € I). O

PRrROPOSITION 5.5. Let 3; (i € I) and B be as above. Then 3= \/ B; in the
lattice convy G. el

Proof. Let us now write < and 2 instead of C or D, respectively. In view
of the definition of 8, we have §3; C 3 for each i € I. According to 5.4, 8 €
convy G. Let v € convd G, v < f3; for each i € I. Let (x,,) be as in (1). Since

(zL) € Bi1), - - -» (@%) € Bi(z), and since 7 is closed with respect to the operation
+, we obtain (z,) € v. Thus 8 C 5. Therefore 5 = \/ 3;. O
i€l

Let 5; (i € I) and 3 be as above. Further, let v be any element of conva' G.
We will deal with the elements

51:7/\<\/ﬁ¢>, 522\/(7/\/@‘)-

i€l i€l
LEMMA 5.6. The relation 1 = 0y s valid.

Proof. We have clearly §; = d2. Let (x,) € 6;. Then (z,) € v and (z,) €
\/ (1. From the last relation and from 5.5 we conclude that (z,) can be ex-
iel

pressed in the form (1).

Now, let us deal with the relation (x,) € 7. Let j € {1,2,...,k}. Consider
the element (z7) of GN. From (1), 5.3 and (iv;) we obtain that (z7) belongs
to 7.

Hence (z7,) is an element of yA3;. Then (1) and 5.5 yield (x,,) € d2. Therefore
01 < d9. Summarizing, we obtain §; = ds. O
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It is well-known that a complete lattice L is Brouwerian if and only if for any

x € L and {y,}ier C L the relation z A \/ y; = V (z A y;) is valid.

iel iel
Hence from 3.11 and 5.6 we obtain:

COROLLARY 5.7. conv G is a Brouwerian lattice.
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