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ABSTRACT. A latin bitrade is a pair of partial latin squares which are dis-
joint, occupy the same set of non-empty cells, and whose corresponding rows and
columns contain the same sets of symbols. This survey paper summarizes the
theory of latin bitrades, detailing their applications to critical sets, random latin
squares and existence constructions for latin squares.
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1. Introduction

Over a brief period of time, a theory of latin bitrades has developed, with
connections to permutation groups, geometry and topology. Applications of
latin bitrades have broadened from their early purpose of studying critical sets
to analysing and generating random latin squares and obtaining existence con-
structions. As latin bitrades describe the difference between two latin squares
of the same order, a study of latin bitrades is equivalent to the study of the
connections between distinct latin squares.

Definitions and terminology of latin bitrades and related structures are far
from uniform across the literature. While part of the aim of this survey paper is
to promote some terminological coherency, and in some cases citing this paper
may remove the need for lengthy introductions to papers that mention latin
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bitrades, the definitions in this paper should not necessarily be set in stone, for
a number of reasons.

Firstly, as outlined in later sections, different applications, in some instances,
befit slightly different terminological approaches. Secondly, the youth of this
research area means that the process of definition is arguably still a collective
and organic process. Thirdly, the fact that latin trades (and indeed latin squares)
may be defined in different ways is an essential part of their usefulness.

Observing various difference sets between two latin squares is, in a way,
something implicitly present in many different papers, some of them very old.
Two early results on intersections of latin squares are given in [33] and [42],
both of which give implicit results on the possible sizes of latin bitrades. In
[33], Drédpal considers the problem of determining the least number of non-
associative triples in a non-associative quasigroup (see next section for defi-
nitions). Around the same time (and independently), Fu’s PhD thesis [42]
included a study the spectrum of intersections of two latin squares.

The explicit theory of latin trades was, however, made possible by a shift
of the perspective, when the difference set became an object in its own right.
In this sense the earliest known published article of latin bitrades appeared in
[38], where they are referred to as exchangeable partial groupoids. Later, latin
bitrades became of interest to researchers of critical sets (minimal defining sets
of latin squares) ([25], [51], [3]). (These two branches of research were initially
independent, partly because they took place on opposing sides of the cold war
in the 1970s and 1980s.) In some early papers, latin bitrades are referred to as
latin interchanges.

It is impossible to give a comprehensive survey on the application of latin
bitrades, mainly because latin bitrades are such a fundamental concept, that
they are applied in many instances without the term “latin bitrade” ever being
mentioned. The terms “swap”, “move”, “mapping” and “name-change” have
each been used synonymously with “latin bitrade”.

This is the case, for example, in much of the literature on random latin
squares. One of the aims of this survey paper is to connect results that use latin
bitrades, in the hope that better use might be made of existing latin bitrade
theory. In turn, exposing applications of latin bitrades in the research literature
motivates pure latin bitrade research.

This paper is split into two main sections. In Section 1 we analyse the theory
of latin bitrades. This includes definitions and summarizes the study of latin
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bitrades for their own sake. Then, in Section 2, we look at applications of latin
bitrades to research problems involving latin squares. The focus of this survey
is to provide illustrative examples; for rigorous proofs of results, readers should
refer to the original papers.

Those with an interest in latin bitrades should also obtain a copy of Keed -
well’s recent survey paper on critical sets [51], which includes information on
latin bitrades not covered here.

2. The theory of latin bitrades

Sections 2.1, 2.2 and 2.3 provide an introduction to those unfamiliar with
latin bitrades. In Section 2.4 we explore in detail the topology and geometry
of latin bitrades. In Section 2.5 we show how some latin bitrades may be de-
fined via groups. Section 2.6 surveys results on homogeneous latin bitrades and
Section 2.7 analyses methods to construct and deconstruct latin bitrades.

2.1. What is a partial latin square?

A latin square L of order n is an n X n array, with the cells of the array
occupied by elements of a set S = {sg, s1,...,5,-1} (of size n) of symbols, such
that each symbol occurs precisely once in each row and once in each column. If
we also index the rows and columns of L by the sets R = {rg,r1,...7,—1} and
C ={co,c1,...cn_1}, respectively, then L may be thought of as a set of ordered
(row,column,symbol) triples. It is this definition of L that will be used in this
paper. Specifically, (r;,¢;, s;) € L if and only if symbol s occurs in row r; and
column c¢; of the latin square.

If we let R =C = S, then a latin square is precisely the operation table for a
quasigroup. A quasigroup is defined to be a closed binary operation which allows
left and right cancellation. Furthermore, the rows and columns of a latin square
may be reordered to allow an identity element. We say that such a latin sqaure is
in standard form. Latin squares in standard form are equivalent to loops. A loop
has all the properties of a group except for associativity. There is a rich algebraic
study of loops and quasigroups. However, latin squares, considered in their most
general sense, arguably behave combinatorially rather than algebraically. For
example, the number of latin squares of order n grows superexponentially in n,
and most latin squares have a trivial autotopism group ([55]). The focus of this
survey is combinatorial. While algebraic applications typically specify that R,
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C and S are equivalent sets; in combinatorial applications we sometimes wish
these sets to be distinct. Unless (and frequently) otherwise stated, in this paper
welet R=C=5={0,1,...,n—1}.

A partial latin square P of order n is an n X n array, with possibly empty
cells, such that each symbol from S occurs at most once in each row and at
most once in each column. Thus any subset of a latin square L is a partial latin
square. The converse, however, is not true, as some partial latin squares have
no completion to latin squares of the same order. (To see this, try and fill in a
sudoku puzzle without employing any strategy!)

Clearly a partial latin square of order n may be extended to a partial latin
square of any order m > n by a process of adding empty rows and columns. In
some instances we may wish to define a partial latin square P C R x C' x S such
that R, C' and S are of varying sizes, so that each element of R, C' and S occurs
somewhere within an ordered triple of P as a row, column or symbol, respec-
tively. In this instance, the order of P may refer to any n > max(|R|,|C|,|S|).
(An alternative approach is to ignore the concept of order for partial latin
squares.)

Two partial latin squares are said to be isotopic if one may be obtained from
the other by relabelling the sets R, C and S. However, isotopisms are not the
only type of equivalence relation on partial latin squares.

Consider the following, equivalent definition of partial latin squares. A partial
latin square P is a set of ordered triples from R x C' x S such that:

o if (r;,¢5,5%), (15, ¢j, 1) € P, then k =K/,
o if (r;, ¢y, Sk), (1i,¢jr, 8k) € P, then j = j', and
o if (1, ¢4, 8k), (rir,¢j,8,) € P, then ¢ =7d'.

It is clear from this definition that if we permute the sets R, C and S amongst
themselves, the property of being a partial latin square is invariant. Such a
relation is called a conjugacy or parastrophy. (The word parastrophy is sometimes
used as conjugacy has a separate meaning in group theory.)

Specifically, a partial latin square P has six parastrophes (including the trans-
pose PT):

P, P" ={(cj,ri,51) : (ri,cj,s8) € P},
{(riskrci) : (risejose) € P, {(cjysn,m0) ¢+ (riscj,s0) € P
{(sksmir¢5) = (riseg,s6) € Py, {(sk,¢5,m3) 0 (ri,¢5,88) € Pl
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If two partial latin squares are equivalent to each either via isotopy and/or
parastrophy, they are said to belong to the same main class or species.

2.2. Three ways to define a latin bitrade

We next give three equivalent definitions of a latin bitrade. We begin with
the most intuitive.

DEFINITION 2.1. A latin bitrade (T,T") of order n is a pair of partial latin
squares T and T” of order n such that:

e T and T” occupy the same set of filled-in cells,
e T and T are disjoint sets, and

e ecach row (column) of T contains the same set of symbols as the corre-
sponding row (column) of 7”.

The size of a latin bitrade is equal to |T|, i.e. the number of filled-in cells
in T (or, equivalently, T").

Example 2.2. The partial latin squares T' and T” shown below together form a
latin bitrade (T,T") of size 12 and order 4.

11213 21311
0 3 0

0 210

3|2 0 210 3
T T

If (T,T") is a latin bitrade, we may refer to 1" as a latin trade and T’ as
its disjoint mate. Equivalently, a latin trade is a partial latin square T for
which there exists a disjoint mate 7" such that (7,7") is a latin bitrade. It is
possible that a latin trade may have more than one choice of disjoint mate. (The
spectrum of sizes of latin trades with arbitrarily many disjoint mates is studied
in [1].)

We now give an equivalent definition of a latin bitrade.

DEFINITION 2.3. A latin bitrade (T, T") is a set of ordered triples from Rx C xS
such that for each (74, ¢;,s1) € T (respectively, T”), there exists unique i’ # 1,
7' # j and k' # k such that:
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o (ry,cj,s,) €T (respectively, T),
o (ri,cjr,si) € T', (respectively, T'), and
o (ri,¢j,s1) €T, (respectively, T').

Definition 2.3 is not as transparent as Definition 2.1, however it usefully high-
lights the symmetry of latin bitrades under conjugation. From this definition,
it is immediate that any isotopism or conjugate of a latin bitrade is also a latin
bitrade.

Our third and most succinct definition of a latin bitrade is as follows.

DEFINITION 2.4. A latin bitrade is any ordered pair of the form (L\ L', L'\ L),
where L and L' are distinct latin squares of order n.

Definition 2.4 demonstrates that latin bitrades describe precisely the differ-
ence between two latin squares of the same order.

A clarification needs to be made about the order of a latin trade defined in
this fashion. We note that not every latin trade of order n embeds into a latin
square of order n. But since any partial latin square of order m embeds into
a latin square of order n > 2m ([41]), it is indeed possible to define any latin
bitrade via Definition 2.4, as long as we allow the deletion of empty rows and
columns.

Ezxample 2.5. Consider the following latin squares:

01123 012311

11032 31102

2131011 113120

312|110 210113
L r

The latin bitrade (L \ L', L' \ L) is equal to the latin bitrade (T',7") given in
Example 2.2.

2.3. Elementary properties of latin bitrades

We note a few basic properties of latin bitrades. Firstly, (7,7") is a latin
bitrade if and only if (7”,7T) is a latin bitrade. It is thus possible to think of
a latin bitrade as an unordered pair {77,75}. In such an instance we refer to
the latin bitrade as being unordered. Unless otherwise stated, it is assumed that
latin bitrades are ordered.
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Many applications are easier to explain if we consider latin bitrades as ordered.
However, the number of isotopy classes of ordered pairs of latin bitrades is
not necessarily twice the number of isotopy classes of unordered pairs of latin
bitrades (see [62]). This is because some latin trades may be isotopic to their
disjoint mates. (In fact 7" and T”, as given in Example 2.2 above, are isotopic
to each other.) Moreover, the equivalence given later in Theorem 2.14 involves
unordered latin bitrades. For these reasons it seems to be counterproductive
to set a definition of latin bitrades as either ordered or unordered pairs, except
within a given paper as appropriate.

If (T,T") is a latin bitrade, it is not hard to see that each non-empty row
and each non-empty column must contain at least two symbols, and that each
symbol occurs at least twice (if at all) within 7"and 7. Drédpal and Kepka
[38] also showed the following:

LEMMA 2.6. (Drédpal and Kepka [38]) Let (T,T") be a latin bitrade with
no non-empty rows, columns or missing symbols. Then 3./|T| < |R|+ |C|+1S|.

To see this, observe that |T'| < |R||C|, |T| < |R||S| and |T'| < |C||S|. Thus,
IT| < 3(IRIIC| + [CIISI+[RIIS]) < (IR +|CT+ [S])*.

The smallest possible size of a latin bitrade is 4; such latin bitrades correspond
to latin subsquares of order 2 and are called intercalates. No latin bitrades of
size 5 exist; however Fu [42] showed that any size greater than 5 is possible.

A latin bitrade (7,7") is said to be primary (or connected) if there exists no
latin bitrades (U, U’) and (V, V') such that T = UUV and T = U'UV’. On the
other hand, a latin trade T is said to be minimal if there exists no latin bitrade
(U,U’) such that U C T. So if (T,T") is a latin bitrade with 7" minimal, then
certainly (7,7T") is primary. However, if (7,7") is a primary latin bitrade, then
T is not necessarily minimal.

As we shall see in a later section, minimal latin trades are of particular interest
in the study of critical sets. The Appendix in [20] includes a primary latin bitrade
(T, T") of size 40 such that T is a minimal latin trade but 7" is not. In [62], a list
of species representatives of all minimal latin trades of size at most 11 is given.
(This updates a list given in [29], in which there is an omission.) Furthermore,
[62] includes statistics on all latin bitrades of size up to 19.
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2.4. The genus of separated latin bitrades

In this section we exclude from R U C' U S any rows, columns or symbols
unused within any triple of a particular latin bitrade and we also assume that
R, C and S are pairwise distinct.

Each row r of a latin bitrade (T,7”) defines an alternating permutation of
columns and symbols, where ¢; is mapped to symbol s; if and only if (r, ¢;, s;) € T'
and symbol s; is mapped to column ¢y, if and only if (r, s, c) € T'. If this per-
mutation is a single cycle, then we say that the row r is separated. Similarly, we
may classify each column and symbol as being either separated or non-separated.
If every element of RUC U S (excluding unused rows, columns and symbols) is
separated, then we say that the latin bitrade (T,7T") is separated.

Any non-separated latin bitrade may be transformed into a separated latin
bitrade by a process of identifying each cycle in the permutation with a new
row, column or symbol, as shown in the following example.

Ezample 2.7. The first row of the latin bitrade (7',7”) is non-separated. The
separated latin bitrade (U, U’) is formed by splitting the first row of (7, 7") into

two rows.

14 44
14 | 35 | 41| 53 35 53
12 31 23 12 31 23
21 1435 | 52 | 14| 35 211435 | 5o | 14| 35
(T, 7" (U, U")

Thus a classification of separated latin bitrades includes, in some sense, all
latin bitrades.

Given a separated, primary latin bitrade (7,7"), we may construct a graph
G whose vertex set is RUC U S and whose edges are pairs of vertices that occur
within some triple of T' (or, equivalently, some triple of 7"). If we define white
and black faces of G to be the triples from T" and 7" (respectively), then we have
a face 2-colorable triangulation of G in some surface.

We next orient the edges of G so that each white face contains directed edges
from a row to a column vertex, a column to a symbol vertex and a symbol
to a row vertex. It is immediate that each face (black or white) is labelled
coherently; i.e. each triangular face has all 3 edges in either clockwise or anti-
clockwise direction on the surface. Thus the surface in which G is embedded is
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orientable, and Euler’s genus formula must give a non-negative, integer value for

the genus g¢:
g = 2+e—f-v)/2
= @43|T|=|T| = |T'| = |R| - |C] - |5])/2
= @Q+|T|-[Rl-ICI-15])/2 (1)

(where v, e and f are the number of vertices, edges and faces of G, respectively).

Ezample 2.8. The following example shows an intercalate latin bitrade (T,T")
and its corresponding graph G embedded in the plane. The triangles corre-
sponding to 7" are shaded. The triangle (ro, cg, So) is external.

G €
Bl So| S| %
Bl Sel % h

FIGURE 1. An intercalate (T,T") with its corresponding graph G

Let G* be the dual of an embedding of a graph G of a separated, primary latin
bitrade. Let D (on the same surface as G) be constructed from G* as follows.
Replace each 2-path from a white to a black to a white vertex by a single edge
between white vertices, in the process removing the black vertices. This graph
D has the same genus as G, and is the graph Drépal [36] uses when analysing
the genus of a latin bitrade.

We next give a direct (and more informative) construction for D, which in-
cludes a coherent orientation of its edges. Throughout this paper, permutations
are composed from left to right. Correspondingly, if permutation p acts on x
then zp denotes the image of x.
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DEFINITION 2.9. Let (T,7’) be a primary and separated latin bitrade. Define
the map (3,: T — T’ where (a1, a2,a3) = (b1, be, bs) implies that a, # b, and
a; = b; for i # r. (From Definition 2.3 of a latin bitrade, the map 8, and its
inverse are well defined.) In addition, let 71,72, 73: T'— T, where 71 = (205 v
Ty = ﬂgﬂfl and 73 = ﬁlﬁgl. For each i € {1,2,3}, let < be the set of cycles

in Ti-

Then we may define the graph D with vertex set T" and directed edges corre-
sponding to the mappings 71, 72 and 3.

Ezample 2.10. Consider the latin bitrade (7,7”) in Example 2.2. Label the

elements

—
S
—
—

~—

—

0,2,2),(0,3,3),(1,0,1),(1,1,0),(1,2,3),
(27 07 2)7 (2727 O)’ (27 3) 1)7 (37 07 3)7 (3’ 1’2)’ (3’ 37 O)

of T'with A, B,C,D,E,F,G,H,I,J, K, L in that order. Then 71, 75 and 73 from
Definition 2.9 are:

71 = (ACB)(DEF)(GHI)(JLK),
7 = (DJG)(AKE)(BFH)(CIL),
73 = (ADI)(BGK)(CJF)(ELH).

Figure 2 below shows the corresponding graph D embedded on the torus. To
form the torus, the top of the rectangle is shifted half of its length before being
glued to the bottom half. (So, for example, A is adjacent to E and K.) The left
and right sides of the rectangle are glued together without any shift. The thick,
dashed and thin lines represent 71, 75 and 73, respectively.

FIGURE 2. The graph D corresponding to the latin bitrade from Example 2.2
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THEOREM 2.11. (Drédpal, [36]) The mappings 11, 72 and 73 from Defini-
tion 2.9 satisfy the following conditions:

(Q1) If cycle p is in 7 and cycle p is in 75, 1 <r < s <3, then p and p act on
at most one common point.

(Q2) For each i€ {1,2,3}, 7, has no fized points.
(QS) T1T2T3 — 1.

So we have seen how to derive a set of permutations from a separated and
connected latin bitrade. In fact, this process is reversible:

THEOREM 2.12. (Drdapal, [36]) Let 71, 72, 73 be permutations on some set
X and fori € {1,2,3}, let < be the set of cycles of T;. Suppose that Ty, T2, T3
satisfy Conditions (Q1), (Q2) and (Q3) from Theorem 2.11. Next, let

T = {(pl,pg,p;;) : pi € A and the p; all act on a common point of X}
and
T' = {(p1,p2.p3) : pi € A, m,a', 2" are distinct points of X such that
zpr =12, 2'py=2a", 2"p3 =z}
Then (T,T") is a separated latin bitrade.

A proof of Theorems 2.11 and 2.12 may also be found in [21]. A consequence
of the theorems above is that any primary, separated latin bitrade is equivalent
to a set of permutations with particular properties.

Ezample 2.13. Let X = {A,B,C,D,E,F,G,H,I,J, K} and

n = (ACB)(DEF)(GHI)(JLK),
7 = (DJG)(AKE)(BFH)(CIL),
3 = (ADI)(BGK)(CJF)(ELH).

Observe that 71, 7o and 73 satisfy the conditions (Q1), (Q2) and (Q3) from
Definition 2.12. In fact, the latin bitrade thus defined is isotopic to that given
in Example 2.2.

A separated, primary latin bitrade of genus 0 is called a planar latin bitrade.
Planar latin bitrades possess a number of interesting properties. A planar Euler-
ian triangulation is an Eulerian graph which has an embedding in the plane such
that the faces of the graph are triangles. It turns out that such structures are
equivalent to planar latin bitrades:
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THEOREM 2.14. (Cavenagh and Lisonék, [23]) Planar embeddings of
unordered latin bitrades are equivalent to planar Eulerian triangulations.

We define B,, to be the latin square that is precisely the addition table for
the integers modulo n. Drapal shows how to construct planar latin bitrades
in B,, geometrically.

THEOREM 2.15. (Drépal, [34]) Let m and n be positive integers. Suppose
that we can partition the area of an equilateral triangle of side n into m smaller
(integer-sided) equilateral triangles, such that each vertex of a triangle occurs
as the vertex of at most 3 of the smaller triangles. Then there exists a planar
latin bitrade (T, T") of size m such that T' embeds into the addition table for the
integers modulo n.

We refer readers to [34] for a proof of this theorem, however we do include an
example that is informal but hopefully informative.

Example 2.16. On the left in Figure 3 is a decomposition of an equilateral trian-
gle into smaller equilateral triangles that satisfies the conditions of Theorem 2.15.
(Note that we have applied a transformation so that each triangle is now right-
angled and isoceles.) On the right is the corresponding planar latin trade in By
(constructed as in [34]), where the symbols of the latin trade are in bold and
italic and the symbols of the disjoint mate are shown as subscripts.

0,01 23|45 6

1 2131415

B,

FIGURE 3. A latin trade in B7 constructed as in Theorem 2.15

Next, observe that we can overlap the triangle decomposition with B7 on the
right, so that each right-angle vertex of a smaller triangle overlaps with one of
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the black symbols. Thus we observe a 1 — 1 correspondence between the filled
cells of the latin bitrade and the smaller triangles. Next, take any symbol s
in the disjoint mate and find its corresponding right-angle vertex. Look at the
other two vertices of the triangle and observe that s occurs in the corresponding
positions within the original latin trade. (In this process we identify the three
vertices of the original triangle with the cell (0,0).)

In [40] (and in [13] for a later, alternative proof) it is shown that any latin
trade within B,, has size at least elogp + 3, where p is the smallest prime that
divides n. Conversely, Drdpal has shown (via the triangle construction above)
that B, contains a latin trade of size O((logn)?) for any positive integer n. It
is conjectured that B, contains a latin trade of size O(logn) for each integer n;
this is an open problem which appears difficult to solve.

Theorem 2.15 suggests a possible connection between the genus of a latin
trade and the type of latin square it may be embedded into. Not all planar latin
bitrades embed into (Z,, +); however we conjecture the following.

CONJECTURE 2.17. If (T,T’) is a planar latin bitrade, then T embeds into the
operation table for some abelian group.

(Here we allow the abelian group to have possibly larger order than T'.)
Wanless has verified this conjecture computationally for the 10000 planar
latin bitrades of smallest size.

The smallest latin bitrade (T',7") of genus 1 has size 9 with 7" equal to a latin
square of order 3. This is generalized in [53] to the following:

THEOREM 2.18. (Lefevre, et al. [53]) Let g be an arbitrary non-negative
integer, and define n = [(3 4 /89 + 1)/2]. Then the minimum size of a latin
bitrade of genus g is:

3n+29g—3, ifn>2+4./2g9+1;
3n+29—2, ifn<2++29+1.

The smallest latin bitrade (7',7”) of genus 1 such that 7' is minimal is given
by Example 2.2.

2.5. Latin bitrades via groups

Theorem 2.12 from the previous section showed how to define a separated
latin bitrade from a set of permutations with particular properties. By letting a
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group act on itself by right translation, some latin bitrades may be defined from
groups without specifying an independent group action.

THEOREM 2.19. ([21]) Let G be some group. Let a, b, ¢ be non-identity elements
of G and let A = (a), B = (b) and C = (c) such that:

(G1) abc =1 and
(G2) [JANB|=]ANC|=|BNnC|=1.
Next, define:
T:{(gA,gB,gC): gGG}, T’:{(gA,gB,ga_lC); gEG’}.

The pair of partial latin squares (T,T") as defined above is a latin bitrade with
size |G|, |G : A] rows (each with |A| symbols), |G : B| columns (each with |B]
symbols) and |G : C| entries (each occurring |C| times).

If, in turn,
(G3) (a,b,c) =G,

then the latin bitrade is primary.

This construction does not give every separated latin bitrade, since not every
separated latin bitrade has the same number of symbols in each row or column.
However it provides a very succinct way of defining latin bitrades which are
highly symmetric in structure. In fact any latin bitrade defined from a group in
this fashion possesses a transitive autotopism group. Moreover, various proper-
ties of the latin bitrades may be encoded in the group structure succinctly, as
shown in [21].

Example 2.20. We construct a latin bitrade of size 12 as in Theorem 2.19. Here
a = (123), b = (214) and ¢ = (234). We use the following cosets of A = (a),
B = (b) and C = (c) within the alternating group Ay:

A ={1,(123), (132)} B ={1,(142),(124)}
cA  ={(234),(134),(12)(34)} aB = {(123),(234), (14)(23)}
1A = {(234), (124), (13)(24)} a~'B = {(134), (132), (13)(24)}
bA = {(142), (143), (14)(23)} 1B = {(243),(143), (12)(34)}
C = {1,(234), (243)}
aC = {(123), (143), (13)(24)}
a"lC = {(132), (12)(34), (142)}
bl = {(124), (134), (14)(23)}
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o B aB |a~'B|c¢ B

A C aC |a"'C

T'=1 cA C |vlC |a~lC
c Al b0 aC C
bA || a='C |b~1C aC'

* B aB |a~'B|c¢ 1B
A a"tC| C aC'

T'=1| .4 bv1C|alC| C
c A C b-1C| aC
bA || b-tC| aC e

The latin bitrade (7,7") is in fact isotopic to the one given in Example 2.2.

2.6. Homogeneous latin bitrades

The latin bitrade in Example 2.2 has the property that each row contains 3
symbols, each column contains 3 symbols and each symbol occurs 3 times, and
is thus (3-)homogeneous.

Similarly we may define (k-)homogeneous latin bitrades in the obvious fash-
ion. A 2-homogeneous latin bitrade is precisely a union of intercalates. From
Equation 1, any primary 3-homogeneous latin bitrade has genus 1. A geometric
construction for 3-homogeneous latin bitrades is given in [16]. The construction
uses a packing of the Euclidean plane with circles, which are split into arcs that
are identified with either rows, columns or symbols.

Perhaps surprisingly, this construction yields every possible 3-homogeneous
latin bitrade, as shown in [12]. (In fact, it has since been pointed out to me that
the result in [12] is implied by a more general result by Negami [58], which
states that any 6-connected graph with genus 1 is uniquely embeddable on the
torus.)

A geometric construction for minimal 4-homogeneous latin bitrades is given
in [17], however this does not give every possible 4-homogeneous latin bitrade.
Constructions of k-homogeneous latin bitrades are given in [6] for each k > 2.
In [19], minimal k-homogeneous latin trades of size km are constructed for each
k>3 and m > 1.75d + 3.
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Homogeneous latin bitrades are of interest because of their symmetry; they
are commonly found in the latin squares corresponding to the groups ((Z2)", +).
For instance, the latin trade T given in Example 2.5 is a subset of the latin square
L which is isotopic to the operation table for ((Z2)?,+). In [11] it is shown that
there are infinitely many 3-homogeneous latin trades which embed in ((Z3)", +)
for some n.

Ezample 2.21. Below (in italics) is my all-time favourite latin trade T, an old
friend which I discovered in 1995. It is 4-homogeneous, minimal, with unique
disjoint mate T’ (shown in subscripts) and, as shown below, embeds into a
latin square L which is isotopic to the operation table for ((Z2)3,+). The latin
bitrade (7, 7") may also be defined as in Theorem 2.19 via a semidirect product
of Zy X Zo with Zs.

Moreover, T is isotopic to L \ T', and T'U { (4, j, k)} contains a critical set of
L of size |T'| (see Section 3.1 for a definition of a critical set) for any choice of

(6,5, k) ¢ T.

0| 1|2 |3 |46| 5 |62]7
10,1325 46| 71|62
2 18| 05| 1 65| 7| 4|5
So| 2|1 05| 7 |65]56] 4
47| 5 | 6 |7 O | 1,12 ] 3
5 | 47| T2 | 6 | 1,1 0| 3 |2
6 | 79| 4 |57 2 |31 0] 15
791 6 |5, 4312 |1:]0

2.7. Constructions and deconstructions of latin bitrades

It is useful to consider techniques of “decomposing” latin bitrades into smaller
ones. Such methods may lead to inductive proofs of properties of latin bitrades.
We describe one method of decomposition in detail and briefly describe the
others.

Donovan and Mahmoodian [32] outlined a method of “adding” latin
bitrades as follows. Let (7,7") and (U,U’) be two latin bitrades of the same
order n, such that if (i, j) is a filled cell in both T and U, then either (i, j, k) €
TNU or (i,j,k) € T"NU for some symbol k. Suppose, furthermore, that if
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symbol k occurs in row (or column) ¢ of both 7" and U, then it occurs in either
the same cell of T' and U’ or in the same cell of 7" and U. Then, the operation
@ gives a well-defined latin bitrade:

(T, T') ® (U,U") = {TUUY\ {T" VU, {T' U\ {TUUY).

In fact, Donovan and Mahmoodian [32] showed that any latin bitrade
may be expressed as a “sum” of intercalates under the operation &.

Ezample 2.22. Below a latin bitrade of size 8 is expressed as the sum (@) of three
intercalates. For each latin bitrade, the disjoint mate is shown in subscripts.

14 44 14|44 1y 4
41|14 41|14
4|1y 41|14
41|14 41| |14 14]44

Note that in the above example, the intercalates in some cases have filled-in
cells which become empty when we take the sum (). In fact, some latin bitrades
cannot be expressed as the sum (@) of an intercalate plus a latin bitrade which
has a strictly smaller size. (Example 2.2 gives such a latin bitrade.)

With this obstacle in mind, in [15] a decomposition of an arbitrary latin
bitrade into smaller ones is given, such that in the deconstruction process the
size strictly decreases, and in the construction process non-empty cells do not
become empty cells.

A process by which any primary, separated latin bitrade of genus greater than
0 may be decomposed into two latin bitrades, each of smaller genus, is given
in [37]. Batagelj [2] shows how to construct planar Eulerian triangulations
inductively; from Theorem 2.14 this implies, in turn, the existence of an inductive
construction process for planar latin bitrades.

3. Applications of latin bitrades

3.1. Critical sets

A critical set C of order n is a partial latin square of order n that is a subset
of a unique latin square L of order n, and furthermore is minimal with respect
to this property. More formally, if C' C L’ and L’ is a latin square (of order n)
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then L' = L; and for any C’ C C, there must exist a latin square L' # L (of
order n) such that C' C L.

Ezxample 3.1. The following partial latin square C is a critical set of Bs.

C

The study of critical sets is closely related to the study of latin trades. To see
this, observe that if C is a critical set of a latin square L, then any latin trade
T C L must intersect C' in at least one element. (For, if not, C is contained
in the latin square (L \ T') UT’, where T” is a disjoint mate of T.) In fact, for
each element of C, there must exist a unique (minimal) latin trade 7" such that
|CNT|=1. It is no surprise, then, that most results on critical sets make heavy
use of latin trades ([18], [49], [45], [26], [24]).

A much studied open problem is to determine the smallest possible size of
a critical set of order n. We denote this value by scs(n). It is conjectured
that the correct value for scs(n) is equal to |n?/4]. (This has been verified
computationally for n < 8 ([4])). Critical sets of such size are known to exist in
B,, for each n > 1 (]25], [30]). Example 3.1 shows such a construction for Bs.

We now discuss how the evolution of latin trades has lead to improvements
on lower bounds for scs(n). Let T" be the set of elements in two rows of a latin
square L. Then T is a latin trade within L, with disjoint mate T” formed by
swapping these two rows. It follows immediately that any critical set of a latin
square has at most one empty row. In other words, scs(n) > n — 1.

Indeed, any two rows of a latin square of order n give rise to a derangement
(a permutation with no fixed points) of size n. The cycles of this derangement
lead to a partition of the two rows of the latin square into disjoint latin trades.
The example below shows two rows of a latin square that partition into three
latin trades, shown in plain, bold and italic fonts. The subscripts denote the
entries of the disjoint mates.

15 67 310 108 25 75 94 | 51 43 89
21 75 103 810 5o 67 49 15 34 98
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These latin bitrades are called cycle switches and also arise from pairs of columns
or pairs of symbols. The existence of many cycle switches in a particular latin
square L gives information about the possible sizes of critical sets in L. However,
many latin squares, including B,, when n is prime, contain no non-trivial cycle
switches. That is, each cycle switch exchanges entire rows and columns. (Such
latin squares are said to be atomic ([9]). It is an open problem to determine
whether atomic latin squares exist for non prime-power order.)

The first significant improvement on this lower bound was by Fu, Fu and
Rodger, who showed that scs(n) > |(7n — 3)/6]. Their proof uses results
on embeddings of partial latin squares. By studying latin trades which occur
in arbitrary sets of three rows in latin squares, Cavenagh [10] showed that
any critical set with an empty row has size at least 2n — 4. The result on latin
bitrades which underpins this is the following;:

THEOREM 3.2. ([10, Corollary 7]) In any set of three rows in any latin square of
order m, there exists a latin trade within these three rows with an empty column.

Note that the corresponding result for two rows is false; consider a pair of rows
from an atomic latin square. In [5], Bean analysed latin trades within three or
four rows of latin squares of order at most 9, establishing that scs(n) > 2n — 4
if n <9.

With an analysis of trades that occur within the union of three rows and
three columns of a latin square, Horak, Aldred and Fleischner [47]
showed that scs(n) > |(4n — 8)/3]|. Recently, a superlinear lower bound for
scs(n) has been established by Cavenagh [14], who showed that for all n,
scs(n) > n|(logn)'/3/2]. In this paper it is also shown that scs(n) > 2n — 32
and if n > 25, scs(n) > [(3n —7)/2].

The proof in [14] uses latin trades that exist in the union of two rows and
two columns in arbitrary latin squares. We describe the structure of these latin
trades as follows. Let 7 and 7’ be any two rows of a latin square L. Rearrange the
columns of L so that each cycle switch within these rows lies on an adjacent set
of columns, and furthermore so that if ¢; and c¢x41 are columns in the same cycle
switch, then cell (17, ¢x) contains the same symbol as (7, ¢xy1). For illustrative
purposes, we arrange the columns of the two rows above in such an order:

¢ci €2 C3 C4 Cs Ce Cr  Cg Cg Ci0
r 12 25 51 67 75 310 108 89 94 43
’r', 21 52 15 76 67 103 810 98 49 34
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Then, for any columns ¢ and cg4; that lie in the same cycle switch, there exists
a latin trade whose elements are each contained in either column ¢, column
Ck+1, or in rows 7 and r’ between columns ¢ and ¢j;.

Ezxample 3.3. In the latin square below we can observe two examples of such
latin trades. The second example, in bold, is also a cycle switch.

C1 Cp C3 C4 Cjh Cg

r| 3 12|21 4]|65] 56

13021 | 3|6 |54]45
51314 |1] 2] 62
26 | 4625|113
61| 5 [1le| 3 |42 24
416|523 |1

From above, it is clear that knowledge of latin trades that occur within ar-
bitrary latin squares is helpful to obtain information on scs(n). We shall see in
later sections that such latin trades are useful for a variety of problems.

The converse problem is to determine lcs(n), the largest possible size of a
critical set of order n. Various upper and lower bounds for les(n) have been given,
but a precise value is undetermined for general n. Stinson and van Rees
[60] showed via a “doubling” construction, that les(2™) > 4™ — 3™, for each
m > 1. So far these are the critical sets with relatively the largest number
of filled cells. Each element of these critical sets is contained in an intercalate
within the latin square that intersects the critical set precisely at that element;
such critical sets are called 2-critical sets.

Hatamiand Mahmoodian showed that les(n) > n?—(2+1In2)n?/Inn+
o(n?/Inn). This was improved by Ghandehari et al. to les(n) > n? — (e +
0(1))n®/3. Both results have been obtained using non-constructive methods.

As for an upper bound on les(n), trivially les(n) < n? — n, since each row
or column of a critical set must contain an empty cell. This was improved
by Bean and Mahmoodian [8] to les(n) < n? — 3n + 3. The best upper
bound so far for lcs(n) is by Horak and Dejter [48], who have shown that
les(n) < n? — [(Tn — /n — 20)/2].

A related question is to consider the spectrum of possible sizes of critical sets
of order n. In [28] and [7] it is shown that there exist critical sets of order n
and size t for each t such that [n?/4] <t < (n? —n)/2. Recently, Donovan,
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Lefevre, et al. [31] have shown that if 47~1 <t < 4™ — 3™ then there exists
a critical set of size t and order 2™.

For a more extensive treatise on critical sets in latin squares, see the recent
survey by Keedwell [51].

3.2. Generating random latin squares efficiently

In practice, the process of generating a random latin square efficiently is
straightforward if the number of configurations of a particular order is small.
For example, there are exactly twelve latin squares of order 3:

3|2 11312 3121 31211 21113 2113
21113 31211 1132 21113 31211 1132
211 2113 2113 1132 1132 31211

So to generate a random latin square of order 3, it suffices to index the above
set of squares in a list of size 12, then select, at random, an integer from 1 to
12. However, McKay and Wanless [55] recently showed that the number
of latin squares of order 11 is:

776966836171770144107444346734230682311065600000.

It is computationally infeasible to store a list of latin squares of that size. Thus
a different method is required.

One approach is to employ Markov chain Monte Carlo methods ([50]). Here
we start with a specific latin square, locate (at random) one of a restricted class
of latin trades within the latin square and replace it with its disjoint mate.
We repeat this process a large number of times, creating a Markov chain of
latin squares. If certain simple conditions are satisfied, this Markov chain will
generate a uniformly random latin square.

Firstly, we require a restricted set of latin trades such that each latin square
of order n possesses a small number (polynomial in n) of such trades. Secondly,
the overall process must be connected, in that it must be possible to change one
latin square to any other latin square of the same order by a series of trades in
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this restricted class. Thirdly, it must be possible to locate these trades within
a latin square in polynomial time. Next, the overall network on which the
random walk is conducted should have diameter (longest minimal path between
vertices) bounded by a polynomial in n. Lastly, the Markov chain should be
rapidly mizing (informally, it should approach the uniform random distribution
quickly).

As in the case of studying critical sets, we require latin trades which occur
in any type of latin square. Therefore combinatorial trades which are relatively
simple are the most appropriate to use. However, cycle switches are insufficient
as it is not always possible to “walk” between any two latin squares via cycle
switches alone, as shown in [61].

Two classes of latin trades have been given which satisfy the above require-
ments for an efficient algorithm (except that there is to date no proof that the
algorithms are rapidly mixing). We describe the types of latin bitrades that are
used below.

The first algorithm, developed by Jacobson and Matthews [50], uses
a type of “move” that goes outside the set of all latin squares. An example of
one of these moves is shown in bold in the diagram below:

al/b|lc|d b a c|d

blc|d]|a alb+c—a|d|a
=

cldlalb c d alb

dlal|b|ec d a b|ec

Notice that while the array on the right is no longer a latin square, the symbols in
each row and column still add up to a+b+c+d. Jacobson and Matthews
use a series of these moves to transform one latin square into another (and thus
the process is equivalent to replacing a latin trade with one of its disjoint mates).

The second type, developed by Pittenger [59] uses principally the follow-
ing result. (In this paper the process of replacing a latin trade with a disjoint
mate is called a “mapping” or “name-change”; we have reworded the lemma in
terms of latin trades).

THEOREM 3.4. ([59, Lemma 2.4]) Given any two cells (i,7) and (i',7") in a latin
square L that contain the same symbol k, there exists a latin bitrade (T, T") such
that T' C L uses at most three distinct symbols and (L\T)UT" contains symbol
k in cells (i,5') and (i, ).
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3.3. Analysing properties of random latin squares

The properties of random latin squares may be analysed via computational
enumeration; however as we saw in the previous section this approach is feasible
for small orders only. An alternative approach is to employ switchings. The
concept of switchings was developed by McKay and Wormald (e.g., [57]).

We describe, informally, how the switchings method may be applied to latin
squares. Let A and B be two sets of latin squares. Suppose that we also have a
set, of latin bitrades which describe the differences between latin squares in A and
latin squares in B. If we think of the latin squares as vertices and the bitrades
as edges, then we obtain a bipartite graph with partite sets of size |A| and |B|.
Suppose we know, in turn, that the degree of each vertex in A (equivalently, the
number of latin trades in A from our restricted set) is bounded below by ayn
and above by anax, defining byn and byiax similarly. Then, by counting the
number of edges in the graph in two different ways, we have that:

buvrn < 4] < bmax

amax ~ |B| T amix
Thus, we can approximate the ratio |A|/|B| using information about bitrades
without knowing the sizes of |A| and |B| explicitly.

If we know, for example, that A consists of all configurations having a prop-
erty (P) and B contains all remaining configurations, then we can estimate the
probability that a random configuration has property (P). The trick in this pro-
cess is to find a suitable class of latin bitrades, and then to exploit techniques
from combinatorial enumeration. As in the previous section, we need to use

latin trades that can be found in any type of latin square.

McKay and Wanless [56] apply the switching method using pairs of
cycle switches of size 6. One of the main results in [56] is that almost all latin
squares possess many 2 X 2 subsquares. In a submitted work by C. Greenhill,
I. Wanless and I [22], latin bitrades of the type shown in Example 3.3 are
used. In doing so we have shown that two rows of a random latin square share
many properties of a random derangement (a permutation with no fixed points).

3.4. Existence constructions

Suppose that we wish to construct a latin square (or an infinite family of
latin squares) with a specific property (P). One approach is to start with a
latin square L that has a well-known structure and an abundance of latin trades.
(Suitable candidates for L may be the back circulant latin square B,, or the latin
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square corresponding to another group operation table.) We then identify a latin
bitrade (7, 7T") such that T'C L and L' = (L \ T) UT" possesses property (P).
Since latin bitrades describe the difference between any two latin squares of
the same order, it is possible to define any existence construction for latin squares
as a problem involving latin bitrades. However it is somewhat absurd to claim
that such an approach is always practical or feasible. But this approach can
become feasible when the latin bitrade (T, 7”) has an easily defined structure.

We give an example where this is the case. In [63] the term “latin bitrade” is
unused; however as we shall see it is possible to analyse the constructions from
[63] in terms of latin bitrades. A bachelor latin square is one which possesses no
orthogonal mate (equivalently, a latin square which cannot be decomposed into
transversals). If n is even, then B, is a bachelor latin square. However if n is odd,
then B,, possesses an orthogonal mate for any n > 3. The existence of bachelor
latin squares of odd order n for each n > 5 is shown in [63] by Wanless and
Webb. Their construction may be thought of in terms of identifying a latin
bitrade (7',7") such that T'C B,, and (B,, \ T) UT" is a bachelor latin square.
The case n = 9 is given below, with the latin trade T shown in italics and the
disjoint mate T” as subscripts.

0y | 1p| 2 |3]|4|5] 6 |78
Is| 2 | 3 |14|5]6] 7 8|0
2134 |5]6|78|01
So| 4 |56 |7 |8|05]|1]2
4156 |7(8|0|1 (2|3
516 |7 (8|0]1]2 (3|4
6 | 7|18 1]0|1]2]|3 4|5
71810 11]2(3|41]5]|6
8 |01 | 1512|3469 (6]|7

It can be shown (see [63] for details) that the element (8,2,5) € (B, \T)uUT’
belongs to no transversal within (B, \ 7) UT’. Thus the transformed latin
square is a bachelor latin square. We might think of the latin bitrade (T,7T")
as “destroying” the property of B, having an orthogonal mate. As the above
example demonstrates, a knowledge of latin bitrades within highly structured

latin squares such as B,, can be useful for existence constructions.
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