



DOI: 10.2478/s12175-008-0102-3 Math. Slovaca **58** (2008), No. 6, 685–690

# DIFFERENCE POSETS AS COMMUTATIVE DIRECTOIDS WITH SECTIONAL ANTITONE INVOLUTIONS

# Ivan Chajda

(Communicated by Sylvia Pulmannová)

ABSTRACT. It is shown that every difference poset can be converted into a total algebra in a manner similar to that which is used for difference lattices. As a tool applied here we have commutative directoids and posets with sectional antitone involutions.

©2008 Mathematical Institute Slovak Academy of Sciences

The concept of a difference poset (or briefly a D-poset) was introduced by F.  $K \circ p k a$  [6] in 1992 as a powerful tool for investigations of the so-called quantum structures (see e.g. [4]). This was firstly applied to fuzzy set models of quantum mechanics. A long series of papers devoted to D-posets was published by F.  $C h \circ v \circ n \circ c$  and F.  $K \circ p \circ k \circ a$ , see e.g. [1], [2], [6], [7] and a complete list of references in [4]. As a source for our treaty, we refer the compendium [4].

**DEFINITION 1.** By a *D-poset* is meant a structure  $\mathscr{P} = (P; \leq, 0, 1, \ominus)$  such that  $(P; \leq)$  is a poset with a least element 0 and a greatest element 1 and a partial binary operation  $\ominus$  satisfying the following conditions

- (D1)  $b \ominus a$  is defined if and only if  $a \leq b$ ;
- (D2) if  $a \leq b$  then  $b \ominus a \leq b$  and  $b \ominus (b \ominus a) = a$ ;
- (D3) if  $a \le b \le c$  then  $c \ominus b \le c \ominus a$  and  $(c \ominus a) \ominus (c \ominus b) = b \ominus a$ .

If the underlying poset  $(P; \leq)$  is a lattice then the corresponding D-poset is called a *D-lattice*. It is well-known that every D-lattice (which is a partial algebra with respect to the operation  $\ominus$ ) can be converted into a total algebra

<sup>2000</sup> Mathematics Subject Classification: Primary 03G12, 03G25, 06A06, 08A55. Keywords: commutative directoid, sectionally antitone involutions, D-poset, D-lattice, D-directoid.

This work is supported by the Research and Development Council of the Czech Government via the project MSM6198959214.

### IVAN CHAJDA

replacing the partial operation  $\ominus$  by a new operation – defined as follows:

$$x - y = x \ominus (x \land y).$$

The aim of this paper is to show that, similarly, every D-poset can be converted into a total algebra, however, this way is not unique. For this, we need several new concepts. Let  $\mathscr{P} = (P; \leq, 0)$  be a poset with a least element 0.

For  $a \in P$ , the interval [0,a] will be called a *section*. A mapping  $f_a$ :  $[0,a] \to [0,a]$  is called a *sectional mapping*. Instead of  $f_a(x)$ , we will write briefly  $x^a$ . A sectional mapping  $x \mapsto x^a$  on [0,a] is called an *antitone involution* if  $x^{aa} = x$  and  $x \le y \implies y^a \le x^a$  for  $x, y \in [0,a]$ .

**DEFINITION 2.** A poset  $\mathscr{P} = (P; \leq, 0, 1)$  with 0 and 1 is said to be with *strict sectional antitone involutions* (with *strict SAI*, for brief) if for each  $a \in P$  there exists a sectional antitone involution  $x \mapsto x^a$  on [0, a] and, moreover,

$$a \le b \le c$$
 implies  $(b^c)^{(a^c)} = a^b$ . (\*)

The fact that  $\mathscr{P}$  is a poset with SAI will be expressed by the notation  $\mathscr{P} = (P; \leq, 0, 1, (^a)_{a \in P}).$ 

# THEOREM 1.

- (a) Let  $\mathscr{P} = (P; \leq, 0, 1, (^a)_{a \in P})$  be a poset with strict SAI. Define  $b \ominus a = a^b$ . Then  $(P; \leq, 0, 1, \ominus)$  is a D-poset.
- (b) Let  $\mathscr{P}=(P;\leq,0,1,\ominus)$  be a D-poset. For every  $a\in P$  and  $x\in[0,a]$  define  $x^a=a\ominus x$ . Then  $(P;\leq,0,1,(^a)_{a\in P})$  is a poset with strict SAI.

# Proof.

- (a): (D1) follows directly from the definition of sectional involutions. If  $a \leq b$  then  $b \ominus a = a^b \in [0,b]$  and hence  $b \ominus a \leq b$ . Since  $x \mapsto x^b$  is an involution, we have  $b \ominus (b \ominus a) = a^{bb} = a$  proving (D2). Since this involution is antitone, we have for  $a \leq b \leq c$  also  $c \ominus b = b^c \leq a^c = c \ominus a$ . Due to (\*) we conclude  $(c \ominus a) \ominus (c \ominus b) = a^c \ominus b^c = (b^c)^{(a^c)} = a^b = b \ominus a$  proving (D3).
- (b): By (D1) and (D2),  $x \mapsto x^a$  is a sectional mapping which is an involution. By (D3) we have that this involution is antitone and satisfies (\*) since

$$(b^c)^{(a^c)} = (c \ominus a) \ominus (c \ominus b) = b \ominus a = a^b.$$

The following concept was introduced in [5].

### DIFFERENCE POSETS AS COMMUTATIVE DIRECTOIDS

**DEFINITION 3.** By a *commutative directoid* is meant a grupoid  $(D; \sqcap)$  satisfying the following identities

- (C1)  $x \sqcap x = x$ ;
- (C2)  $x \sqcap y = y \sqcap x$ ;
- (C3)  $x \sqcap ((x \sqcap y) \sqcap z) = (x \sqcap y) \sqcap z$ .

It was shown in [5] that the relation  $\leq$  defined by

$$x \le y$$
 if and only if  $x \cap y = x$ 

is an order, the so-called *induced order* of  $(D; \sqcap)$ . Denote by  $L(x, y) = \{a \in D : a \le x \text{ and } a \le y\}$  the set of all lower bounds of  $\{x, y\}$ . It is easy to see that  $x \sqcap y \in L(x, y)$  for any  $x, y \in D$ .

Also conversely, let  $\mathscr{P} = (P; \leq)$  be a downward directed poset. A mapping  $\varphi \colon P \times P \to P$  will be called an L-mapping if  $\varphi(x, y) = \varphi(y, x)$  and  $\varphi(x, y) \in L(x, y)$ , and  $x \leq y$  yields  $\varphi(x, y) = x$ .

Let  $\varphi$  be an L-mapping on  $\mathscr{P}=(P;\leq)$ . Define  $x\sqcap y=\varphi(x,y)$ . It is an easy exercise to check that  $(P;\sqcap)$  is a commutative directoid.

**DEFINITION 4.** By a *D-directoid* is meant a commutative directoid  $(D; \sqcap)$  which has a least element 0 and a greatest element 1 with respect to the induced order  $\leq$  and such that  $(D; \leq, 0, 1, \ominus)$  is a D-poset. A D-directoid will be denoted by  $\mathscr{D} = (D; \sqcap, 0, 1, \ominus)$ .

With respect to the foregoing remark, every D-poset can be recognized as a D-directoid when an arbitrary L-mapping  $\varphi$  is chosen and  $x \sqcap y = \varphi(x,y)$ . Hence, it make sense to classify D-directoids.

**Lemma.** Let  $\mathscr{D} = (D; \sqcap, 0, 1, \ominus)$  be a D-directoid. Define  $x - y = x \ominus (y \sqcap x)$ . Then - is an everywhere defined operation on D satisfying the following properties:

- (1) if  $a \leq b$  then  $b a = b \ominus a$ ;
- (2)  $b a \le b$ ;
- (3)  $a (a b) = a \sqcap b$ :
- (4) b < a implies b a = 0.

Proof. Since  $a \sqcap b \leq b$ , it is plain that the operation — is everywhere defined and  $b-a=b\ominus(a\sqcap b)=b\ominus a$  for  $a\leq b$ . For (2), we have by (D2) that  $b-a=b\ominus(a\sqcap b)\leq b$ . To prove (3) we apply (D2) and (2) as follows

$$a - (a - b) = a \ominus ((a - b) \cap a) = a \ominus (((a \ominus (a \cap b)) \cap a)$$
$$= a \ominus (a \ominus (a \cap b)) = a \cap b.$$

(4): Suppose  $b \le a$ . Then  $a \cap b = b$  and  $b - a = b \ominus (a \cap b) = (b \ominus b) = 0$ .

We are going to get an axiomatization of D-directoids.

### IVAN CHAJDA

### THEOREM 2.

- (a) Let  $\mathscr{D} = (D; \sqcap, 0, 1, \ominus)$  be a D-directoid,  $\leq$  its induced order. Then the operation  $x y = x \ominus (y \sqcap x)$  satisfies the following conditions
- (A1) a 0 = a;
- (A2) a (a b) = b (b a);
- (A3) a b < a;
- (A4)  $a \le b \le c \text{ implies } c b \le c a \text{ and } (c a) (c b) = b a;$
- (b) Let  $\mathscr{P} = (P; \leq, 0, 1, -)$  be an ordered set with a least element 0 and a greatest element 1 and with a binary operation satisfying (A1)–(A4). Define  $x \sqcap y = x (x y)$ , and for  $y \leq x$  define  $x \ominus y = x y$ . Then  $\mathscr{D}(P) = (P; \sqcap, 0, 1, \ominus)$  is a D-directoid whose induced order coincides with  $\leq$ .

Proof.

- (a): (A1) follows by (1), (A3) is (2) and (A2) follows by (3) and (A4) follows by (D3).
- (b): By (A3) we have  $a-(a-b) \leq a$  and, by (A2), also  $a-(a-b)=b-(b-a) \leq b$  thus

$$a \sqcap b = a - (a - b) \in L(a, b).$$

If  $a \leq b$  then, by (A2), (A4) and (A1),

$$a \sqcap b = a - (a - b) = b - (b - a) = (b - 0) - (b - a) = a - 0 = a.$$

Hence,  $(P; \sqcap)$  is a commutative directoid. Moreover, if  $a \sqcap b = a$  then, by (A3), also  $a = b \sqcap a = b - (b - a) \le b$  thus its induced order coincides with  $\le$ .

Let  $b \in P$  and  $x \in [0, b]$ . Define  $x^b = b - x$ . By (A2) we conclude that  $x \mapsto x^b$  is a sectional mapping. By (A3) it is an involution and, due to (A4), it is antitone and satisfies (\*) of Definition 2. Hence,  $(P; \leq, 0, 1, (^a)_{a \in P})$  is a poset with strict SAI. Altogether,  $a \ominus b = a - b$  for  $b \leq a$  and, by the Lemma,  $\mathscr{D}(P) = (P; \sqcap, 0, 1, \ominus)$  is a D-directoid.

As already mentioned, every D-poset can be converted into a D-directoid, i.e. an algebra with two binary operations  $\sqcap$  and - and two nullary operations 0, 1 which are everywhere defined. It means that also every D-poset can be treated similarly as a D-lattice, see e.g. [2] and [3] for the details.

The method applied in the previous theorems is demonstrated by the following example.

# DIFFERENCE POSETS AS COMMUTATIVE DIRECTOIDS

*Example.* Let  $D = \{0, a, b, c, d, 1\}$  and the operation  $\ominus$  is given as follows (– means that it is not defined):

| $\ominus$ | 0 | a | b | c | d | 1                     |
|-----------|---|---|---|---|---|-----------------------|
| 0         | 0 | _ | _ | - | _ | _                     |
| a         | a | 0 | _ | _ | _ | _                     |
| b         | b | _ | 0 | _ | _ | _                     |
| c         | c | b | a | 0 | _ | _                     |
| d         | d | a | b | _ | 0 | _                     |
| 1         | 1 | d | c | b | a | -<br>-<br>-<br>-<br>0 |

The induced ordered set is visualized in Fig. 1.

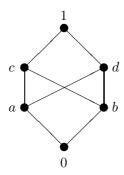


Figure 1

It is evident that  $(D; \leq)$  is not a lattice. Define an L-mapping as follows:  $\varphi(d,c) = \varphi(c,d) = b$  and  $\varphi(x,y) = x \wedge y$  in the remaining cases. Take  $x \sqcap y = \varphi(x,y)$ . Then  $(D; \sqcap)$  is a commutative directoid and the total operation — is as follows

| _ | 0 | a                          | b | c | d | 1 |
|---|---|----------------------------|---|---|---|---|
| 0 | 0 | 0                          | 0 | 0 | 0 | 0 |
| a | a | 0                          | a | 0 | 0 | 0 |
| b | b | b                          | 0 | 0 | 0 | 0 |
| c | c | b                          | a | 0 | a | 0 |
| d | d | a                          | b | b | 0 | 0 |
| 1 | 1 | 0<br>0<br>b<br>b<br>a<br>d | c | b | a | 0 |

(since e.g.

$$a - b = a \ominus (a \sqcap b) = a \ominus 0 = a,$$
  

$$c - d = c \ominus (c \sqcap d) = c \ominus b = a,$$
  

$$d - c = d \ominus (c \sqcap d) = d \ominus b = b).$$

### IVAN CHAJDA

Hence, our original D-poset  $(D; \leq, 0, 1, \ominus)$  can be described as a total algebra  $(D; \sqcap, 0, 1, -)$ . Let us note that the original D-poset can be completed into a total algebra by three possible manners since there exist just three L-mappings on  $(D; \leq)$ . They differs only on elements c, d, so the other alternatives are:  $\varphi(d, c) = \varphi(c, d) = a$  and  $\varphi(d, c) = \varphi(c, d) = 0$ .

### REFERENCES

- [1] CHOVANEC, F.—KÖPKA, F.: On a representation of observables in D-posets of fuzzy sets, Tatra Mt. Math. Publ. 1 (1992), 19–23.
- [2] CHOVANEC, F.—KÔPKA, F.: D-lattices, Internat. J. Theoret. Phys. 34 (1995), 1297–1302.
- [3] CHOVANEC, F.—KÖPKA, F.: Boolen D-posets, Tatra Mt. Math. Publ. 10 (1997), 183–197.
- [4] DVUREČENSKIJ, A.—PULMANNOVÁ, S.: New Trends in Quantum Structures, Kluwer Acad. Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000.
- [5] JEŽEK, J.—QUACKENBUSH, R.: Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49–69.
- [6] KÔPKA, F.: D-posets of fuzzy sets, Tatra Mt. Math. Publ. 1 (1992), 83-87.
- [7] KÔPKA, F.—CHOVANEC, F.: *D-posets*, Math. Slovaca **44** (1994), 21–34.

Received 27. 4. 2007 Revised 28. 8. 2007 Department of Algebra and Geometry Palacký University Olomouc Tomkova 40 CZ-779 00 Olomouc CZECH REPUBLIC E-mail: chajda@inf.upol.cz