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OSCILLATION OF FOURTH ORDER NONLINEAR
NEUTRAL DIFFERENCE EQUATIONS-II
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(Commaunicated by Michal Feékan)

ABSTRACT. Oscillatory and asymptotic behaviour of solutions of a class of
fourth order nonlinear neutral difference equations of the form

A2(r(n)A%(y(n) + p(n)y(n — m))) + q(n)G(y(n — k)) = 0
and
(E) A2(r(n)A2%(y(n) 4+ p(n)y(n — mog)) +q(n)G(y(n—k)) = f(n)

are studied under the assumption T{;) < oo, for different ranges of p(n).
n=0

Sufficient conditions are obtained for the existence of positive bounded solutions
of (E).
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1. Introduction

In [2], Kusano and Naito have studied oscillatory behaviour of solutions
of a class of fourth order nonlinear differential equations of the form

(r(t)y")" + yF(y*,t) =0,

where r and F' are continuous and positive functions on [0, c0) and [0, 00) % [0, 00)
respectively under the assumption that

(o]

(Ho) f % dt < oo.
0
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lutions, asymptotic behaviour.
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The object of this paper is to study the oscillatory and asymptotic properties
of solutions of a class of fourth order nonlinear neutral difference equations of
the form

A (r(n)A%(y(n) + p(n)y(n —m))) + q(n)G(y(n — k)) = 0, (1)

where A is the forward difference operator defined by Ay(n) = y(n+1) — y(n),
p, q are real valued functions defined on N (ng) = {ng,no+1,n0+2,...},n9 >0
such that g(n) > 0, G € C(R,R) is non-decreasing and uG(u) > 0 for v # 0 and
m > 0, k > 0 are integers, under the discrete analogue of the assumption (Hp)
as

r(n)

(Ag) r(n) is a real valued function such that r(n) > 0 and ) -5 < oco.
n=0

The associated forced equation

A2 (r(n)A%(y(n) + p(n)y(n —m))) + q(n)G(y(n — k)) = f(n), (2)

where f(n) is a real valued function, is also studied under the assumption (Ay).
Different ranges of p(n) and different types of forcing functions are considered.
In [3], [4] and [8], Parhi and Tripathy have discussed oscillation and as-
ymptotic behaviour of solutions of higher order difference equations of the form

A™(y(n) +p(n)y(n —s)) + q(n)G(y(n — k)) =0

and

A™(y(n) +p(n)y(n —s)) + q¢(n)G(y(n — k) = f(n).

Equations (1) and (2) can not be termed as the particular case of the above
equations in view of (Ag). Hence the study of (1) and (2) is very interesting.
Necessary and sufficient conditions for oscillation of (1) and (2) are obtained in
this paper.

By a solution of Eq. (1) on N(ng) we mean, a real valued function y(n) defined
on N(—p) ={—p,—p+1,...}, p = max{m, k}, which satisfies (1) for sufficiently
large n. If

y(n) = Ay, n=-p,—p+1,...,0,1,2,3..., (3)

are given, then (1) admits a unique solution satisfying the initial conditions (3).
A solution y(n) of (1) is said to be oscillatory if, for every integer N > 0, there
exists an n > N such that y(n)y(n+1) < 0; otherwise, it is called non oscillatory.

Equation (1) may be regarded as a discrete analogue of
(r(®) (y(®) + p(O)y(t = 7)) + q(OG(y(t —0)) =0,  t=>0.
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OSCILLATION OF FOURTH ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS-II

Oscillatory and asymptotic behaviour of solutions of this equation and the
associated forced equation are studied in [6].

2. Some preparatory results

This section deals with the lemmas which play an important role in estab-
lishing the present work.

Remark. From (Ag) it follows that
1
7;) Ty <
LEMMA 2.1. Let u(n) be a real-valued function defined on N(ng) with

A2(r(n)A2%u(n)) <0 for large n. If u(n) > 0 eventually, then one of the follow-
ing cases holds for all large n:

) >0 and A(r(n)A%u(n))
n) <0 and A(r(n)A2u(n)) >0,
n) <0 and A(r(n) (n))
) >0 and A(r(n)A2u(n)) >0,
n) < 0 eventually, then either one of the following cases (b), (c), (d)
Au(n) <0, A%u(n) < 0 and A(r(n)A%u(n)) > 0,
(f) Au(n) <0, A%u(n) <0 and A(r(n)A%u(n)) < 0.
holds for all large n.

u(n
Au(n) (
Au(n) >0, A%u(
Au(n) u(n

Proof. A%(r(n)A%u(n)) < 0, for all large n implies that u(n) is monotonic.
Then u(n) > 0 or u(n) < 0. The rest of the proof is simple and hence is
omitted. 0

LEMMA 2.2. Let (Ag) hold. Assume that u(n) is positive function defined on
N(ng) such that A?(r(n)A%u(n)) <0 for all large n. Then:
i) Suppose that the case (c) of Lemma 2.1 holds. Then there is a constant
L € (0,1) such that the following inequalities hold for all large n

(1) Au(n) = =A(r(n)A%u(n))R(n)

(I2) u(n) = LnAu( )
(Is) u(n) = - ( ( )A2u(n))nR(n),
where R(n) =
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i) u(n) > r(n)A%u(n)R(n) for all large n in case (d).

Proof.
(i) For s > n, A(r(s)A%u(s)) < A(r(n)A%u(n)). Then
s—1 s—1
Z A (r(i)A%u(i)) < Z A (r(n)A%u(n))
= (s—n)A (r(n)AQu(n))
that is,
r(s)A%u(s) < r(n)A%u(n) + (s — n)A (r(n)A%u(n)) .
Consequently,
Z A2u( n)A2u(n ) Y % +A (r(n)Azu(n)) Z Z—i;l,
that is,
0 < Au(s) < Au(n) + A (r i

Taking limit as s — oo, (I;) is obtained. For n > ny > 0, we have

u(n) > u(n) — u(no) Z Au(s) > Au(n) Z 1

S=ng S=ng

= (n—ng)Au(n).

Hence there exists a constant L, 0 < L < 1, such that u(n) > LnAu(n). (I5) is

the direct consequence of (I;) and (Iy).
ii) For s > t+ 1>t > n, r(s)A%u(s) > r(t)A%u(t). Thus

iAQu(i) > r(t)A2u(t) Z: r(%)
that is,
“Au(t) > Auls) — Au(t) > r(t)A2u(t) 2 r(%)
Consequently, as s — oo,
“Au(t) > r(t)A2u(t) it %
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Hence
s—1 s—1 0o 1
2
= Au(t) =) rt)A%u(t) B
t=n t=n 1=t
implies that
s—1 oo 1
2
—u(s) +u(n) > (r(n)A u(n)) ; ; Wi),
that is,
u(n) > r(n)A%u(n)R(n)
which is the required inequality. This completes the proof of the lemma. O

Remark. The inequality (Iy) still holds for the case (¢) if u(n) is eventually
negative.

Remark. Since R(n) < > (7> then R(n) — 0 as n — oo in view of (Ag).

LEMMA 2.3. Let (Ag) hold. If the conditions of Lemma 2.1 hold, then there
exist constants Ly > 0 and Ly > 0 such that L1R(n) < u(n) < Lan for all
large n.

Proof. Suppose that the first four cases of Lemma 2.1 hold for n > N > 1.
Summing the inequality A? (r(n)A%u(n)) < 0 from N to n — 1 four times we

get,
n—1 t—1 1
u(n) < u(N) + (n — N)Au(N) + r(N)A%u(N) e
t=Ni=N
n—1 t—1

n—1 t—1 n—1
If we denote g(n) = > Tli)v then Ag(n) = > —T(li) and A%g(n) = 1/r(n).
=N i=N i=N

Hence g(n) is the increasing function and lim g(n) = co. Similarly, if we denote
n—1t—1 n—1

gn(n)= > > %, then Agny(n) = >, ZZ’)‘ and A2%gn(n) = (n—N)/r(n)> 0,
t=N i=N i=N

that is, gn(n) is the increasing function and hence lim gn(n) = co. In cases
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(a) and (d) of Lemma 2.1, the last inequality becomes

u(n) < n M+ﬂAu(N)+Mniii
n n " by O

A (r(N)A%u(N)) S i-n

n =i )

Applying Stolz’s theorem [1], it follows that
(n) Ag(n)

. g .
1 —~ =1 =k

and

lim gx () = lim Agn(n) = ks.

n—o0 n n—o0

Hence there exists a constant Lo > 0 such that the last inequality reduces to
u(n) < nLs for all large n. For cases (b) and (c), we have that there exists a
constant Lo > 0 such that

IN

Au(N) +

gn(n)

u(n) u(é\f) LI N A (r(N)A%u(N))

n

< TLLQ,

for all large n. Further, u(n) > L R(n) for all large n in cases (a), (b) and (c)
because, since R(n) — 0 as n — oo and Au(n) > 0 for all large n, there exist
L; > 0 and ny > n; > 0 such that u(n) > u(ny) > L1R(n) for all n > no.
From Lemma 2.2, it follows that u(n) > r(n)A%u(n)R(n) in case (d). Hence for
any n > ny,u(n) > r(ny)A%u(n)A%u(n;)R(n) > LiR(n). Thus the lemma is
proved. O

LEMMA 2.4. ([5]) Let p, y, z be real valued functions such that z(n) = y(n) +
p(n)y(n —m), n > m >0, y(n) > 0 forn > ny > m, liminfy(n) = 0 and
HILH;O z(n) = L exist. Let p(n) satisfy one of the following conr;lcz??ions
(i) 0<p(n) <p1 <1,
(i) 1 <p2 <p(n) < ps,
(iii) ps <p(n) <0,

where p;, 1 <1i <4, are constants. Then L = 0.
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3. Oscillation results

Sufficient conditions are obtained for oscillation of solutions of Equations (1)
and (2). We need the following conditions.

A;) Foru > 0and v > 0, there exists A > 0 such that G(u)+G(v) > A\G(u+v).
As) G(uv) = G(u)G(v) for u, v € R.
A3) Q(n) = min{q(n),q(n —m)}, n > m.
Ay) For u >0, v >0, G(u)G(v) > G(uv).
As) G(—u) = —=G(u), u e R.
)

Ag) There exists a real valued function F(n) such that A? (r(n)A?F(n)) =
f(n) and F(n) changes sign.

(
(
(
(
(
(

(A7) Suppose that F'is same as in (Ag). In addition,

—o00 < liminf F(n) < 0 < limsup F(n) < co.

n—0o0 n—oo

(As) There exists a real valued function F(n) such that A? (r(n)A%F(n)) =
f(n) and lim F(n) =0.

Remark. (Az) implies (Aj). Indeed, G(1)G(1) = G(1), so that G(1) = 1.
Further, G(—1)G(-1) = G(1) = 1 gives (G(—1))? = 1. Because G(—1) < 0,
then G(—1) = —1. Consequently, G(—u) = G(—1)G(u) = —G(u). On the other
hand G(uv) = G(u)G(v) for v > 0, v > 0 and G(—u) = —G(u) imply that
G(zy) = G(x)G(y) for every z,y € R.

Remark. We may note that, if y(n) is a solution of (1), then z(n) = —y(n) is
also a solution of (1), provided that G satisfies (Az) or (Aj).

Remark. The prototype of G satisfying (A1), (A4), (As) is
G(u) = (a+blul) ul* sgnu,

where ¢ > 1, b > 1, A > 0 and p > 0. However, the prototype of GG satisfying
(A1) and (Ag) is G(u) = |u|"sgnu, where v > 0. This G also satisfies the
assumptions (A1), (A4) and (As).

THEOREM 3.1. Let 0 < p(n) < p < co. Suppose that (Ag)—(As) hold. If
(Ag) 20 h(n)Q(n)G(R(n — k)) < oo,
where h(n) = min{ R*(n + 1), R*(n —m +1)} and a > 1,

then all solutions of (1) are oscillatory.
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Proof. Without any loss of generality we may suppose on the contrary that
y(n) is a non-oscillatory solution of (1) such that y(n) > 0 for n > ng. Setting

z(n) = y(n) + p(n)y(n —m) (4)
we obtain z(n) < y(n) + py(n —m) and
A2 (r() A22(n)) = —g()Gly(n — m)) <0, (5)
but not identically zero for n > ng + p. Hence the four cases of Lemma 2.1 hold
with z(n). Suppose that one of the cases (a), (b), (d) of Lemma 2.1 holds. Then
for n > ny > ng + 2p.
0=A?(r(n)A%(n)) + G(p)A® (r(n — m)A%z(n — m)
+q(n)G(y(n — k) + G(p)g(n —m)G(y(n —m — k))
> A? (r(n)A%z(n)) + G(p)A? )
> A? (r(n)A%z(n)) + G(p)A? (r(n — m)A?z(n —m)
+AQ(n)G(L1)G(R(n —m))

due to (A7), (Az), (As) and Lemma 2.3. Consequently,

On the other hand, h(n) — 0 as n — oo and hence (Ag) yields the following
contradiction

Suppose that case (c¢) holds. From Lemma 2.2 and 2.3, it follows that there exist
constants L, Ly > 0 and n > ny > ny such that

LA (—r(n)Azz(n)) nR(n) < z(n) < nls, n > ng. (6)

Define f € C(R,R) such that f(z) = '™, « > 1. Using the mean value
theorem, we have that there exists 8 € R, such that A(—r(n)A2%z(n)) < 8 <
A(=r(n+1)A%z(n + 1)) and
f(A(=r(n+ 1A% (n+1))) — f (A (=r(n)A%z(n)))
= [A(-r(n+1)A%2(n+1)) = A (—r(n)A%2(n))] (1 — )37,
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Accordingly, we get

“A[A (=r(m)A2@m)] T = —(a—1)87 [A% (r(n)A%2(n))]

(@ — Dg(n)G(y(n — k)
[—A(r(n+1)A22(n + 1)1

and hence, using (6), we have

—A[A (=r(n)A%(n))]
where K = (L/L3) > 0. Thus

~ A[A (—r(m)A2z(m)] " = GEA [A (—r(n — m)A%(n - m)]
> (a—1)K*[R*(n+ 1)q(n)G(y(n — k))

+ G(p)R*(n —m + L)g(n —m)G(y(n —m — k))]
> AMa—1)K*h(n)Q(n)G(z(n —k))
> AMa — DKCG(L)h(n)Q(n)G(R(n — k)

11—«

2 (@ =1DR%n+1)K%n)G(y(n - k), (7)

implies that

> h(mQn)G(R(n — k)) < oo,

n=ns
which is a contradiction to (Ag). Hence the theorem is proved. g
THEOREM 3.2. Let 0 < p(n) <p< 1. If (Ag) and (Ag) hold and if

(A1o) io R*(n+ 1)G(R(n—k))q(n) = o0, a > 1,

then ev_ery solution of (1) oscillates or tends to zero as n — oo.

Proof. Since R(n) — 0 as n — oo, then (Ajg) implies that

S G(R(n — k))g(n) = o (8)
n=0
and hence
> q(n) = oc. 9)
n=0

Without any loss of generality let us suppose that y(n) is a nonoscillatory solu-
tion of (1) such that y(n) > 0 for n > ny > 0. Setting z(n) as in (4) to obtain
z(n) > 0 and (5) for n > ng + p. Consequently, the conclusion of Lemma 2.1
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holds for z(n). Consider the cases (a) and (b) of Lemma 2.1. In either of the
cases, z(n) is nondecreasing and hence

(1-p)z(n) < z(n) —p(n)z(n—m) = y(n) —p(n)p(n—m)y(n—2m) < y(n) (10)
for n > ng + 2p. By Lemma 2.3, there exist L; > 0 and n; > ng + 2p such

that z(n) > L1 R(n), n > ny so that (10) yields y(n) > (1 — p)L1R(n), n > n;.
Consequently, from (5) we obtain

> q(n)G(R(n—k)) <oo,  mng>mn+k,

n=ns

a contradiction to (8). For the case (c) of Lemma 2.1, we proceed as in the
proof of Theorem 3.1 to obtain (7). Since z(n) is nondecreasing and y(n) >
(1 —=p)L1R(n) for n > ny > ng + 2p, then

—A [A (—r(n)Azz(n))] e > (a—1)RYn+1)K%(n)G((1 —p)L1)G(R(n — k))

for n > ng > n1 + p. Consequently, summing of the above inequality we obtain

> B(n+1DG(R(n — k))g(n) < oo,

n=mn3s

a contradiction to (Ajg). In case (d) of Lemma 2.1, lim z(n) exists. If

lim inf y(n)> 0, then from (5) it follows that

(o]

> an) < o0,

n=0
which is a contradiction to (9). Hence liminfy(n) = 0. By Lemma 2.4, we
conclude that lim z(n) = 0. Thus y(n) < z(n) implies that lim y(n) = 0.

This completes the proof of the theorem. O

THEOREM 3.3. Let —1 < p < p(n) < 0. If (Ag), (A2) and (Ayy) hold, then
every solution of (1) oscillates or tends to zero as n — oco.

Proof. Let y(n) be a nonoscillatory solution of (1) such that y(n) > 0 for
n > ng > 0. Setting z(n) as in (4) we obtain (5) for n > ng + p. Consequently,
the conclusion of Lemma 2.1 holds for z(n). Hence z(n) > 0 or z(n) < 0 for
n >mny > ng + p. Suppose the former holds for n > n;. Assume that one of the
cases(a), (b) and (d) of Lemma 2.1 holds. From Lemma 2.3 we have that there
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exist L1 > 0 and ne > n; such that y(n) > z(n) > L1R(n), n > ny and hence
(5) yields

Z G(R(n —k))gq(n) < oo, ns > ng + p,

n=ns
a contradiction to (8). Suppose that the case (c) holds. Proceeding as in the
proof of Theorem 3.1, we obtain (7). Consequently, for n > ng > na + p.

—A[A (=r(n)A%z(n))] e (a—1DRYn+1)K%(n)G(L1)G(R(n — k))
due to y(n) > L1 R(n). Hence the above inequality yields

> G(R(n—k)g(n)B*(n+1) < o
n=ns
a contradiction to (Aqp).
Suppose the later holds for n > n;. Then y(n) < y(n — m), that is, y(n) is
bounded. Thus z(n) is bounded. Indeed, in each case (e) and (f) of Lemma 2.1,
lim z(n) = —oco. Accordingly, none of the cases (e) and (f) holds. In the case

n—oo

(b) or (c), —oo < lim z(n) <0. Then

0> HILH;O z(n) = li?jolip[y(”) p(n)y(n —m)]
> 11713Ls01;p[y(n) + py(n —m)]
> limsupy(n +hm1nf(py(n— m))

n—o0

(n)
limsup y(n) + plimsup y(n —m)

n—oo n—oo

= (1+p)limsupy(n).

Hence lim y(n) = 0. In the case (d), z(n) < p < 0 for n > ny > ny. Then
z(n) > py(n—m) implies that y(n—m) > (u/p) for n > na. Consequently, from
(5) we obtain

[ee]

G(p/p) Y a(n) <oo,  ng>na+k

n=mns

a contradiction to (9). The case y(n) < 0 for n > ng may similarly be dealt
with. Hence the proof of the theorem is complete. O

THEOREM 3.4. Suppose that —co < p1 < p(n) < p2 < —1. If (Ag), (A2)
and (A1o) hold, then every bounded solution of (1) oscillates or tends to zero as
n — oo.
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Proof. Let y(n) be a bounded nonoscillatory solution of (1) such that y(n) > 0
for n > ng > 0. Then from (5) it follows that z(n) > 0 or z(n) < 0 for
n > ny > ng + p, where z(n) is given by (4). If z(n) > 0 for n > ny, then each
of the cases (a), (b) of Lemma 2.1 holds for z(n). Proceeding as in the proof of
the Theorem 3.3, we arrive at a contradiction. Next, we suppose that z(n) < 0
for n > ny. Since R(n) — 0 as n — oo, then (Ajp) implies (9) and

i R%(n +1)q(n) = cc. (11)
n=0

In the case (b) or (c) of Lemma 2.1, —oo < lim z(n) < 0. Let —oo <

n—o0

lim z(n) < 0. Then there exists ny > ny and 8 < 0 such that pyy(n —m) <

n—o0

z(n) < 8, n > ng and hence in the case (b) of Lemma 2.1, it follows that

[ee]

GB/p) Y qln) < o,

n=ns

a contradiction to (9). In the case (c), first inequality of Lemma 2.2(i) yields
that

—A (’I“(TL)AQZ(H)) < Az(n)/R(n) < —z(n)/R(n)

and hence

V

—A [A (—r(n)Azz(n))]ka

implies that

(a — 1)g(n)G(Bpy )R (n + 1)
[2(n 4 1)

—A[A (=r(n)A%2(n))] e

for n > ny > n1 + p. Further, Az(n) > 0 for n > ny implies that 0 > z(n) >
z(ng) = 7. Consequently, the last inequality reduces to

(a — 1)g(n)G(Bpy YR (n + 1)
(=)~

~A[A (=r(n)A%2(n)] T >

for n > ng > ny + p. Thus
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a contradiction to (11). If lim z(n) = 0, then we obtain

0= nan;O z(n) = hnH_l)lgf[y(“) p(n)y(n —m)]
< linni)igf[y(”) + p2y(n — m)]
< limsupy(n) + hm 1nf(102?J( m))
= 1i:nﬁsotjp y(n) + p2 limsup y(n —m)

= (1 + p2)limsupy(n),

n—o0

where no sum is of the form co—oo due to bounded y(n). Since (1+p3) < 0, then
lim y(n) = 0. In case (d), one may proceed as in the proof of the Theorem 3.3

to get a contradiction. However, such a contradiction can not be obtained either
in the case (e) or in the case (f) due to lim z(n) = —oco. In these two cases, since
n—oo

z(n) > pry(n —m), then lim y(n) = oo, a contradiction to the boundedness
n—oo

of y(n).
The case y(n) < 0 for n > ny is similar and hence is omitted. This completes
the proof of the theorem. O

Ezxample. Consider
A? [ne"A2(y(n) + p(n)y(n — 1))] + q(n)y3(n —-2)=0, (12)

where n > 1, p(n) = —(e 2 +e™ ™), g(n) = (e>+1)2e>"=2[(e? +e+2)n+2e+2].
It is easy to see that (12) satisfies all the conditions of Theorem 3.3. Hence
every solution of (12) oscillates or tends to zero as n — oo. In particular,
y(n) = (—=1)"e~™ is an oscillatory solution.

THEOREM 3.5. Let 0 < p(n) < p < oco. Suppose that (Ag), (A1), (As)—(As)
hold. If

(A1) i::kh(n)Q(n)G(F+(n —k) = 0 = Z h(n)Q(n)G(F~(n — k)), where
h(n) = min{R*(n+1),R*(n+1—m } a> 1,

then all solutions of (2) are oscillatory.

Proof. (Ag) implies that R(n) — 0 as n — oco. Then h(n) — 0 as n — oo and
hence (A;;) implies that

ZQ G(FT(n—k) =o00=Y Qn)G(F (n—Fk)). (13)
n=~k
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Let y(n) be a non oscillatory solution of (2) such that y(n) > 0 for n > ng > 0.

Set w(n) = z(n) — F(n) for n > ng + p, where z(n) is given by (4). Hence

0 < z(n) <y(n)+ py(n —m) for n > ng + p. Equation (2) may be written as
A? [r(n)A%w(n)] = —q(n)G(y(n — k)) < 0 (14)

for n > ng + p. Hence w(n) is monotonic. With w(n) we have two cases,
w(n) > 0 or w(n) < 0 for n > ny > ng + p. Ultimately, a contradiction is
obtained to (Ag) if w(n) < 0, that is, 0 < z(n) < F(n). Further w(n) > 0 for
n > ny. Consequently, Lemma 2.1 holds for w(n). Clearly, w(n) > 0 yields that
z(n) > F*(n) for n > ny. Using (A1), (A3) and (A4) we get
0>A? (r(n)AQw(n)) + G(p)A? (r(n — m)A*w(n —m)) + AQ(n)G(z(n — k))

> A? (r(n)A%w(n)) + G(p)A? (r(n — m)A%w(n —m)) + AQ(n)G(F T (n — k))
for n > ng > ng + 2p. If one of the cases (a), (b), (d) of lemma 2.1 holds, then
it follows from the above inequality that

Z Qn)G(FT(n—k)) < oo,

n=nqo+k

a contradiction to (13). Assume that the case (c) of Lemma 2.1 holds. Then the
use of Lemma 2.2 and 2.3 yields that there exist positive constants L, Lo and
ng > no such that

LA (—r(n)AQw(n)) nR(n) < w(n) <nLs,n > ns
and hence
—A [A (=r(n)A%z(n))] e s (a — DR n+1)K%(n)G(y(n—k)), (15)
where K = (L/Ly) > 0. Thus
—A[A (—r(n)A%z(n))] b G(p)A [A (—r(n —m)A%z(n — m))] e
> Ma —1)K*R*(n+1)Q(n)G(z(n — k))
> AMa—1)K*R*(n+1)Q(n)G(FT(n—k)).
Summing the above inequality we obtain

Z h(n G(Ft(n—k)) < oo,

n=nz+k

a contradiction to (A11). If y(n) < 0 for n > ny, then we set x(n) = —y(n) to
obtain z(n) > 0 for n > ny and

A%(r(n)A%(z(n) + p(n)a(n —m))) + ¢(n)G(z(n — k)) = f(n),
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where f(n) = —f(n). If F(n) = —F(n), then A%(r(n)A2F(n)) = —f(n) =
f(n) and F(n) changes sign. Further, F*(n) = F~(n) and F~(n)) = F*(n).
Proceeding as above we obtain a contradiction. Hence the theorem is proved. [

THEOREM 3.6. Let 0 < p(n) < p < oo. Suppose that (Ag), (A1), (As)—(As),
(Ag) and (A11) hold. Then every solution of (2) oscillates or tends to zero as
n — 0o.

Proof. As in the proof of the Theorem 3.5, we obtain w(n) > 0 or w(n) < 0
for n > ny; > ng + p. If w(n) > 0 for n > nq, then by the similar steps of the
Theorem 3.5 we have a contradiction. Let w(n) < 0 for n > n;. Then y(n) <
z(n) < F(n) and hence limsupy(n) < 0 by (Ag). Consequently, nh—{lgo y(n) =0.

n—oo

The proof of the theorem is therefore completed. O

THEOREM 3.7. Let 0 < p(n) < p < oo. Let (Ag), (A1), (Asz)—(As) and (As)
hold. If

(A12) Z_fk h(n)Q(n)G(|F(n — k)|) = oo,
then every bounded solution of (2) oscillates or tends to zero as n — occ.

Proof. As in the proof of the Theorem 3.5, we obtain (14). Hence w(n) > 0
or w(n) <0 for n > ny > ng+ p. Let F(n) > 0. If w(n) > 0 for n > nq, there
exists ng > ny such that z(n) > F(n), n > ny. Using (A1), (As) and (Ay) we
get

0 > A%(r(n)A%w(n)) + G(p)A%(r(n — m)A%w(n —m)) + A\Q(n)G(F(n — k))

for n > n3 > ny + p. If one of the cases (a), (b), (d) of Lemma 2.1 holds, then

o0

S Qm)G(F(n— k) < o,

n=nsz+k

which is a contradiction to (A13), because (Aj2) implies that
Y Q)G(F(n—k)) = cc.
n=k

In case (¢) of Lemma 2.1, we may proceed as in the proof of Theorem 3.5 to
obtain

Y. h(m)QM)G(F(n—k)) < oo,

n=nsz+k
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a contradiction to (Ai2). Hence w(n) < 0 for n > nq, that is, y(n) < F(n).
Consequently, liminfy(n) = 0. Further, in each of the cases (b) and (c) of

Lemma 2.1, lim w(n) exists and hence lim z(n) exists. Since y(n) is bounded,
n—oo n—oo

then w(n) is bounded. In the case (d) of Lemma 2.1, lim w(n) exists and hence

lim z(n) exists. On the other hand, the cases (e) and (f) of Lemma 2.1 do not

hold here due to bounded w(n). From Lemma 2.4, it follows that lim z(n) = 0.

As z(n) > y(n), then lim y(n) = 0.

Next, we suppose that F(n) < 0 for n > ng. In this case w(n) < 0 implies
that 0 < z(n) < F(n), a contradiction. Hence w(n) > 0 for n > n;. Since w(n)
is bounded, the case (a) of Lemma 2.1 does not hold. Further, in each of the
cases (b), (c) and (d) lim w(n) exists. From (14) it follows that

S a(m)Gly(n — k) < oo

in each of the cases (b) and (d). We claim that liminf y(n) = 0. If not, we can

find v > 0 and n* > 0 such that y(n) > v for n > n*. Let ng > max{ns+k,n*}.
Accordingly, the last inequality gives

G(7) Y aln) < oo,
n=ns
which contradicts the assumption (A1z) due to @(n) < g(n). So our claim holds.
In case (c) of Lemma 2.1, we obtain (15) which yields

Y Wn)g(n)G(y(n — k)) < oo.

n=mn3s
oo
Hence lim y(n) = 0; otherwise ) h(n)g(n) < oo, which contradicts the as-
n—oo n=ns

sumption (Ajz). From Lemma 2.4, it follows that lim z(n) = 0 and hence

n—o0

lim y(n) = 0. The case y(n) < 0 for n > ng is similar. Thus the theorem is

proved. O

Remark. Equation (2) does not admit a non oscillatory solution due to The-
orem 3.5, where F'(n) changes sign only. However, when the assumption (Asg)
hold, Theorem 3.6 implies that only some oscillatory solutions of (2) could tend
to zero as n — oo. Without the assumption (Aj;), Theorem 3.7 predicts differ-
ently to that of the Theorems 3.5 and 3.6. Hence it seems that the nature of the
forcing term influence the behaviour of the solutions of (2).
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THEOREM 3.8. Let —1 < p < p(n) < 0. Suppose that (Ay), (A7) and (10) hold.

if
(A19) 3 R(n+ Dam)GE* (n— k) = 00 = 3 g(m)GE (n +m — ),

and
(A1) 5 R+ Da(m)G(F~(n k) = 00 = 3 a()G(=F*(n-+m—F)),

then a solution of (2) oscillates.

Proof. As in the proof of the Theorem 3.5, we obtain w(n) > 0 or w(n) < 0
for n > ny > ng + p. If w(n) > 0, then y(n) > F(n) and hence y(n) > F*(n),
n > ni. Consequently, in each of the cases (a), (b) and (d) of Lemma 2.1, we
obtain from (14) that
> amGEH (k) < o,
n=ni1+k
which contradicts the assumption (A;3). Using (15) in the case (¢) of Lemma 2.1,
we get
> R*(n+1)q(n)G(FF(n—k)) < oo,
n=nqo+k

which contradicts the assumption (A;3). Hence w(n) < 0 for n > n;. We claim
that y(n) is bounded. If not, then there exists a sub sequence {n/;} of {n} such
that n; — oo and y(n);) — 0o as j — oo and y(n)) = max{y(n) : ny <n <nj}.
Hence

w(n’;)

; y(n;) + py(n; —m) — F(n})

(1+p)y(nj) — F(nj)

and using (A7), we come to the following contradiction that w(n’) > 0 for all

(AVARAY,

large j. So our claim holds and w(n) is bounded. Hence none of the cases (e)
and (f) of Lemma 2.1 holds. Since w(n) < 0, then y(n) > F~(n+ m). Thus in
each of the cases (b) and (d) of Lemma 2.1, we obtain from (14) that
> amGE (- m k) < oo,
n=ni1+k
which contradicts the assumption (Aq3). Let the case (¢) of Lemma 2.1 hold.
Then proceeding as in the proof of the Theorem 3.4 for the case (c¢) when
z(n) < 0, replacing z(n) by w(n) and using (A7), we get a contradiction to (11).
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If y(n) < 0 for n > ng, then one may proceed as above. This completes the
proof of the theorem. O

THEOREM 3.9. Suppose that all the conditions of Theorem 3.8 are satisfied
except (A7), which is replaced by (Ag). Then every solution of (2) oscillates or
tends to zero as n — 0o.

Proof. Ifw(n) > 0, then a contradiction is obtained in each of the cases (a)—-(d)
of Lemma 2.1. Hence w(n) < 0 for n > ny > ng + p, that is, z(n) < F(n). Since
z(n) > y(n) + py(n —m), (1 +p) > 0 and limsup z(n) < 0, then lim y(n) = 0.
Hence the proof is complete. O

THEOREM 3.10. Let —oo < p < p(n) < 0. If (Ag), (A2), (A7), (A13) and (A14)
hold, then a solution y(n) of (2) oscillates or |y(n)| — oo as n — oo.

The proof is similar to that of Theorem 3.8 and hence is omitted.

THEOREM 3.11. Let —1 < p < p(n) < 0. Suppose that (Ag), (Az) and (As)
hold. If

(A1) 22 a(m)R*(n+ )G (|F(n = k)|) = 00, > 1,
n=~k
then every solution of (2) oscillates or tends to zero or tends to oo as n — oo.

Proof. As in the proof of the Theorem 3.5, we get w(n) > 0 or w(n) < 0 for
n > ny > ng + p. Assume that w(n) > 0 for n > ny. Then y(n) > F(n). From

[oe]

(Ay5) it follows that zk q(n)G (|F(n —k)|) = oo, qu(n)Ra(n +1) = oo and

> q(n) = oo, due to F(n) — 0 and R*(n+ 1) — 0 as n — oo. If we suppose
k

that F(n) > 0, for n > ny > nq, then in each of the cases (a), (b) and (d) of
Lemma 2.1, we have from (14) that

[ee]

Y. am)G(F(n—k)) < oo,

n=ns+k

a contradiction. In the case (¢) of Lemma 2.1, we obtain from (15) that
> q(n)R*(n+ 1)G(F(n—k)) < oo,
n=ns+k
which contradicts the assumption (A;5). Accordingly, F(n) < 0 forn > ny > n;.
In the case (a) for w(n), lim w(n) = oo and accordingly, using (Ag), we get

lim z(n) = oo. Hence, y(n) > z(n) yields lim y(n) = co. In each of the cases
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(b) and (c) of Lemma 2.1, lim w(n) =p3,0< 3 <oo. If 8 = oo, then as in the
previous case we get that lim y(n) = co. Otherwise, if 5 € (0,00), using (As),

we have that lim z(n) = 3. From (14) we get

S amGlyln— k) < o, (16)
n=ns+k
in the case (b). In the case (c), (14) yields
D" q(n)R*(n+1)G(y(n — k)) < 0.
n=nqo+k

Hence liminf y(n) = 0. From Lemma 2.4 it follows that § = 0, a contradiction.
In the cggeoo(d) of Lemma 2.1, (16) holds and lim w(n) = 3 € [0,00) implying
that lim z(n) = € [0,00). If B € (0,00), as in the case (b) we come to the
contrgaaoc?:ion. If 8 =0, since z(n) > y(n) + py(n —m) and (1 + p) > 0, we
conclude that y(n) is bounded. Accordingly, limsupy(n) = 0, which implies

that lim y(n) = 0.

Let w(n) < 0 for n > ny. Then the following analysis holds for F'(n) > 0 or
F(n) <0. Asin the proof of Theorem 3.8, we may show that y(n) is bounded and
accordingly w(n) is bounded. Consequently, the cases (e) and (f) of Lemma 2.1
do not hold. Since z(n) < F(n), n > n1, we have that limsup z(n) < 0. Thus

in the cases (b), (c¢) and (d), we conclude from

0 > limsup[y(n) +py(n —m)] > limsupy(n) + liminf(py(n —m))

n—o0 n—oo

= (1+p)limsupy(n).

that lim y(n) = 0. Similar conclusions can be obtained for the case y(n) < 0,

n—oo

n > ng. Thus the theorem is proved. O

COROLLARY 3.12. Suppose that the conditions of Theorem 3.10 hold. Then
every bounded solution of (2) oscillates or tends to zero as n — oo.

Remark. Theorems 3.8, 3.11 and Corollary 3.12 do not hold for homogeneous
equation (1).

Example. Consider
A2 [e"AQ(y(n) +(1+e™My(n—1))] + (ae™" + be 2" +e3)y3(n —1)

17
— (_1)n+1e3n’ n > 0, ( )
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where a = e?(e—1)(e+1)%(e? +1)%, b = —4e*(e+1)?, R(n) = e(e—1)"2%e"" and
Q(n) = (ae™™ + be2" 4 €%). Taking o = 2, we get h(n) = (e — 1)~ 2e~(n+1),
Setting F(n) = (—1)"*1e?"/[(e3+1)(e*+1]*, we obtain A2[e"A2F(n)] = f(n) =
(=1)"*tLe3™. Since

Ftn) = e/[(e* +1)(e* + 1)]*, if n is odd
= 0, if n is even
and
F=(n) = /[ +1)(e® + 1)), if n is even
= 0, if n is odd
then

D (e —1)"%e ) (ae™ + b + ®)G(F T (n — 1))
n=1

= Y e e~ 1) 2(ae™" +be 1 4 P25/ (€8 + 1) (e + 1)
n=1

}712 (ae®™ + be*™ + ePe?™)

= Z e fe—1)"2[(e*+1)(e* +1)

Hence every solution of (17) oscillates by Theorem 3.5. In particular, y(n) =
(=1)™e™ is such a solution of (17).

4. Existence of positive solutions
In this section some conditions are obtained for the existence of bounded
positive solutions of (2).

THEOREM 4.1. Let 0 < p(n) < p < 1. Assume that G is Lipschitzian on the
intervals of the form [a,b], 0 < a < b < oo and F(n) changes sign such that
—(1—=p)/8 < F(n) < (1—p)/2, where F is same as in (Ag). If

(AD) Zo ntl < 0o and

r(n)

(A1) Y. (n+1)g(n) < oo,

n=0

then (2) admits a positive bounded solution.
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Proof. It is possible to choose a positive integer N; such that

LY (41 <@-p/2), > Z(;)l <
n=N1 n=N

where L = max{L;,G(1)} and L, is the Lipschitz constant of G on [(1—p)/8,1].
Let X = ¢ be the Banach space of all real valued functions x(n), n > N; with
supremum norm

]| = sup{|z(n)| : n > Ni}.
We define a subset S of X as follows:
S={zeX: 1-p)/8<a(n) <1, n>N}.

Hence S is a complete metric space with the metric induced by the norm on X.
Let us define the mapping 7': S — X as follows:

Ty(N1+p), Ni<n<Ni+p
(Ty)(n) = { —p(M)y(n —m) + 2 + F(n)
- ; % g(s —i+1)q(s)G(y(s—k)), n>Ni+p.

Hence for n > Ny, Ty(n) < (1+p)/2+ (1 —p)/2=1 and

Tyin) > —p+ (42— (- p)/s— L2 =y
because for n > Ny,
S Y e i+ Da(e)Gly(s — )
<oy = =) (s — i+ Da)
<Y T Yol + ol
<6 Y T D a4 o)
=N s=N.
<(1-p)/4
Thus Ty € S, that is, T: S — S. Further, for z,y € .5,
[Ty(n) ~ Ta(w)] < plle — ll + 301~ Pz~ yll = 13p + llz — ]
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Hence ||Ty—Tz| < 22 {|z—y]|, for every , y € S implies that T is a contraction.
Consequently, T has a unique fixed point y in S which is the required solution
of (2) such that (1 —p)/8 < y(n) < 1, n > Nj. The proof of the theorem is
complete. O

THEOREM 4.2. Let —1 < p < p(n) < 0. If (A}) and (Asg) hold, G is Lips-
chitzian on the intervals of the form [a,b], 0 < a < b < 0o and F(n) changes
sign such that —(1+p)/8 < F(n) < (1+p)/2, then (2) admits a positive bounded
solution.

Proof. It is possible to choose N7, sufficiently large such that

LZ(n+1)q(n)<(1;p), 3 ntl

’
n=N1 n=N1 T(n)

| —

where L = max{Lq,G(1)} and L, is the Lipschitz constant of G on [(1+p)/8,1].
In this case we define the subset S and the mapping T as follows:

S={zeX: (1+p)/8<z(n) <1, n>Ni}.

Ty(N1 + p), Ny << Nt
(Ty)(n) = —p(n)y(n — m) + # + F(n)
- 5L S5 (s — i+ 1)g(s)G (s — ), 02 Nitp.
Rest of the analysis is similar to that of Theorem 4.1. O

THEOREM 4.3. Let 0 < p(n) < p < 1. Assume that G is Lipschitzian on the
intervals of the form [a,b], 0 < a < b < co. If (Af), (Ag) and (Ais) hold, then
(2) admits a positive bounded solution.

Proof. We choose N sufficiently large so that

|F(n)| < (1—p)/10, n > Ny;

LY (n+1)q(n) < (1—p)/10, > ’;(Z)l < %
n=N1 n=N1

where L = max{Lj,G(1)} and L; is the Lipschitz constant of G on [(1—p)/20, 1].
For this case we define the subset S and the mapping T as follows:

S={zeX: (1-p)/20<z(n) <1, n>N}.
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Ty
(Ty)(n) =

(N1 + p), Ni<n<Nj+p
—p(n)y(n — )+M+F()

§ 1Z(s—“rl)()G(y(S—k)), n> Ny +p.

Rest of the analysis can be followed from the Theorem 4.1. This completes the
proof of the theorem. O

Similar theorems may be obtained in other ranges of p(n).

5. Summary

In this work, no super linearity or sub-linearity conditions are imposed on G.
It is interesting to observe that the nature of the function r(n) influences the
behaviour of solutions of (1) or (2). This influence is more explicit in case of
unforced equation (1). However, if p(n) < 0, the results are not satisfactory. It
seems that some extra conditions could help in this case. Equations (1) and (2)

oo
are studied under the assumption Ty = o0 in [7].
n=0
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