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SOME NOTES ON DENSELY CONTINUOUS FORMS

Peter Vadovič
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ABSTRACT. We consider a special space of set-valued functions (multifunc-
tions), the space of densely continuous forms D(X, Y ) between Hausdorff spaces
X and Y , defined in [HAMMER, S. T.—McCOY, R. A.: Spaces of densely

continuous forms, Set-Valued Anal. 5 (1997), 247–266] and investigated also in

[HOLÁ, L’.: Spaces of densely continuous forms, USCO and minimal USCO
maps, Set-Valued Anal. 11 (2003), 133–151]. We show some of its properties,

completing the results from the papers [HOLÝ, D.—VADOVIČ, P.: Densely con-
tinuous forms, pointwise topology and cardinal functions, Czechoslovak Math. J.

58(133) (2008), 79–92] and [HOLÝ, D.—VADOVIČ, P.: Hausdorff graph topo-
logy, proximal graph topology and the uniform topology for densely continuous
forms and minimal USCO maps, Acta Math. Hungar. 116 (2007), 133–144],
in particular concerning the structure of the space of real-valued locally bounded
densely continuous forms D∗

p(X) equipped with the topology of pointwise conver-

gence in the product space of all nonempty-compact-valued multifunctions. The
paper also contains a comparison of cardinal functions on D∗

p(X) and on real-

valued continuous functions Cp(X) and a generalization of a sufficient condition

for the countable cellularity of D∗
p(X).
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1. Introduction

For Hausdorff spaces X, Y , Z, we denote by F (X,Y ) the space of all functions
from X to Y ; by 2Z , K (Z) and F (Z) we mean the family of all closed, nonempty
compact and finite subsets of Z, respectively. Thus F (X, 2Y ) denotes the space
of all closed-valued multifunctions from X to Y . Also, B(x) denotes the local
base of open sets at a point x; intA and A denote the interior and closure of A.
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Now we define the main object of our interest here, the space of densely con-
tinuous (or DC) forms D(X,Y ). First, a single-valued function f from X to
Y is called densely continuous (or f ∈ DC(X,Y )), if the set C(f) of points of
continuity of f is dense in X. For any f ∈ DC(X,Y ) let φf denote the closure
in X×Y of the graph of the restriction f � C(f). The space D(X,Y ) of densely
continuous forms then consists of the elements φf for all f ∈ DC(X,Y ). Of
course, every densely continuous form has closed graph in X ×Y and can be re-
garded as a closed-valued multifunction, if we put φf (x) =

{
y ∈ Y : (x, y) ∈ φf

}
for each x ∈ X. Thus D(X,Y ) ⊆ F (X, 2Y ).

The subspace D∗(X,Y ) of locally bounded densely continuous forms is a se-
lection of those forms φf ∈ D(X,Y ) which satisfy: for each x ∈ X there
is an open neighborhood O ∈ B(x) of x such that the closure of the set
φf [O] =

⋃{
φf (x) : x ∈ O

}
is compact in Y .

The spaces of densely continuous forms have probably emerged for the first
time in the paper of H a m m e r and M c C o y [HM]. Nowadays, densely contin-
uous forms can be tracked down in various forms in different parts of mathemat-
ics, for example as the Argmin multifunction in variational calculus or others,
see H o l á [Ho1]. They also have an important relationship with minimal USCO
maps (see D r e w n o w s k i and L a b u d a [DL]). For example, it has been
shown in [HV2] (and earlier in [Ho1] for the real-valued case) that if X is Baire
and Y is locally compact metric, then D∗(X,Y ) is the space of all minimal
USCO maps from X to Y . It is well known that the minimal USCO maps
are a very convenient tool in the theory of games (see C h r i s t e n s e n [Ch] or
S a i n t -R a y m o n d [Sa]) or in functional analysis (see the paper of B o r w e i n
and M o o r s [BM] where a differentiability property of single-valued functions
is characterized by their Clarke subdifferentials being convex minimal USCO
maps).

Other properties of DC forms might also be of interest, such as the cardinal
functions of topologies on such spaces (see H o l á and M c C o y [HoM] or [HV1])
or the selection properties of DC forms (see H o l á and H o l ý [HH]) or relations
of various topologies on spaces of DC forms (see [HV2] or H o l ý [Ho]).

Moreover, there are other features of minimal USCO maps or densely con-
tinuous forms that are worth investigating for more general classes of maps.
In particular, the concept of minimality of multifunctions has been successfully
generalized and has found interesting applications (see for example the papers
of M a t e j d e s [Ma1] and [Ma2]). The concept of generalized (semi)continuity
for multifunctions has also been intensively studied (see for example H o l ý and
M a t e j ı́ č k a [HoMa]).
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2. Properties of DC forms

To define the topology τp of pointwise convergence on F (X, 2Y ) let (Y, d) be
a metric space and consider the well-known Hausdorff (extended-valued) metric
Hd induced by d on the hyperspace 2Y of all closed subsets of Y . The topology
τp then has a local base at any φ ∈ F (X, 2Y ) consisting of sets of the form

W (φ,A, ε) =
{
ψ ∈ F (X, 2Y ) : (∀x ∈ A)

(
Hd(φ(x), ψ(x)) < ε

)}
for all finite subsets A ∈ F (X) and ε > 0. The subspace D∗(X,Y ) with the
induced topology τp will be denoted by D∗

p(X,Y ). If Y = R is the space of reals
with the usual topology, then the range space is omitted from the notation, i.e.
we have D∗(X) and D∗

p (X), respectively.
Now, if (K (R), H) denotes the space of all nonempty compact subsets of

the reals equipped with the Hausdorff metric, then Fp

(
X,K (R)

)
can be seen

as a subspace of Fp

(
X, 2R

)
. Moreover, we know that every form in D∗(X)

assumes only nonempty compact values (see [HV2, Lemma 2.2]), so D∗(X) ⊆
Fp

(
X,K (R)

)
. Then it is not very hard to deduce the following:

������� 2.1� If the Hausdorff space X is without isolated points, then

(a) intD(X) = ∅ in Fp

(
X, 2R

)
.

(b) intD∗(X) = ∅ in Fp

(
X,K (R)

)
.

P r o o f. It is sufficient to prove (a), since the proof of (b) uses the same basic
idea. Suppose by the contrary that there is φ ∈ intD(X) and A ∈ F(X) and
ε > 0 such that W (φ,A, ε) ⊆ D(X). Then X \ A is nonempty open. By [Ho1,
Proposition 2.2] of H o l á , there is an open dense set U ⊆ X such that φ is USCO
at every point of U (i.e. φ is upper semicontinuous and has nonempty compact
values at the points of U ; see B e e r [Be] or [HV1], [HV2] for definitions). Choose
x ∈ U ∩ (X \A). The set φ(x) is compact, so choose y /∈ φ(x) and define

ψ(z) =

{
φ(z), z �= x,

φ(x) ∪ {y}, z = x.

Hence ψ ∈ Fp

(
X, 2R

)
. There are U , V disjoint open sets such that φ(x) ⊆ U

and y ∈ V . Since φ is upper semicontinuous at x, there is an open neighborhood
W of x such that φ [W ] ⊆ U . Since y /∈ U , this contradicts the idea of ψ
belonging to D(X), i.e. of having a generating function, for such function would
have to be similar to the generating function of φ. But because of ψ [W \ {x} ] =
φ [W \ {x} ] ⊆ U , no value outside the set U can be reached at x by such densely
continuous form. Therefore ψ /∈ D(X) but ψ ∈W (φ,A, ε), a contradiction. �
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������� 2.2� If the Hausdorff space X is without isolated points, then
(a) D(X) is not closed in Fp

(
X, 2R

)
.

(b) D∗(X) is not closed in Fp

(
X,K (R)

)
.

P r o o f. In this case, the proofs of (a) and (b) are actually the same. Choose
a point x ∈ X arbitrarily. Define a net of functions in the following way: for
each basic open neighborhood U ∈ B(x) let fU be the characteristic function of
U in X. For each U ∈ B(x) the boundary of U is nowhere dense in X, so each
fU is a densely continuous function and its induced form φU belongs to D∗(X).
Consider now the (multi)function φ ∈ Fp

(
X,K (R)

)
defined by

φ(y) =

{
{0}, y �= x,

{1}, y = x.

Such φ clearly has no generating function, so φ /∈ D(X). Now let A ∈ F(X) and
ε > 0 be arbitrary. Let A∗ = A \ {x}. The set X \A∗ is an open neighborhood
of x, i.e. there is U ∈ B(x) disjoint from A∗. Then for each V ∈ B(x), V ⊆ U ,
we have φV � A∗ = {0} = φ � A∗ and φV (x) = {1} = φ(x), which implies
φV ∈ W (φ,A, ε). Therefore the net

{
φU : U ∈ B(x)

}
, which is contained in

D∗(X), converges pointwise to φ /∈ D(X) and both statements are proved. �
Example 2.1. The essential difference between locally bounded and ordinary
densely continuous forms is that in the general case we are not able to guarantee
that all values of the generated densely continuous form are either nonempty
(consider the value at 0 of the form generated by the function 1/x in the space R)
or are “nice” bounded or compact sets, as the following situation depicts: con-
sider the generating function f(x) = (1/x) · sin (1/x) for x �= 0 which is a con-
tinuous single-valued function everywhere except for one point of the domain,
and its generated form is

φ(x) =

{{(
1
x

) · sin (
1
x

)}
, x �= 0,

R, x = 0.

This is the major obstacle (sometimes invincible) in finding analogs of the results
of locally bounded densely continuous forms for ordinary densely continuous
forms.

3. Cellularity of D∗
p(X):

Fréchet and Volterra spaces

In this section we investigate a property of first countable regular spaces which
allows the construction of the desired densely continuous form in the proof of the
density lemma ([HV1, Lemma 3.12]), saying that for a first countable regular
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space (without isolated points) D∗
p(X) is dense in Fp

(
X,K (R)

)
. The corollary

of this lemma ([HV1, 3.13]) then implies the countable cellularity of D∗
p(X) for

first countable regular spaces X.
Subsequently we shall discuss some applications of the investigated prop-

erty for densely continuous forms on Fréchet and Volterra spaces as well as
some improvements of the mentioned sufficient condition from [HV1] concerning
countable cellularity of D∗

p(X).

���	
	�	�
 3.1� We say the topological space X has the property P, if:

∀x ∈ X ∀Ox ∈ B(x) ∀ l ∈ N ∃ {Ui}∞i=1 pairwise disjoint open sets

such that Ui ⊆ Ox and x ∈ Ui for each i = 1, . . . , l.

Recall that a topological space is a Fréchet space (see [En]) if for any point
x and any subset with x ∈ A, there is a sequence in A converging to x.

����
 3.1� Let X be a Hausdorff and Fréchet space without isolated points.
Then X has the property P.

P r o o f. Let l ∈ N, let x ∈ X and, without the loss of generality, let Ox ∈ B(x)
be its non-trivial neighborhood. Let {xn : n ∈ N} be a sequence of distinct
points of Ox converging to x. Since the set Ck = {x}∪{xn : n > k} is compact
and closed for each k ∈ N we are able to define by induction the open disjoint
sets Ok and Vk such that Ck ⊆ Vk ⊆ Vk−1 and xk ∈ Ok ⊆ Vk−1 (of course put
V0 = Ox). Thus we have a sequence {On : n ∈ N} of pairwise disjoint open sets
with xn ∈ On. Now, for each i = 1, . . . , l put

Ui =
⋃

{On : n ∈ N, n mod l = i− 1}.

Then x ∈ Ui, so {Ui}l
i=1 is the desired pairwise disjoint system of open sets. �

Note 3.1� A topological space X is a Volterra space (see [GP]), if for each
f, g ∈ DC(X,R) the set C(f) ∩ C(g) is dense in X. It was shown in [GGP1]
that X is Volterra if and only if for each pair A,B ⊆ X of dense Gδ subsets the
set A ∩ B is dense. Thus, every Baire space is Volterra, but there are Volterra
spaces which are not of second category, i.e. not Baire spaces (see [GGP2]).

It can be shown (see H o l á [Ho2] or M c C o y [McC]) that if X is a Volterra
(or Baire) space, then we can make the space D(X) of densely continuous forms
a vector space by defining: for densely continuous forms φf = f � C (f), φg =
g � C (g) put φf + φg := f + g � C (f + g) = φf+g and for each a ∈ R put
a · φf := a · f � C (a · f) = φa·f .
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������� 3.1� Let X be a Hausdorff, Fréchet and Volterra space with a non-
isolated point. Then the addition is not continuous on D∗

p(X), that is, D∗
p(X)

is not a linear topological space.

P r o o f. Let x ∈ X be the non-isolated point, let Ox ∈ B(x) be its non-trivial
open neighborhood, let l = 2. Then X has the property P at the point x ∈ Ox,
i.e. using the procedure from Lemma 3.1 we get the disjoint open subsets
{U1, U2} in Ox such that x ∈ U1 ∩ U2. Define the functions f, g : X → R

by

f(y) =

{
1, y ∈ U1,

−1, y /∈ U1,

g(y) =

{
−1, y ∈ U1,

1, y /∈ U1.

Then f, g ∈ DC(X) and we have φf = f � C (f), φg = g � C (g) in D∗
p(X) such

that φf+g ≡ 0 ≡ φ0 is the zero (multi) function in the vector space with addition
defined as in the remarks preceding the theorem.

Now if A ∈ F(x) is any finite subset of X and ε > 0, we want to find an
element φh ∈ D∗

p(X) such that φh ∈ W (φf , A, ε) but φh+g /∈ W (φ0, {x}, 1). So
let A′ = A \ {x}. Since A′ is compact, there is an open neighborhood U ∈ B(x)
of x such that U ∩ A′ = ∅.

Define the function h : X → R by

h(y) =

{
g(y), y ∈ U,

f(y), y /∈ U.

Then again h ∈ DC(X) and we have φh ∈ D∗
p(X). If y ∈ A′, then y /∈ U ,

so φh (y) = φf (y). Moreover, since x ∈ U ∈ B(x), it is φh (x) = φg (x) =
{−1, 1} = φf (x) and therefore φh ∈W (φf , A, ε).

On the other hand, φh+φg = φh+g and (h+g)(y) = 2g(y) for y ∈ U and there-
fore (φh + φg)(x) = 2φg (x) = {−2, 2}, which implies φh + φg /∈ W (φ0, {x}, 1).
This completes the proof of the theorem. �

On the other hand, one is able to see that the scalar multiplication is con-
tinuous on D∗

p(X) even for non-Fréchet spaces. This is due to the fact that the
finitely-determined basic sets W (φf , A, ε) in D∗

p(X) are too “loose” in determin-
ing the properties of a contained form φg, but are still sufficient when the form
is multiplied by a real scalar.
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������� 3.2� Let X be a Hausdorff and Volterra space. Then the scalar mul-
tiplication is continuous on D∗

p(X).

P r o o f. Let φf ∈ D∗
p(X), A ∈ F(X) be finite and let ε > 0. Let a ∈ R be a

scalar (without the loss of generality we may suppose that a �= 0. It suffices
to find δ > 0 such that for each b ∈ Sδ (a) := (a− δ, a+ δ) and each φg ∈
W (φf , A, δ) we have φb·g ∈W (φa·f , A, ε). Denote Sδ [A] :=

⋃{
Sδ (a) : a ∈ A

}
.

Since φf assumes only nonempty compact values (see the remarks preceding
Theorem 2.1), the set φf [A] is compact, so we can find

M = max
{

max
{|y| + ε : y ∈ φf [A]

}
, |a| + 1

}
.

Moreover M ≥ max {1, ε} and if we put δ = ε
2M , then δ ≤ min

{
ε
2 ,

1
2

}
.

Now, let φg ∈W (φf , A, δ), let b ∈ Sδ (a) and let x ∈ A. We want to show that
H (φb·g (x) , φa·f (x)) < ε and for that it is sufficient to find for each s ∈ φa·f(x)
an element t ∈ φb·g(x) such that |s − t| < ε and vice versa (this argument will
be symmetrical and will be dealt with later).

So if s ∈ φa·f(x), then (x, s) ∈ φa·f = a · f � C (f) and for each U ∈ B(x) and
each V ∈ B(s) we have x(U,V ) ∈ U ∩C (f) such that a · f(x(U,V )) ∈ V . Thus we
have a pair of double-indexed nets: {x(U,V )} converging to x and {a · f(x(U,V ))}
converging to s. Put s′ = s

a .
Since Y = R is a topological group, if V ∈ B(s′), then a · V ∈ B(s), i.e.

the net {f(x(U,V ))} converges to s′ and therefore (x, s′) ∈ f � C (f) = φf or
equivalently s′ ∈ φf (x). Recalling that H (φg (x) , φf (x)) < δ, we have

φf (x) ⊆ Sδ [φg(x)] and φg(x) ⊆ Sδ [φf (x)] .

Thus there is t′ ∈ φg(x) such that |s′ − t′| < δ. Since (x, t′) ∈ φg = g � C (g),
the same argument as before implies that (x, b · t′) ∈ φb·g = b · g � C (g), i.e
t := b · t′ ∈ φb·g(x).

Finally, since t′ ∈ Sδ [φf (x)], there is y ∈ φf (x) such that |t′| ≤ |y| + δ <
|y| + ε ≤M . Now we have

|s− t| = |a · s′ − b · t′| ≤ |a| · |s′ − t′| + |t′| · |a− b|
< M · δ +M · δ = 2M · ε

2M
= ε.

Considering the reverse implication, we apply the same approach and for
t ∈ φb·g(x) we get s ∈ φa·f (x) with

|t− s| = |b · t′ − a · s′| ≤ |b| · |t′ − s′| + |s′| · |b− a| < ε,

because |b| < |a|+ δ < |a|+1 ≤M . Therefore H (φb·g (x) , φa·f (x)) < ε and the
theorem is proved. �
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The fact that a Fréchet space possesses the property P is also important for
our next goal, the generalization of the countable cellularity of D∗

p(X). First,
realize the following theorem:

������� 3.3� If X is a Hausdorff space with the property P and without iso-
lated points, then D∗

p(X) is dense in Fp

(
X,K (R)

)
.

P r o o f. LetW (ψ,A, ε) be an arbitrary nonempty open basic set in Fp

(
X,K (R)

)
where A = {x1, . . . , xm} is finite and ε > 0. Each ψ(xi) is compact, so for
each i = 1, . . . ,m there is a finite subset Yi = {y1, . . . , yli} in ψ(xi) such that
ψ(xi) ⊆ Sε/2[Yi].

Since A is finite, for each i = 1, . . . ,m there is a non-trivial open neighborhood
O(xi) of xi such that O(xi) ∩ O(xj) = ∅, if i �= j. Since X has the property P,
xi ∈ O(xi) and li ∈ N, for each i ∈ {1, . . . ,m} we have the family {U1, . . . , Uli}
of pairwise disjoint open sets in O(xi) such that xi ∈ Ui.

On each O(xi) define the function f : X → R by

f(y) =

{
yk, y ∈ Uk, k = 1, . . . , li,
z, y /∈ ⋃ {Uk : k = 1, . . . , li},

where z ∈ Yi = {y1, . . . , yli} is arbitrary fixed. Outside the set
m⋃

i=1
O(xi) the

function f can be put arbitrarily constant.
Then f ∈ DC(X) is densely continuous and let φ = f � C (f) ∈ D∗

p(X). The
definition of f implies

φ(xi) = {y1, . . . , yli} = Yi ⊆ ψ(xi).

By our initial remarks: ψ(xi) ⊆ Sε/2[φ (xi)] and therefore H(φ(xi), ψ(xi)) ≤
ε/2 < ε for every i = 1, . . . ,m, or equivalently, φ ∈ D∗

p(X) ∩W (ψ,A, ε) which
proves the theorem. �

Now we are ready to deliver the main result — a generalization of the sufficient
condition for the countable cellularity of D∗

p(X) (see [HV1, Theorem 3.13]). For
the definition of cellularity see the next section of the paper.

������� 3.4� Let X be a Hausdorff space which has the property P. Then
c
(
D∗

p(X)
)

= ℵ0.

P r o o f. If X contains isolated points, then the construction described in the
preceding theorem cannot be applied directly, because at an isolated point any
densely continuous form is single-valued, i.e. no larger compact set can be
generated as a value at such a point by a densely continuous form.
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Thus consider the following: let I(X) denote the set of all isolated points in
X and denote by Z =

∏
x∈X

Yx the product space where Yx = R (with the usual

topology) for x ∈ I(X) and Yx = (K (R), H) if x /∈ I(X).
We know by a result of E n g e l k i n g (see [En, Corollary 2.3.18]) that the

cellularity of Z is countable, and we know that cellularity is hereditary for dense
subspaces. So let W (ψ,A, ε) be an arbitrary nonempty open set in Z, i.e. ψ ∈ Z
is a form such that ψ is single-valued on I(X) and compact-valued on X \ I(X).
Define the function f : X → R by f(x) = ψ(x) for x ∈ I(X) and define f on
X \I(X) as in the proof of the previous theorem. Then φ = f � C (f) is a locally
bounded densely continuous form which is ε-close to ψ on A, i.e. D∗

p(X) is dense
in Z and hence c

(
D∗

p(X)
)

= c (Z) = ℵ0. �

������
�� 3.1� If X is a Hausdorff and Fréchet space, then c
(
D∗

p(X)
)

= ℵ0.

Note 3.2� It can be observed that ifX is the product of any number of Hausdorff
Fréchet spaces without isolated points, then X also has the property P.

������
�� 3.2� If X is the product of any number of Hausdorff Fréchet spaces,
then c

(
D∗

p(X)
)

= ℵ0.

4. Cardinal functions: D∗
p(X) vs. Cp(X)

To close this paper of remarks we intend to perform a short comparison
of cardinal functions on two spaces equipped with the topology of pointwise
convergence: the space D∗

p(X) of real-valued locally bounded densely continuous
forms on X and the space Cp(X) of continuous real-valued functions on X.

For the first part, the most common cardinal functions for D∗
p(X) were deter-

mined (or have had boundaries found) in the paper [HV1]. Concerning Cp(X),
we will use the standard arguments and the knowledge of Cp-theory (see for
example the books of A r h a n g e l s k i i [Ar] or M c C o y and N t a n t u [MN]).
Moreover, all cardinal functions are supposed to assume only infinite values (as
in E n g e l k i n g [En]) and to conform with the assumptions of Cp-theory, the
space X is throughout the section supposed to be Tychonoff (completely regu-
lar T1).

We shall consider classic cardinal functions like the weight w(Z), the network
weight nw(Z) or the density d(Z) of a space Z which are defined as the minimal
cardinalities of all bases, networks or dense subsets, respectively. The cellularity
c(Z), on the other hand, is defined as the supremum of the cardinalities of
all systems of pairwise disjoint open sets. Firstly, it follows from [HV1, The-
orem 3.8] and from [MN, Theorem 4.5.2] of M c C o y and N t a n t u that the
weight satisfies:
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������
�� 4.1� For every Tychonoff spaceX, w
(
D∗

p(X)
)

= |X| = w (Cp(X)).

Next, if we consider the pseudocharacter of the space Z defined by Ψ(Z) =
sup

{
Ψ(Z, z) : z ∈ Z

}
, where Ψ(Z, z) is the minimum of the cardinalities of all

families G of open sets in Z such that
⋂

G = {z}, and if we consider the diagonal
degree ∆(Z) of Z defined as the minimum of the cardinalities of all families G
of open sets in Z × Z such that

⋂
G =

{
(z, z) : z ∈ Z

}
, then it follows from

[HV1, Theorem 3.2] and from [MN, Theorem 4.3.1] that:

������
�� 4.2� For every Tychonoff space X,

Ψ
(
D∗

p(X)
)

= Ψ (Cp(X)) = ∆
(
D∗

p(X)
)

= ∆ (Cp(X)) = d (X) .

Continuing along this line, recall that a family P(z) of nonempty open sets
is called a local π-base (local pseudo-base) at z ∈ Z, if for each U ∈ B(z) there
is P ∈ P(z) with P ⊆ U . Then the π-character of Z is defined by πχ(Z) =
sup

{
πχ(Z, z) : z ∈ Z

}
, where πχ(Z, z) is the minimum of the cardinalities of all

local π-bases at z ∈ Z. The character of Z is defined by χ(Z) = sup
{
χ(Z, z) :

z ∈ Z
}
, where χ(Z, z) is the minimum of the cardinalities of all local bases at

z ∈ Z. It then follows from [HV1, Theorem 3.5] and from [MN, Theorem 4.4.1]
that:

������
�� 4.3� For every Tychonoff space X,

πχ

(
D∗

p(X)
)

= πχ (Cp(X)) = χ
(
D∗

p(X)
)

= χ (Cp(X)) = |X|.
Concerning the cellularity, from the results of the previous section and from

the results of Cp-theory we have the following corollary.

������
�� 4.4� If X is the product of Fréchet Tychonoff spaces, then we have
c
(
D∗

p(X)
)

= ℵ0 = c (Cp(X)).

These results might lead to the conclusion that all the cardinals on D∗
p(X)

and Cp(X) are in fact the same. Such conclusion, however, is quickly proved
wrong by the virtue of [HV1, Example 4.1], which states that if X = R is the
space of all reals with the usual topology, then d

(
D∗

p (R)
)
> ℵ0. It follows that:

������
�� 4.5� Whenever I is a compact interval of the reals, then the density
satisfies:

d
(
D∗

p(I)
)
> ℵ0 = d (Cp(I)) .

And directly from [HV1, Example 4.1] and [MN, Theorem 4.1.2] it also follows
that:

������
�� 4.6� The network weight satisfies

nw
(
D∗

p(R)
)
> ℵ0 = nw (Cp(R)) .
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Note 4.1� The collection of all results of [HV1] together with [HV2] and some
previous results concerning function-space topologies can be found in [Va].
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