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ABSTRACT. Oscillatory and asymptotic behaviour of solutions of a class of

fourth order nonlinear neutral difference equations of the form

∆2(r(n)∆2(y(n) + p(n)y(n − m))) + q(n)G(y(n− k)) = 0

and

(E) ∆2(r(n)∆2(y(n) + p(n)y(n − m))) + q(n)G(y(n− k)) = f(n)

are studied under the assumption
∞∑

n=0

n
r(n)

< ∞, for different ranges of p(n).

Sufficient conditions are obtained for the existence of positive bounded solutions

of (E).
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1. Introduction

In [2], K u s a n o and N a i t o have studied oscillatory behaviour of solutions
of a class of fourth order nonlinear differential equations of the form

(r(t)y′′)′′ + yF (y2, t) = 0,

where r and F are continuous and positive functions on [0,∞) and [0,∞)×[0,∞)
respectively under the assumption that

(H0)
∞∫
0

t
r(t)

dt < ∞.
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The object of this paper is to study the oscillatory and asymptotic properties
of solutions of a class of fourth order nonlinear neutral difference equations of
the form

∆2(r(n)∆2(y(n) + p(n)y(n − m))) + q(n)G(y(n − k)) = 0, (1)

where ∆ is the forward difference operator defined by ∆y(n) = y(n + 1)− y(n),
p, q are real valued functions defined on N(n0) = {n0, n0 +1, n0 +2, . . . }, n0 ≥ 0
such that q(n) ≥ 0, G ∈ C(R, R) is non-decreasing and uG(u) > 0 for u �= 0 and
m > 0, k ≥ 0 are integers, under the discrete analogue of the assumption (H0)
as

(A0) r(n) is a real valued function such that r(n) > 0 and
∞∑

n=0

n
r(n) < ∞.

The associated forced equation

∆2(r(n)∆2(y(n) + p(n)y(n − m))) + q(n)G(y(n − k)) = f(n), (2)

where f(n) is a real valued function, is also studied under the assumption (A0).
Different ranges of p(n) and different types of forcing functions are considered.
In [3], [4] and [8], P a r h i and T r i p a t h y have discussed oscillation and as-
ymptotic behaviour of solutions of higher order difference equations of the form

∆m(y(n) + p(n)y(n − s)) + q(n)G(y(n − k)) = 0

and

∆m(y(n) + p(n)y(n − s)) + q(n)G(y(n − k)) = f(n).

Equations (1) and (2) can not be termed as the particular case of the above
equations in view of (A0). Hence the study of (1) and (2) is very interesting.
Necessary and sufficient conditions for oscillation of (1) and (2) are obtained in
this paper.

By a solution of Eq. (1) on N(n0) we mean, a real valued function y(n) defined
on N(−ρ) = {−ρ,−ρ+1, . . .}, ρ = max{m, k}, which satisfies (1) for sufficiently
large n. If

y(n) = An, n = −ρ,−ρ + 1, . . . , 0, 1, 2, 3 . . . , (3)

are given, then (1) admits a unique solution satisfying the initial conditions (3).
A solution y(n) of (1) is said to be oscillatory if, for every integer N > 0, there
exists an n ≥ N such that y(n)y(n+1) ≤ 0; otherwise, it is called non oscillatory.

Equation (1) may be regarded as a discrete analogue of(
r(t) (y(t) + p(t)y(t − τ))′′

)′′
+ q(t)G(y(t − σ)) = 0, t ≥ 0.
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Oscillatory and asymptotic behaviour of solutions of this equation and the
associated forced equation are studied in [6].

2. Some preparatory results

This section deals with the lemmas which play an important role in estab-
lishing the present work.

Remark� From (A0) it follows that
∞∑

n=0

1
r(n)

< ∞.

����� 2.1� Let u(n) be a real-valued function defined on N(n0) with
∆2(r(n)∆2u(n)) ≤ 0 for large n. If u(n) > 0 eventually, then one of the follow-
ing cases holds for all large n:

(a) ∆u(n) > 0, ∆2u(n) > 0 and ∆(r(n)∆2u(n)) > 0,

(b) ∆u(n) > 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n)) > 0,

(c) ∆u(n) > 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n)) < 0,

(d) ∆u(n) < 0, ∆2u(n) > 0 and ∆(r(n)∆2u(n)) > 0,

If u(n) < 0 eventually, then either one of the following cases (b), (c), (d)

(e) ∆u(n) < 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n)) > 0,

(f) ∆u(n) < 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n)) < 0.

holds for all large n.

P r o o f. ∆2(r(n)∆2u(n)) ≤ 0, for all large n implies that u(n) is monotonic.
Then u(n) > 0 or u(n) < 0. The rest of the proof is simple and hence is
omitted. �

����� 2.2� Let (A0) hold. Assume that u(n) is positive function defined on
N(n0) such that ∆2(r(n)∆2u(n)) ≤ 0 for all large n. Then:

i) Suppose that the case (c) of Lemma 2.1 holds. Then there is a constant
L ∈ (0, 1) such that the following inequalities hold for all large n

(I1) ∆u(n) ≥ −∆(r(n)∆2u(n))R(n)
(I2) u(n) ≥ Ln∆u(n)
(I3) u(n) ≥ −L∆(r(n)∆2u(n))nR(n),

where R(n) =
∞∑

s=n

s−n
r(n) and
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ii) u(n) > r(n)∆2u(n)R(n) for all large n in case (d).

P r o o f.
(i) For s ≥ n, ∆(r(s)∆2u(s)) ≤ ∆(r(n)∆2u(n)). Then

s−1∑
i=n

∆
(
r(i)∆2u(i)

) ≤
s−1∑
i=n

∆
(
r(n)∆2u(n)

)
= (s − n)∆

(
r(n)∆2u(n)

)
that is,

r(s)∆2u(s) ≤ r(n)∆2u(n) + (s − n)∆
(
r(n)∆2u(n)

)
.

Consequently,
s−1∑
i=n

∆2u(i) ≤ r(n)∆2u(n)
s−1∑
i=n

1
r(i)

+ ∆
(
r(n)∆2u(n)

) s−1∑
i=n

i − n

r(i)
,

that is,

0 < ∆u(s) ≤ ∆u(n) + ∆
(
r(n)∆2u(n)

) s−1∑
i=n

i − n

r(i)
.

Taking limit as s → ∞, (I1) is obtained. For n > n0 > 0, we have

u(n) > u(n) − u(n0) =
n−1∑
s=n0

∆u(s) > ∆u(n)
n−1∑
s=n0

1

= (n − n0)∆u(n).

Hence there exists a constant L, 0 < L < 1, such that u(n) > Ln∆u(n). (I3) is
the direct consequence of (I1) and (I2).

ii) For s ≥ t + 1 > t > n, r(s)∆2u(s) > r(t)∆2u(t). Thus
s−1∑
i=t

∆2u(i) > r(t)∆2u(t)
s−1∑
i=t

1
r(i)

that is,

−∆u(t) > ∆u(s) − ∆u(t) > r(t)∆2u(t)
s−1∑
i=t

1
r(i)

.

Consequently, as s → ∞,

−∆u(t) ≥ r(t)∆2u(t)
∞∑
i=t

1
r(i)

.
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Hence

−
s−1∑
t=n

∆u(t) ≥
s−1∑
t=n

r(t)∆2u(t)
∞∑
i=t

1
r(i)

implies that

−u(s) + u(n) ≥ (
r(n)∆2u(n)

) s−1∑
t=n

∞∑
i=t

1
r(i)

,

that is,

u(n) > r(n)∆2u(n)R(n)

which is the required inequality. This completes the proof of the lemma. �

Remark� The inequality (I1) still holds for the case (c) if u(n) is eventually
negative.

Remark� Since R(n) <
∞∑

s=n

s
r(s) , then R(n) → 0 as n → ∞ in view of (A0).

����� 2.3� Let (A0) hold. If the conditions of Lemma 2.1 hold, then there
exist constants L1 > 0 and L2 > 0 such that L1R(n) ≤ u(n) ≤ L2n for all
large n.

P r o o f. Suppose that the first four cases of Lemma 2.1 hold for n ≥ N > 1.
Summing the inequality ∆2

(
r(n)∆2u(n)

) ≤ 0 from N to n − 1 four times we
get,

u(n) ≤ u(N) + (n − N)∆u(N) + r(N)∆2u(N)
n−1∑
t=N

t−1∑
i=N

1
r(i)

+∆
(
r(N)∆2u(N)

) n−1∑
t=N

t−1∑
i=N

i − n

r(i)
.

If we denote g(n) =
n−1∑
t=N

t−1∑
i=N

1
r(i) , then ∆g(n) =

n−1∑
i=N

1
r(i) and ∆2g(n) = 1/r(n).

Hence g(n) is the increasing function and lim
n→∞ g(n) = ∞. Similarly, if we denote

gN (n) =
n−1∑
t=N

t−1∑
i=N

i−1
r(i) , then ∆gN (n) =

n−1∑
i=N

i−n
r(i) and ∆2gN (n) = (n−N)/r(n)> 0,

that is, gN(n) is the increasing function and hence lim
n→∞ gN (n) = ∞. In cases
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(a) and (d) of Lemma 2.1, the last inequality becomes

u(n) ≤ n

[
u(N)

n
+

n − N

n
∆u(N) +

r(N)∆2u(N)
n

n−1∑
t=N

t−1∑
i=N

1
r(i)

+
∆

(
r(N)∆2u(N)

)
n

n−1∑
t=N

t−1∑
i=N

i − n

r(i)

]
.

Applying Stolz’s theorem [1], it follows that

lim
n→∞

g(n)
n

= lim
n→∞

∆g(n)
∆(n)

= k1

and

lim
n→∞

gN (n)
n

= lim
n→∞∆gN (n) = k2.

Hence there exists a constant L2 > 0 such that the last inequality reduces to
u(n) ≤ nL2 for all large n. For cases (b) and (c), we have that there exists a
constant L2 > 0 such that

u(n) ≤ n

[
u(N)

n
+

n − N

n
∆u(N) +

∆
(
r(N)∆2u(N)

)
n

gN(n)

]

≤ nL2,

for all large n. Further, u(n) ≥ L1R(n) for all large n in cases (a), (b) and (c)
because, since R(n) → 0 as n → ∞ and ∆u(n) > 0 for all large n, there exist
L1 > 0 and n2 > n1 > 0 such that u(n) > u(n1) > L1R(n) for all n ≥ n2.
From Lemma 2.2, it follows that u(n) ≥ r(n)∆2u(n)R(n) in case (d). Hence for
any n ≥ n1, u(n) ≥ r(n1)∆2u(n1)∆2u(n1)R(n) > L1R(n). Thus the lemma is
proved. �

����� 2.4� ([5]) Let p, y, z be real valued functions such that z(n) = y(n) +
p(n)y(n − m), n ≥ m ≥ 0, y(n) > 0 for n ≥ n1 > m, lim inf

n→∞
y(n) = 0 and

lim
n→∞

z(n) = L exist. Let p(n) satisfy one of the following conditions

(i) 0 ≤ p(n) ≤ p1 < 1,

(ii) 1 < p2 ≤ p(n) ≤ p3,

(iii) p4 ≤ p(n) ≤ 0,

where pi, 1 ≤ i ≤ 4, are constants. Then L = 0.
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3. Oscillation results

Sufficient conditions are obtained for oscillation of solutions of Equations (1)
and (2). We need the following conditions.

(A1) For u > 0 and ν > 0, there exists λ > 0 such that G(u)+G(ν) ≥ λG(u+ν).

(A2) G(uν) = G(u)G(ν) for u, ν ∈ �.

(A3) Q(n) = min
{
q(n), q(n − m)

}
, n ≥ m.

(A4) For u > 0, ν > 0, G(u)G(ν) ≥ G(uν).

(A5) G(−u) = −G(u), u ∈ �.

(A6) There exists a real valued function F (n) such that ∆2
(
r(n)∆2F (n)

)
=

f(n) and F (n) changes sign.

(A7) Suppose that F is same as in (A6). In addition,

−∞ < lim inf
n→∞ F (n) < 0 < lim sup

n→∞
F (n) < ∞.

(A8) There exists a real valued function F (n) such that ∆2
(
r(n)∆2F (n)

)
=

f(n) and lim
n→∞ F (n) = 0.

Remark� (A2) implies (A5). Indeed, G(1)G(1) = G(1), so that G(1) = 1.
Further, G(−1)G(−1) = G(1) = 1 gives (G(−1))2 = 1. Because G(−1) < 0,
then G(−1) = −1. Consequently, G(−u) = G(−1)G(u) = −G(u). On the other
hand G(uν) = G(u)G(ν) for u > 0, ν > 0 and G(−u) = −G(u) imply that
G(xy) = G(x)G(y) for every x, y ∈ �.

Remark� We may note that, if y(n) is a solution of (1), then x(n) = −y(n) is
also a solution of (1), provided that G satisfies (A2) or (A5).

Remark� The prototype of G satisfying (A1), (A4), (A5) is

G(u) =
(
a + b|u|λ) |u|µ sgn u,

where a ≥ 1, b ≥ 1, λ ≥ 0 and µ ≥ 0. However, the prototype of G satisfying
(A1) and (A2) is G(u) = |u|γ sgn u, where γ > 0. This G also satisfies the
assumptions (A1), (A4) and (A5).

������� 3.1� Let 0 ≤ p(n) ≤ p < ∞. Suppose that (A0)–(A3) hold. If

(A9)
∞∑

n=0
h(n)Q(n)G(R(n − k)) < ∞,

where h(n) = min
{
Rα(n + 1), Rα(n − m + 1)

}
and α > 1,

then all solutions of (1) are oscillatory.
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P r o o f. Without any loss of generality we may suppose on the contrary that
y(n) is a non-oscillatory solution of (1) such that y(n) > 0 for n ≥ n0. Setting

z(n) = y(n) + p(n)y(n − m) (4)

we obtain z(n) < y(n) + py(n − m) and

∆2
(
r(n)∆2z(n)

)
= −q(n)G(y(n − m)) ≤ 0, (5)

but not identically zero for n ≥ n0 + ρ. Hence the four cases of Lemma 2.1 hold
with z(n). Suppose that one of the cases (a), (b), (d) of Lemma 2.1 holds. Then
for n ≥ n1 > n0 + 2ρ.

0 = ∆2
(
r(n)∆2z(n)

)
+ G(p)∆2

(
r(n − m)∆2z(n − m)

)
+ q(n)G(y(n − k)) + G(p)q(n− m)G(y(n− m − k))

≥ ∆2
(
r(n)∆2z(n)

)
+ G(p)∆2

(
r(n − m)∆2z(n − m)

)
+ λQ(n)G(z(n − k))

≥ ∆2
(
r(n)∆2z(n)

)
+ G(p)∆2

(
r(n − m)∆2z(n − m)

)
+ λQ(n)G(L1)G(R(n− m))

due to (A1), (A2), (A3) and Lemma 2.3. Consequently,

∞∑
n=n1

Q(n)G(R(n− m)) < ∞.

On the other hand, h(n) → 0 as n → ∞ and hence (A9) yields the following
contradiction

∞∑
n=n1

Q(n)G(R(n− m)) = ∞.

Suppose that case (c) holds. From Lemma 2.2 and 2.3, it follows that there exist
constants L, L2 > 0 and n ≥ n2 > n1 such that

L∆
(−r(n)∆2z(n)

)
nR(n) ≤ z(n) ≤ nL2, n ≥ n2. (6)

Define f ∈ C(R, R) such that f(x) = x1−α, α > 1. Using the mean value
theorem, we have that there exists β ∈ R, such that ∆(−r(n)∆2z(n)) < β <

∆(−r(n + 1)∆2z(n + 1)) and

f
(
∆

(−r(n + 1)∆2z(n + 1)
)) − f

(
∆

(−r(n)∆2z(n)
))

=
[
∆

(−r(n + 1)∆2z(n + 1)
)− ∆

(−r(n)∆2z(n)
)]

(1 − α)β−α.
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Accordingly, we get

−∆
[
∆

(−r(n)∆2z(n)
)]1−α

= −(α − 1)β−α
[
∆2

(
r(n)∆2z(n)

)]
>

(α − 1)q(n)G(y(n− k))
[−∆(r(n + 1)∆2z(n + 1)]α

and hence, using (6), we have

−∆
[
∆

(−r(n)∆2z(n)
)]1−α ≥ (α − 1)Rα(n + 1)Kαq(n)G(y(n − k)), (7)

where K = (L/L2) > 0. Thus

− ∆
[
∆

(−r(n)∆2z(n)
)]1−α − G(p)∆

[
∆

(−r(n − m)∆2z(n − m)
)]1−α

> (α − 1)Kα[Rα(n + 1)q(n)G(y(n − k))

+ G(p)Rα(n − m + 1)q(n − m)G(y(n− m − k))]

>λ(α − 1)Kαh(n)Q(n)G(z(n− k))

>λ(α − 1)KαG(L1)h(n)Q(n)G(R(n − k))

implies that
∞∑

n=n2

h(n)Q(n)G(R(n − k)) < ∞,

which is a contradiction to (A9). Hence the theorem is proved. �

������� 3.2� Let 0 ≤ p(n) ≤ p < 1. If (A0) and (A2) hold and if

(A10)
∞∑

n=0
Rα(n + 1)G(R(n− k))q(n) = ∞, α > 1,

then every solution of (1) oscillates or tends to zero as n → ∞.

P r o o f. Since R(n) → 0 as n → ∞, then (A10) implies that
∞∑

n=0

G(R(n − k))q(n) = ∞ (8)

and hence
∞∑

n=0

q(n) = ∞. (9)

Without any loss of generality let us suppose that y(n) is a nonoscillatory solu-
tion of (1) such that y(n) > 0 for n ≥ n0 > 0. Setting z(n) as in (4) to obtain
z(n) > 0 and (5) for n ≥ n0 + ρ. Consequently, the conclusion of Lemma 2.1
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holds for z(n). Consider the cases (a) and (b) of Lemma 2.1. In either of the
cases, z(n) is nondecreasing and hence

(1−p)z(n) < z(n)−p(n)z(n−m) = y(n)−p(n)p(n−m)y(n−2m) ≤ y(n) (10)

for n ≥ n0 + 2ρ. By Lemma 2.3, there exist L1 > 0 and n1 > n0 + 2ρ such
that z(n) > L1R(n), n ≥ n1 so that (10) yields y(n) > (1 − p)L1R(n), n ≥ n1.
Consequently, from (5) we obtain

∞∑
n=n2

q(n)G(R(n − k)) < ∞, n2 > n1 + k,

a contradiction to (8). For the case (c) of Lemma 2.1, we proceed as in the
proof of Theorem 3.1 to obtain (7). Since z(n) is nondecreasing and y(n) >

(1 − p)L1R(n) for n ≥ n1 > n0 + 2ρ, then

−∆
[
∆

(−r(n)∆2z(n)
)]1−α ≥ (α − 1)Rα(n + 1)Kαq(n)G((1 − p)L1)G(R(n − k))

for n ≥ n2 > n1 + ρ. Consequently, summing of the above inequality we obtain

∞∑
n=n2

Rα(n + 1)G(R(n− k))q(n) < ∞,

a contradiction to (A10). In case (d) of Lemma 2.1, lim
n→∞ z(n) exists. If

lim inf
n→∞ y(n)> 0, then from (5) it follows that

∞∑
n=0

q(n) < ∞,

which is a contradiction to (9). Hence lim inf
n→∞ y(n) = 0. By Lemma 2.4, we

conclude that lim
n→∞ z(n) = 0. Thus y(n) ≤ z(n) implies that lim

n→∞ y(n) = 0.
This completes the proof of the theorem. �

������� 3.3� Let −1 < p ≤ p(n) ≤ 0. If (A0), (A2) and (A10) hold, then
every solution of (1) oscillates or tends to zero as n → ∞.

P r o o f. Let y(n) be a nonoscillatory solution of (1) such that y(n) > 0 for
n ≥ n0 > 0. Setting z(n) as in (4) we obtain (5) for n ≥ n0 + ρ. Consequently,
the conclusion of Lemma 2.1 holds for z(n). Hence z(n) > 0 or z(n) < 0 for
n ≥ n1 > n0 + ρ. Suppose the former holds for n ≥ n1. Assume that one of the
cases(a), (b) and (d) of Lemma 2.1 holds. From Lemma 2.3 we have that there
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exist L1 > 0 and n2 > n1 such that y(n) ≥ z(n) ≥ L1R(n), n ≥ n2 and hence
(5) yields

∞∑
n=n3

G(R(n − k))q(n) < ∞, n3 > n2 + ρ,

a contradiction to (8). Suppose that the case (c) holds. Proceeding as in the
proof of Theorem 3.1, we obtain (7). Consequently, for n ≥ n3 > n2 + ρ.

−∆
[
∆

(−r(n)∆2z(n)
)]1−α ≥ (α − 1)Rα(n + 1)Kαq(n)G(L1)G(R(n − k))

due to y(n) ≥ L1R(n). Hence the above inequality yields
∞∑

n=n3

G(R(n − k))q(n)Rα(n + 1) < ∞,

a contradiction to (A10).
Suppose the later holds for n ≥ n1. Then y(n) < y(n − m), that is, y(n) is

bounded. Thus z(n) is bounded. Indeed, in each case (e) and (f) of Lemma 2.1,
lim

n→∞ z(n) = −∞. Accordingly, none of the cases (e) and (f) holds. In the case

(b) or (c), −∞ < lim
n→∞ z(n) ≤ 0. Then

0 ≥ lim
n→∞

z(n) = lim sup
n→∞

[y(n) + p(n)y(n − m)]

≥ lim sup
n→∞

[y(n) + py(n − m)]

≥ lim sup
n→∞

y(n) + lim inf
n→∞ (py(n − m))

= lim sup
n→∞

y(n) + p lim sup
n→∞

y(n − m)

= (1 + p) lim sup
n→∞

y(n).

Hence lim
n→∞ y(n) = 0. In the case (d), z(n) < µ < 0 for n ≥ n2 > n1. Then

z(n) > py(n−m) implies that y(n−m) > (µ/p) for n ≥ n2. Consequently, from
(5) we obtain

G(µ/p)
∞∑

n=n3

q(n) < ∞, n3 > n2 + k

a contradiction to (9). The case y(n) < 0 for n ≥ n0 may similarly be dealt
with. Hence the proof of the theorem is complete. �

������� 3.4� Suppose that −∞ < p1 ≤ p(n) ≤ p2 < −1. If (A0), (A2)
and (A10) hold, then every bounded solution of (1) oscillates or tends to zero as
n → ∞.
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P r o o f. Let y(n) be a bounded nonoscillatory solution of (1) such that y(n) > 0
for n ≥ n0 > 0. Then from (5) it follows that z(n) > 0 or z(n) < 0 for
n ≥ n1 > n0 + ρ, where z(n) is given by (4). If z(n) > 0 for n ≥ n1, then each
of the cases (a), (b) of Lemma 2.1 holds for z(n). Proceeding as in the proof of
the Theorem 3.3, we arrive at a contradiction. Next, we suppose that z(n) < 0
for n ≥ n1. Since R(n) → 0 as n → ∞, then (A10) implies (9) and

∞∑
n=0

Rα(n + 1)q(n) = ∞. (11)

In the case (b) or (c) of Lemma 2.1, −∞ < lim
n→∞

z(n) ≤ 0. Let −∞ <

lim
n→∞

z(n) < 0. Then there exists n2 > n1 and β < 0 such that p1y(n − m) <

z(n) < β, n ≥ n2 and hence in the case (b) of Lemma 2.1, it follows that

G(β/p1)
∞∑

n=n3

q(n) < ∞,

a contradiction to (9). In the case (c), first inequality of Lemma 2.2(i) yields
that

−∆
(
r(n)∆2z(n)

) ≤ ∆z(n)/R(n) < −z(n)/R(n)

and hence

−∆
[
∆

(−r(n)∆2z(n)
)]1−α

>
(α − 1)q(n)G(y(n− k))

[−∆ (r(n + 1)∆2z(n + 1))]α

implies that

−∆
[
∆

(−r(n)∆2z(n)
)]1−α

>
(α − 1)q(n)G(βp−1

1 )Rα(n + 1)
[z(n + 1)]α

for n ≥ n2 > n1 + ρ. Further, ∆z(n) > 0 for n ≥ n2 implies that 0 > z(n) >

z(n2) = γ. Consequently, the last inequality reduces to

−∆
[
∆

(−r(n)∆2z(n)
)]1−α

>
(α − 1)q(n)G(βp−1

1 )Rα(n + 1)
(−γ)α

for n ≥ n3 > n2 + ρ. Thus

∞∑
n=n3

q(n)Rα(n + 1) < ∞,
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a contradiction to (11). If lim
n→∞ z(n) = 0, then we obtain

0 = lim
n→∞ z(n) = lim inf

n→∞ [y(n) + p(n)y(n − m)]

≤ lim inf
n→∞

[y(n) + p2y(n − m)]

≤ lim sup
n→∞

y(n) + lim inf
n→∞

(p2y(n − m))

= lim sup
n→∞

y(n) + p2 lim sup
n→∞

y(n − m)

= (1 + p2) lim sup
n→∞

y(n),

where no sum is of the form ∞−∞ due to bounded y(n). Since (1+p2) < 0, then
lim

n→∞ y(n) = 0. In case (d), one may proceed as in the proof of the Theorem 3.3
to get a contradiction. However, such a contradiction can not be obtained either
in the case (e) or in the case (f) due to lim

n→∞
z(n) = −∞. In these two cases, since

z(n) > p1y(n − m), then lim
n→∞

y(n) = ∞, a contradiction to the boundedness

of y(n).
The case y(n) < 0 for n ≥ n0 is similar and hence is omitted. This completes

the proof of the theorem. �

Example. Consider

∆2
[
nen∆2(y(n) + p(n)y(n − 1))

]
+ q(n)y3(n − 2) = 0, (12)

where n ≥ 1, p(n) = −(e−2 +e−n), q(n) = (e2 +1)2e2(n−2)[(e2 +e+2)n+2e+2].
It is easy to see that (12) satisfies all the conditions of Theorem 3.3. Hence
every solution of (12) oscillates or tends to zero as n → ∞. In particular,
y(n) = (−1)ne−n is an oscillatory solution.

������� 3.5� Let 0 ≤ p(n) ≤ p < ∞. Suppose that (A0), (A1), (A3)–(A6)
hold. If

(A11)
∞∑

n=k

h(n)Q(n)G(F+(n − k)) = ∞ =
∞∑

n=k

h(n)Q(n)G(F−(n − k)), where

h(n) = min
{
Rα(n + 1), Rα(n + 1 − m)

}
, α > 1,

then all solutions of (2) are oscillatory.

P r o o f. (A0) implies that R(n) → 0 as n → ∞. Then h(n) → 0 as n → ∞ and
hence (A11) implies that

∞∑
n=k

Q(n)G(F+(n − k)) = ∞ =
∞∑

n=k

Q(n)G(F−(n − k)). (13)
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Let y(n) be a non oscillatory solution of (2) such that y(n) > 0 for n ≥ n0 > 0.
Set w(n) = z(n) − F (n) for n ≥ n0 + ρ, where z(n) is given by (4). Hence
0 < z(n) ≤ y(n) + py(n − m) for n ≥ n0 + ρ. Equation (2) may be written as

∆2
[
r(n)∆2w(n)

]
= −q(n)G(y(n− k)) ≤ 0 (14)

for n ≥ n0 + ρ. Hence w(n) is monotonic. With w(n) we have two cases,
w(n) > 0 or w(n) < 0 for n ≥ n1 > n0 + ρ. Ultimately, a contradiction is
obtained to (A6) if w(n) < 0, that is, 0 < z(n) < F (n). Further w(n) > 0 for
n ≥ n1. Consequently, Lemma 2.1 holds for w(n). Clearly, w(n) > 0 yields that
z(n) > F+(n) for n ≥ n1. Using (A1), (A3) and (A4) we get

0 ≥ ∆2
(
r(n)∆2w(n)

)
+ G(p)∆2

(
r(n − m)∆2w(n − m)

)
+ λQ(n)G(z(n− k))

≥ ∆2
(
r(n)∆2w(n)

)
+ G(p)∆2

(
r(n − m)∆2w(n − m)

)
+ λQ(n)G(F+(n − k))

for n ≥ n2 > n0 + 2ρ. If one of the cases (a), (b), (d) of lemma 2.1 holds, then
it follows from the above inequality that

∞∑
n=n2+k

Q(n)G(F+(n − k)) < ∞,

a contradiction to (13). Assume that the case (c) of Lemma 2.1 holds. Then the
use of Lemma 2.2 and 2.3 yields that there exist positive constants L, L2 and
n3 > n2 such that

L∆
(−r(n)∆2w(n)

)
nR(n) ≤ w(n) ≤ nL2, n ≥ n3

and hence

−∆
[
∆

(−r(n)∆2z(n)
)]1−α ≥ (α − 1)Rα(n + 1)Kαq(n)G(y(n − k)), (15)

where K = (L/L2) > 0. Thus

−∆
[
∆

(−r(n)∆2z(n)
)]1−α − G(p)∆

[
∆

(−r(n − m)∆2z(n − m)
)]1−α

> λ(α − 1)KαRα(n + 1)Q(n)G(z(n− k))

> λ(α − 1)KαRα(n + 1)Q(n)G(F+(n − k)).

Summing the above inequality we obtain
∞∑

n=n3+k

h(n)Q(n)G(F+(n − k)) < ∞,

a contradiction to (A11). If y(n) < 0 for n ≥ n0, then we set x(n) = −y(n) to
obtain x(n) > 0 for n ≥ n0 and

∆2(r(n)∆2(x(n) + p(n)x(n − m))) + q(n)G(x(n − k)) = f̃(n),
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where f̃(n) = −f(n). If F̃ (n) = −F (n), then ∆2(r(n)∆2F̃ (n)) = −f(n) =
f̃(n) and F̃ (n) changes sign. Further, F̃+(n) = F−(n) and F̃−(n)) = F+(n).
Proceeding as above we obtain a contradiction. Hence the theorem is proved. �

������� 3.6� Let 0 ≤ p(n) ≤ p < ∞. Suppose that (A0), (A1), (A3)–(A5),
(A8) and (A11) hold. Then every solution of (2) oscillates or tends to zero as
n → ∞.

P r o o f. As in the proof of the Theorem 3.5, we obtain w(n) > 0 or w(n) < 0
for n ≥ n1 > n0 + ρ. If w(n) > 0 for n ≥ n1, then by the similar steps of the
Theorem 3.5 we have a contradiction. Let w(n) < 0 for n ≥ n1. Then y(n) ≤
z(n) < F (n) and hence lim sup

n→∞
y(n) ≤ 0 by (A8). Consequently, lim

n→∞
y(n) = 0.

The proof of the theorem is therefore completed. �

������� 3.7� Let 0 ≤ p(n) ≤ p < ∞. Let (A0), (A1), (A3)–(A5) and (A8)
hold. If

(A12)
∞∑

n=k

h(n)Q(n)G(|F (n − k)|) = ∞,

then every bounded solution of (2) oscillates or tends to zero as n → ∞.

P r o o f. As in the proof of the Theorem 3.5, we obtain (14). Hence w(n) > 0
or w(n) < 0 for n ≥ n1 > n0 + ρ. Let F (n) ≥ 0. If w(n) > 0 for n ≥ n1, there
exists n2 > n1 such that z(n) > F (n), n ≥ n2. Using (A1), (A3) and (A4) we
get

0 ≥ ∆2(r(n)∆2w(n)) + G(p)∆2(r(n − m)∆2w(n − m)) + λQ(n)G(F (n − k))

for n ≥ n3 > n2 + ρ. If one of the cases (a), (b), (d) of Lemma 2.1 holds, then
∞∑

n=n3+k

Q(n)G(F (n − k)) < ∞,

which is a contradiction to (A12), because (A12) implies that
∞∑

n=k

Q(n)G(F (n − k)) = ∞.

In case (c) of Lemma 2.1, we may proceed as in the proof of Theorem 3.5 to
obtain

∞∑
n=n3+k

h(n)Q(n)G(F (n − k)) < ∞,

595



A. K. TRIPATHY

a contradiction to (A12). Hence w(n) < 0 for n ≥ n1, that is, y(n) < F (n).
Consequently, lim inf

n→∞ y(n) = 0. Further, in each of the cases (b) and (c) of

Lemma 2.1, lim
n→∞w(n) exists and hence lim

n→∞ z(n) exists. Since y(n) is bounded,

then w(n) is bounded. In the case (d) of Lemma 2.1, lim
n→∞w(n) exists and hence

lim
n→∞ z(n) exists. On the other hand, the cases (e) and (f) of Lemma 2.1 do not

hold here due to bounded w(n). From Lemma 2.4, it follows that lim
n→∞ z(n) = 0.

As z(n) > y(n), then lim
n→∞

y(n) = 0.

Next, we suppose that F (n) < 0 for n ≥ n2. In this case w(n) < 0 implies
that 0 < z(n) < F (n), a contradiction. Hence w(n) > 0 for n ≥ n1. Since w(n)
is bounded, the case (a) of Lemma 2.1 does not hold. Further, in each of the
cases (b), (c) and (d) lim

n→∞ w(n) exists. From (14) it follows that

∞∑
n=n2

q(n)G(y(n − k)) < ∞

in each of the cases (b) and (d). We claim that lim inf
n→∞ y(n) = 0. If not, we can

find γ > 0 and n∗ > 0 such that y(n) > γ for n > n∗. Let n3 > max{n2 +k, n∗}.
Accordingly, the last inequality gives

G(γ)
∞∑

n=n3

q(n) < ∞,

which contradicts the assumption (A12) due to Q(n) ≤ q(n). So our claim holds.
In case (c) of Lemma 2.1, we obtain (15) which yields

∞∑
n=n2

h(n)q(n)G(y(n − k)) < ∞.

Hence lim
n→∞ y(n) = 0; otherwise

∞∑
n=n2

h(n)q(n) < ∞, which contradicts the as-

sumption (A12). From Lemma 2.4, it follows that lim
n→∞ z(n) = 0 and hence

lim
n→∞ y(n) = 0. The case y(n) < 0 for n ≥ n0 is similar. Thus the theorem is
proved. �

Remark� Equation (2) does not admit a non oscillatory solution due to The-
orem 3.5, where F (n) changes sign only. However, when the assumption (A8)
hold, Theorem 3.6 implies that only some oscillatory solutions of (2) could tend
to zero as n → ∞. Without the assumption (A11), Theorem 3.7 predicts differ-
ently to that of the Theorems 3.5 and 3.6. Hence it seems that the nature of the
forcing term influence the behaviour of the solutions of (2).
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������� 3.8� Let −1 < p ≤ p(n) ≤ 0. Suppose that (A0), (A7) and (10) hold.
If

(A13)
∞∑

n=k

Rα(n + 1)q(n)G(F+(n − k)) = ∞ =
∞∑

n=k

q(n)G(F−(n + m − k)),

and

(A14)
∞∑

n=k

Rα(n + 1)q(n)G(−F−(n − k)) = −∞ =
∞∑

n=k

q(n)G(−F+(n + m− k)),

then a solution of (2) oscillates.

P r o o f. As in the proof of the Theorem 3.5, we obtain w(n) > 0 or w(n) < 0
for n ≥ n1 > n0 + ρ. If w(n) > 0, then y(n) > F (n) and hence y(n) > F+(n),
n ≥ n1. Consequently, in each of the cases (a), (b) and (d) of Lemma 2.1, we
obtain from (14) that

∞∑
n=n1+k

q(n)G(F+(n − k)) < ∞,

which contradicts the assumption (A13). Using (15) in the case (c) of Lemma 2.1,
we get

∞∑
n=n2+k

Rα(n + 1)q(n)G(F+(n − k)) < ∞,

which contradicts the assumption (A13). Hence w(n) < 0 for n ≥ n1. We claim
that y(n) is bounded. If not, then there exists a sub sequence {n′

j} of {n} such
that n′

j → ∞ and y(n′
j) → ∞ as j → ∞ and y(n′

j) = max
{
y(n) : n1 ≤ n ≤ n′

j

}
.

Hence

w(n′
j) ≥ y(n′

j) + py(n′
j − m) − F (n′

j)

≥ (1 + p)y(n′
j) − F (n′

j)

and using (A7), we come to the following contradiction that w(n′
j) > 0 for all

large j. So our claim holds and w(n) is bounded. Hence none of the cases (e)
and (f) of Lemma 2.1 holds. Since w(n) < 0, then y(n) > F−(n + m). Thus in
each of the cases (b) and (d) of Lemma 2.1, we obtain from (14) that

∞∑
n=n1+k

q(n)G(F−(n + m − k)) < ∞,

which contradicts the assumption (A13). Let the case (c) of Lemma 2.1 hold.
Then proceeding as in the proof of the Theorem 3.4 for the case (c) when
z(n) < 0, replacing z(n) by w(n) and using (A7), we get a contradiction to (11).
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If y(n) < 0 for n ≥ n0, then one may proceed as above. This completes the
proof of the theorem. �

������� 3.9� Suppose that all the conditions of Theorem 3.8 are satisfied
except (A7), which is replaced by (A8). Then every solution of (2) oscillates or
tends to zero as n → ∞.

P r o o f. If w(n) > 0, then a contradiction is obtained in each of the cases (a)–(d)
of Lemma 2.1. Hence w(n) < 0 for n ≥ n1 > n0 + ρ, that is, z(n) < F (n). Since
z(n) ≥ y(n) + py(n − m), (1 + p) > 0 and lim sup

n→∞
z(n) ≤ 0, then lim

n→∞ y(n) = 0.

Hence the proof is complete. �

������� 3.10� Let −∞ < p ≤ p(n) ≤ 0. If (A0), (A2), (A7), (A13) and (A14)
hold, then a solution y(n) of (2) oscillates or |y(n)| → ∞ as n → ∞.

The proof is similar to that of Theorem 3.8 and hence is omitted.

������� 3.11� Let −1 < p ≤ p(n) ≤ 0. Suppose that (A0), (A2) and (A8)
hold. If

(A15)
∞∑

n=k

q(n)Rα(n + 1)G (|F (n − k)|) = ∞, α > 1,

then every solution of (2) oscillates or tends to zero or tends to ±∞ as n → ∞.

P r o o f. As in the proof of the Theorem 3.5, we get w(n) > 0 or w(n) < 0 for
n ≥ n1 > n0 + ρ. Assume that w(n) > 0 for n ≥ n1. Then y(n) ≥ F (n). From

(A15) it follows that
∞∑

n=k

q(n)G (|F (n − k)|) = ∞,
∞∑

n=k

q(n)Rα(n + 1) = ∞ and
∞∑

n=k

q(n) = ∞, due to F (n) → 0 and Rα(n + 1) → 0 as n → ∞. If we suppose

that F (n) ≥ 0, for n ≥ n2 > n1, then in each of the cases (a), (b) and (d) of
Lemma 2.1, we have from (14) that

∞∑
n=n2+k

q(n)G(F (n − k)) < ∞,

a contradiction. In the case (c) of Lemma 2.1, we obtain from (15) that
∞∑

n=n2+k

q(n)Rα(n + 1)G(F (n− k)) < ∞,

which contradicts the assumption (A15). Accordingly, F (n) < 0 for n ≥ n2 > n1.
In the case (a) for w(n), lim

n→∞
w(n) = ∞ and accordingly, using (A8), we get

lim
n→∞ z(n) = ∞. Hence, y(n) > z(n) yields lim

n→∞ y(n) = ∞. In each of the cases
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(b) and (c) of Lemma 2.1, lim
n→∞ w(n) = β, 0 < β ≤ ∞. If β = ∞, then as in the

previous case we get that lim
n→∞ y(n) = ∞. Otherwise, if β ∈ (0,∞), using (A8),

we have that lim
n→∞ z(n) = β. From (14) we get

∞∑
n=n2+k

q(n)G(y(n − k)) < ∞, (16)

in the case (b). In the case (c), (14) yields
∞∑

n=n2+k

q(n)Rα(n + 1)G(y(n− k)) < ∞.

Hence lim inf
n→∞ y(n) = 0. From Lemma 2.4 it follows that β = 0, a contradiction.

In the case (d) of Lemma 2.1, (16) holds and lim
n→∞ w(n) = β ∈ [0,∞) implying

that lim
n→∞ z(n) = β ∈ [0,∞). If β ∈ (0,∞), as in the case (b) we come to the

contradiction. If β = 0, since z(n) ≥ y(n) + py(n − m) and (1 + p) > 0, we
conclude that y(n) is bounded. Accordingly, lim sup

n→∞
y(n) = 0, which implies

that lim
n→∞

y(n) = 0.

Let w(n) < 0 for n ≥ n1. Then the following analysis holds for F (n) ≥ 0 or
F (n) ≤ 0. As in the proof of Theorem 3.8, we may show that y(n) is bounded and
accordingly w(n) is bounded. Consequently, the cases (e) and (f) of Lemma 2.1
do not hold. Since z(n) < F (n), n ≥ n1, we have that lim sup

n→∞
z(n) ≤ 0. Thus

in the cases (b), (c) and (d), we conclude from

0 ≥ lim sup
n→∞

[y(n) + py(n − m)] ≥ lim sup
n→∞

y(n) + lim inf
n→∞ (py(n − m))

= (1 + p) lim sup
n→∞

y(n).

that lim
n→∞

y(n) = 0. Similar conclusions can be obtained for the case y(n) < 0,
n ≥ n0. Thus the theorem is proved. �

	���

��� 3.12� Suppose that the conditions of Theorem 3.10 hold. Then
every bounded solution of (2) oscillates or tends to zero as n → ∞.

Remark� Theorems 3.8, 3.11 and Corollary 3.12 do not hold for homogeneous
equation (1).

Example. Consider

∆2
[
en∆2(y(n) + (1 + e−n)y(n − 1))

]
+ (ae−n + be−2n + e3)y3(n − 1)

= (−1)n+1e3n, n ≥ 0,
(17)
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where a = e2(e−1)(e+1)2(e2 +1)2, b = −4e2(e+1)2, R(n) = e(e−1)−2e−n and
Q(n) = (ae−n + be−2n + e3). Taking α = 2, we get h(n) = (e − 1)−2e−(2n+1).
Setting F (n) = (−1)n+1e2n/[(e3+1)(e2+1]4, we obtain ∆2[en∆2F (n)] = f(n) =
(−1)n+1e3n. Since

F+(n) = e2n/[(e3 + 1)(e2 + 1)]4, if n is odd

= 0, if n is even

and

F−(n) = e2n/[(e3 + 1)(e2 + 1)]4, if n is even

= 0, if n is odd

then
∞∑

n=1

(e − 1)−2e−(2n+1)(ae−n + be−2n + e3)G(F+(n − 1))

=
∞∑

n=1

e−1(e − 1)−2(ae−3n + be−4n + e3e−2n)e6n/
[
(e3 + 1)(e2 + 1)

]12

=
∞∑

n=1

e−1(e − 1)−2
[
(e3 + 1)(e2 + 1)

]−12
(ae3n + be2n + e3e4n)

= ∞.

Hence every solution of (17) oscillates by Theorem 3.5. In particular, y(n) =
(−1)nen is such a solution of (17).

4. Existence of positive solutions

In this section some conditions are obtained for the existence of bounded
positive solutions of (2).

������� 4.1� Let 0 ≤ p(n) ≤ p < 1. Assume that G is Lipschitzian on the
intervals of the form [a, b], 0 < a < b < ∞ and F (n) changes sign such that
−(1 − p)/8 ≤ F (n) ≤ (1 − p)/2, where F is same as in (A6). If

(A′
0)

∞∑
n=0

n+1
r(n) < ∞ and

(A16)
∞∑

n=0
(n + 1)q(n) < ∞,

then (2) admits a positive bounded solution.
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P r o o f. It is possible to choose a positive integer N1 such that

L

∞∑
n=N1

(n + 1)q(n) < (1 − p/2),
∞∑

n=N1

n + 1
r(n)

<
1
2
,

where L = max{L1, G(1)} and L1 is the Lipschitz constant of G on [(1−p)/8, 1].
Let X = 	N1∞ be the Banach space of all real valued functions x(n), n ≥ N1 with
supremum norm

‖x‖ = sup
{|x(n)| : n ≥ N1

}
.

We define a subset S of X as follows:

S =
{
x ∈ X : (1 − p)/8 ≤ x(n) ≤ 1, n ≥ N1

}
.

Hence S is a complete metric space with the metric induced by the norm on X.
Let us define the mapping T : S → X as follows:

(Ty)(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ty(N1 + ρ), N1 ≤ n < N1 + ρ

−p(n)y(n − m) + 1+p
2 + F (n)

−
∞∑

i=n

i−n+1
r(i)

∞∑
s=i

(s − i + 1)q(s)G(y(s− k)), n ≥ N1 + ρ.

Hence for n ≥ N1, Ty(n) ≤ (1 + p)/2 + (1 − p)/2 = 1 and

Ty(n) ≥ −p + (1 + p)/2 − (1 − p)/8 − (1 − p)
4

= (1 − p)/8

because for n ≥ N1,
∞∑

i=n

i − n + 1
r(i)

∞∑
s=i

(s − i + 1)q(s)G(y(s− k))

≤G(1)
∞∑

i=n

i − n + 1
r(i)

∞∑
s=i

(s − i + 1)q(s)

≤G(1)
∞∑

i=n

i + 1
r(i)

∞∑
s=i

(s + 1)q(s)

≤G(1)
∞∑

i=N1

i + 1
r(i)

∞∑
s=N1

(s + 1)q(s)

≤ (1 − p)/4.

Thus Ty ∈ S, that is, T : S → S. Further, for x, y ∈ S,

|Ty(n) − Tx(n)| ≤ p‖x − y‖ +
1
4
(1 − p)‖x− y‖ =

1
4
(3p + 1)‖x − y‖
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Hence ‖Ty−Tx‖ ≤ 3p+1
4 ‖x−y‖, for every x, y ∈ S implies that T is a contraction.

Consequently, T has a unique fixed point y in S which is the required solution
of (2) such that (1 − p)/8 ≤ y(n) ≤ 1, n ≥ N1. The proof of the theorem is
complete. �

������� 4.2� Let −1 < p ≤ p(n) ≤ 0. If (A′
0) and (A16) hold, G is Lips-

chitzian on the intervals of the form [a, b], 0 < a < b < ∞ and F (n) changes
sign such that −(1+p)/8 ≤ F (n) ≤ (1+p)/2, then (2) admits a positive bounded
solution.

P r o o f. It is possible to choose N1, sufficiently large such that

L

∞∑
n=N1

(n + 1)q(n) <
(1 + p)

2
,

∞∑
n=N1

n + 1
r(n)

<
1
2
,

where L = max{L1, G(1)} and L1 is the Lipschitz constant of G on [(1+p)/8, 1].
In this case we define the subset S and the mapping T as follows:

S =
{
x ∈ X : (1 + p)/8 ≤ x(n) ≤ 1, n ≥ N1

}
.

(Ty)(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ty(N1 + ρ), N1 ≤ n < N1 + ρ

−p(n)y(n − m) + 1+p
2 + F (n)

−
∞∑

i=n

i−n+1
r(i)

∞∑
s=i

(s − i + 1)q(s)G(y(s− k)), n ≥ N1 + ρ.

Rest of the analysis is similar to that of Theorem 4.1. �

������� 4.3� Let 0 ≤ p(n) ≤ p < 1. Assume that G is Lipschitzian on the
intervals of the form [a, b], 0 < a < b < ∞. If (A′

0), (A8) and (A16) hold, then
(2) admits a positive bounded solution.

P r o o f. We choose N1 sufficiently large so that

|F (n)| < (1 − p)/10, n ≥ N1;

L

∞∑
n=N1

(n + 1)q(n) < (1 − p)/10,

∞∑
n=N1

n + 1
r(n)

<
1
2
,

where L = max{L1, G(1)} and L1 is the Lipschitz constant of G on [(1−p)/20, 1].
For this case we define the subset S and the mapping T as follows:

S =
{
x ∈ X : (1 − p)/20 ≤ x(n) ≤ 1, n ≥ N1

}
.
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(Ty)(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ty(N1 + ρ), N1 ≤ n < N1 + ρ

−p(n)y(n − m) + 1+4p
5 + F (n)

−
∞∑

i=n

i−n+1
r(i)

∞∑
s=i

(s − i + 1)q(s)G(y(s− k)), n ≥ N1 + ρ.

Rest of the analysis can be followed from the Theorem 4.1. This completes the
proof of the theorem. �

Similar theorems may be obtained in other ranges of p(n).

5. Summary

In this work, no super linearity or sub-linearity conditions are imposed on G.
It is interesting to observe that the nature of the function r(n) influences the
behaviour of solutions of (1) or (2). This influence is more explicit in case of
unforced equation (1). However, if p(n) ≤ 0, the results are not satisfactory. It
seems that some extra conditions could help in this case. Equations (1) and (2)

are studied under the assumption
∞∑

n=0

n
r(n) = ∞ in [7].
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