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ABSTRACT. We can consider the Riemann-Stieltjes integral
b∫

a
f dg as an inte-

gral of a point function f with respect to an interval function g. We could extend
it to the Henstock-Stieltjes integral. In this paper, we extend it to a generalized

Stieltjes integral
b∫

a
f dg of a point function f with respect to a function g of di-

visions of an interval. Then we prove for this integral the standard results in the
theory of integration, including the controlled convergence theorem.

c©2008
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

The Riemann-Stieltjes integral is well-known. It can be extended to the
Henstock-Stieltjes integral ([3]). D a s et al [9] extended it further to include

the case when g in
b∫
a

f dg is a second difference function g(u, v, w) = g(w) −
2g(v)+g(u) or other similar functions. To unify the approach, we defined in the
language of Henstock the GRk integral ([6]) and the modified GRk integral ([7],
[8]) and proved some properties for both the integrals. So far, we have proved
among other results the Saks-Henstock lemma, one version of the fundamental
theorem of calculus and the equi-integrability convergence theorem.

The GRk integral is in fact, a Stieltjes integral
b∫

a

f dg of a point function f

with respect to a function g of divisions of an interval. We considered g as a
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division function so that the Saks-Henstock lemma holds. We modified the GRk

integral in [7] so that further properties of the integral can be proved. As we
proceed to develop the full theory, we realize that we need a second function δ for
the tagging of the subintervals in addition to the first δ function for the division of
each subinterval. Hence we define in this paper a generalized Henstock-Stieltjes
integral or in symbol GSk integral which is an extension of the GRk integral
and its modified version; the controlled convergence theorem is proved for the
GSk integral. For similar integrals existing in the literature, see also D a s and
K u n d u [10], [11].

2. Preliminaries

���������� 2.1� Given δ : [a, b] → R+, we call a division D given by a =
a1 < a2 < · · · < ap+1 = b and {x1, x2, . . . , xp} satisfying xi ∈ [ai, ai+1] ⊂
(xi − δ(xi), xi + δ(xi)) for i = 1, 2, . . . , p a δ-fine division of [a, b].

We write bi = ai+1, i = 1, 2, . . . , p, and denote a δ-fine division by D ={
[ai, bi]; xi]

}p

i=1
.

A δ-fine division D = {[ai, bi]; xi}p
i=1 is called a strictly δ-fine division of [a, b]

if either xi = ai or xi = bi.
We can make a δ-fine division D =

{
[ai, bi]; xi

}p

i=1
of [a, b] a strictly δ-fine

division of [a, b] by splitting [ai, bi] at xi as ([ai, bi]; xi) = ([ai, xi]; xi)∪([xi, bi]; xi)
when ai < xi < bi.

So, given δ : [a, b] → R+, there always exists a strictly δ-fine division of [a, b].

���������� 2.2� Let k be a fixed positive integer and δ be a positive function
defined on [a, b]. We shall call a division D of [a, b] given by a = x0 < x1 <
· · · < xn = b with associated points {ξ0, ξ1, . . . , ξn−k} satisfying

ξi ∈ [xi, xi+k] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for i = 0, 1, . . . , n − k

a δk-fine division of [a, b].

For a given positive function δ, we denote a δk-fine division D by{
[xi, xi+k], ξi

}
i=0,1,...,n−k

. Using the compactness of [a, b] it is easy to verify
that such a δk-fine division exists. When k = 1, it coincides with the usual
definition of δ-fine division.

Let g be a real-valued function defined on closed interval [a, b]k+1 in the
(k + 1)-dimensional space, and f be a real-valued function defined on [a, b].

Given a δ-fine division D =
{
([xi, xi+k], ξi)

}
i=0,1,...,n−k

we call
n−k∑
i=0

f(ξi)g(xi, . . .

. . . , xi+k), the Riemann sum of f with respect to g and denote it by s(f, g; D).
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Next, let [ai, bi], i = 1, 2, . . . , p, be pairwise non-overlapping, and
p⋃

i=1

[ai, bi] ⊂
[a, b]. Then {Di}i=1,2,...,p is said to be a δk-fine partial division of [a, b] if each
Di is a δk-fine division of [ai, bi]. Its corresponding partial Riemann sum is given

by
p∑

i=1
s(f, g; Di).

Let g be a real-valued function defined on a closed interval [a, b]k+1 in the
(k + 1)-dimensional space.

Now corresponding to the division xi < xi+1 < · · · < xi+k of [xi, xi+k] we can
associate a real-valued function g(xi, xi+1, . . . , xi+k). In this sense we regard g
as a division function.

Let x ∈ [xi, xi+k] where xi < xi+1 < · · · < xi+k. The jump of g at x, denoted
by J(g; x), is defined by

J(g; x) = lim
xi→x

xi+k→x

g(xi, . . . , xi+k),

if the limit exists and is finite.
In what follows we assume that J(g; x) exists for all x ∈ [a, b].

���������� 2.3� Let f : [a, b] → R, g : [a, b]k+1 → R. We say that f is GSk

integrable with respect to g on [a, b] to I if for any ε > 0, there is δ1 : [a, b] → R+

such that for every strictly δ1-fine division D = {[ai, bi]; xi}p
i=1 of [a, b] there

exists δ2 : [a, b] → R+, depending on D such that for any δk
2 -fine division Di of

[ai, bi], i = 1, . . . , p, we have∣∣∣∣ p∑
i=1

s(f, g; Di) +
p−1∑
i=1

(k − 1)f(bi)J(g; bi) − I

∣∣∣∣ < ε.

If f is GSk integrable with respect to g on [a, b], we write (f, g) ∈ GSk[a, b]

and denote the integral by
b∫

a

f dg.

Notation� Henceforth for convenience we shall write {xi, [ai, bi], Di}p
i=1 is a

(δ1, δ
k
2 )-fine division of [a, b] to mean that {[ai, bi]; xi}p

i=1 is a strictly δ1-fine
division of [a, b] and depending on which there exists δ2 : [a, b] → R+ such that
Di is a δk

2 -fine division of [ai, bi], i = 1, 2, . . . , p.
We shall also say that D = {xi, [ai, bi], Di}p

i=1 is a (δ1, δ
k
2 )-fine partial di-

vision of [a, b] if {[ai, bi]; xi}p
i=1 is a strictly δ1-fine partial division of [a, b] i.e.

p⋃
i=1

[ai, bi] ⊂ [a, b] and depending on which there exists δ2 : [a, b] → R+ such that

Di is a δk
2 -fine division of [ai, bi].

�	��
�� 2.4� The GSk integral is uniquely defined.
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P r o o f. Let us assume that for ε > 0, there exist positive functions δ1(x), δ2(x)
defined on [a, b] such that for every (δ1, δ

k
2 )-fine D = {xi, [ai, bi], Di}p

i=1 of [a, b]
we have ∣∣∣∣ p∑

i=1

s(f, g; Di) +
p−1∑
i=1

(k − 1)f(bi)J(g; bi) − I1

∣∣∣∣ < ε

and also that there exist δ3(x), δ4(x) : [a, b] → R+ such that for every (δ3, δ
k
4 )-fine

P = {yj, [cj, dj ]; Pj}q
j=1 of [a, b] we have∣∣∣∣ q∑

j=1

s(f, g; Pj) +
q−1∑
j=1

(k − 1)f(dj)J(g; dj) − I2

∣∣∣∣ < ε.

Let δ5(x) = min{δ1(x), δ3(x)}.
We fix a strictly δ5-fine division {[al, bl]; xl}r

l=1 for which there exist δ(x) and
δ′(x) such that for any δk-fine Dl and δ′k-fine Pl of [al, bl] we have∣∣∣∣ r∑

l=1

s(f, g; Dl) +
r−1∑
l=1

(k − 1)f(bi)J(g; bi) − I1

∣∣∣∣ < ε (i)

∣∣∣∣ r∑
l=1

s(f, g; Pl) +
r−1∑
l=1

(k − 1)f(bl)J(g; bl) − I2

∣∣∣∣ < ε. (ii)

We take δ6(x) = min{δ(x), δ′(x)} and fix a δk
6 -fine division of [al, bl] for which

both (i) and (ii) hold. Hence |I1 − I2| < 2ε. Therefore, I1 = I2.
In Section 6, we shall give examples of the GSk integral. �

3. Simple properties

The following theorem follows directly from the definition of the GSk integral.

�	��
�� 3.1� Let (fi, g) ∈ GSk[a, b] and (f, gi) ∈ GSk[a, b] for i = 1, 2, . . . , n.
Then for real numbers λ1, λ2, . . . , λn we have

(i)
( n∑

i=1

λifi, g
)
∈ GSk[a, b] and

b∫
a

n∑
i=1

(λifi) dg =
n∑

i=1

λi

( b∫
a

fi dg
)
.

(ii)
(
f,

n∑
i=1

λigi

)
∈ GSk[a, b] and

b∫
a

f d
( n∑

i=1
λigi

)
=

n∑
i=1

λi

b∫
a

f dgi.

(iii) If f1(x) ≤ f2(x) for all x ∈ [a, b] and g : [a, b]k+1 → [0,∞), then
b∫

a

f1 dg ≤
b∫

a

f2 dg.
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�	��
�� 3.2� Let a < c < b. If (f, g) ∈ GSk[a, c] and (f, g) ∈ GSk[c, b] then
(f, g) ∈ GSk[a, b] and

b∫
a

f dg =

c∫
a

f dg +

b∫
c

f dg + (k − 1)f(c)J(g; c).

P r o o f. Since (f, g) ∈ GSk[a, c]∩GSk[c, b], for ε > 0, there exist δ1(x), δ2(x) > 0
defined on [a, c] and δ3(x), δ4(x) > 0 defined on [c, b] respectively such that∣∣∣∣ p∑

i=1

s(f, g; Di) +
p−1∑
i=1

(k − 1)f(bi)J(g; bi) −
c∫

a

f dg

∣∣∣∣ < ε

and

∣∣∣∣ q∑
j=1

s(f, g; Pj) +
q−1∑
j=1

(k − 1)f(dj)J(g; dj) −
b∫

c

f dg

∣∣∣∣ < ε

for every (δ1, δ
k
2 )-fine division {xi, [ai, bi], Di}p

i=1 of [a, c] and (δ3, δ
k
4 )-fine division

{yj, [cj , dj ], Pj}q
j=1 of [c, b] respectively.

We define δ5(x) = min{δ1(x), c − x} when x ∈ [a, c); min{δ3(x), x − c} when
x ∈ (c, b], and min{δ1(c), δ3(c)} when x = c.

We note that with the above definition of δ5, c is always a division point of
any strictly δ5-fine division of [a, b].

Let a = u1 < v1 = u2 < v2 = u3 < · · · < vs = c = us+1 < vs+1 < · · · < vr = b
be a strictly δ5-fine division of [a, b] with zl being a tag point of [ul, vl]. Then
{[ul, vl]; zl}s

l=1 and {[ul, vl]; zl}r
l=s+1 are a strictly δ1-fine division of [a, c] and

a strictly δ3-fine division of [c, b] respectively. So, there exist δ′6 defined on
[a, c] and δ′′6 defined on [c, b] such that for every δ′k6 -fine division D′

l of [ul, vl],
l = 1, 2, . . . , s, and for every δ′′k6 -fine division D′′

l of [ul, vl], l = s+1, s+2, . . . , r,
we have ∣∣∣∣ s∑

l=1

s(f, g; D′
l) +

s−1∑
l=1

(k − 1)f(vl)J(g; vl) −
c∫

a

f dg

∣∣∣∣ < ε

and ∣∣∣∣ r∑
l=s+1

s(f, g; D′′
l ) +

r−1∑
l=s+1

(k − 1)f(vl)J(g; vl) −
b∫

c

f dg

∣∣∣∣ < ε

respectively.
We define δ6(x) = δ′6(x) when x ∈ [a, c), min{δ′6(c), δ′′6 (c)} when x = c and

δ′′6 (x) when x ∈ (c, b].
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Let us take any δk
6 -fine division Dl of [ul, vl], l = 1, 2, . . . , r. Then,∣∣∣∣∣

r∑
l=1

s(f, g; Dl) +
r−1∑
l=1

(k − 1)f(vl)J(g; vl)

−
{ c∫

a

f dg +

b∫
c

f dg + (k − 1)f(c)J(g; c)

}∣∣∣∣∣
≤
∣∣∣∣∣

s∑
l=1

s(f, g; Dl) +
s−1∑
l=1

(k − 1)f(vl)J(g; vl) −
c∫

a

f dg

∣∣∣∣∣
+

∣∣∣∣∣
r∑

l=s+1

s(f, g; Dl) +
r−1∑

l=s+1

(k − 1)f(vl)J(g; vl) −
b∫

c

f dg

∣∣∣∣∣ < 2ε.

So, (f, g) ∈ GSk[a, b] and the equality holds. �

Remark 3.3� We here note that if we define F (u, v) =
v∫
u

f dg for [u, v] ⊂ [a, b]

then in general F is not an additive function on the closed subintervals of [a, b]
for k > 1. But for k = 1 it is additive because the extra term vanishes.

���������� 3.4� Let the domain of F be
{
[u, v] ⊂ [a, b] : u ≤ v

}
. We call F

to be nearly additive if for a < c < b, F (a, b) = F (a, c) + F (c, c) + F (c, b).
Further, F is called g-nearly additive with respect to f if F (x, x) = (k − 1) ·

· f(x)J(g; x) for all x ∈ (a, b). So, the integral function F of the GRk-integral
is g-nearly additive with respect to f in [a, b].

The following two theorems can be easily verified and so the proofs are omit-
ted.

�	��
�� 3.5 (Cauchy Condition)� (f, g) ∈ GSk[a, b] if and only if for ev-
ery ε > 0 there exist positive functions δ1, δ2 : [a, b] → R+ such that for any
(δ1, δ

k
2 )-fine division {xi, [ai, bi], Di}p

i=1 and {yj, [cj, dj ], Pj}q
j=1 of [a, b], we have∣∣∣∣∣

(
p∑

i=1

s(f, g; Di) +
p−1∑
i=1

(k − 1)f(bi)J(g; bi)

)

−
(

q∑
j=1

s(f, g; Pj) +
q−1∑
j=1

(k − 1)f(dj)J(g; dj)

)∣∣∣∣∣ < ε.

�	��
�� 3.6� If (f, g) ∈ GSk[a, b] and a ≤ c < d ≤ b, then (f, g) ∈ GSk[c, d].

We now prove the Saks-Henstock Lemma analogue for the GSk integral.
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�	��
�� 3.7 (Saks-Henstock Lemma)� Let f : [a, b]→R and g : [a, b]k+1→R

be such that J(g; x) exists for all x ∈ [a, b]. Then (f, g) ∈ GSk[a, b] if and only
if there exists a function F , g-nearly additive with respect to f , satisfying the
condition that for all ε > 0 there exist δ1, δ2 : [a, b] → R+ such that for any
(δ1, δ

k
2 )-fine partial division D = {xi, [ai, bi], Di}p

i=1 of [a, b] we have∣∣∣∣ p∑
i=1

{s(f, g; Di) − F (ai, bi)}
∣∣∣∣ < ε.

P r o o f. Let (f, g) ∈ GSk[a, b]. So for ε > 0 there exist δ1, δ
′
2 : [a, b] → R+ such

that for any (δ1, δ
′k
2 )-fine division {xi, [ur, vr]; Qr}t

r=1 of [a, b] we have∣∣∣∣ t∑
r=1

s(f, g; Qr) +
t−1∑
r=1

(k − 1)f(vr)J(g; vr) − F (a, b)
∣∣∣∣ < ε, (i)

where F (u, v) =
v∫
u

f dg. We define F (u, v) = (k − 1)f(u)J(g; u) when u = v.

Let {[ai, bi]; xi}p
i=1 be a strictly δ1-fine partial division of [a, b], and

q⋃
j=1

[cj , dj ]

be the closure of the complement of
p⋃

i=1

[ai, bi] in [a, b]. By Theorem 3.6, (f, g) ∈
GSk[cj , dj ], j = 1, 2, . . . , q, and so we can find δ1j(x), δ2j(x) > 0, j = 1, 2, . . . , q,
defined on [cj , dj ] such that for all (δ1j , δ

k
2j)-fine {yjs, [cjs, djs], Djs}mj

s=1 of [cj , dj],
j = 1, 2, . . . , q, we have∣∣∣∣ mj∑

s=1

s(f, g; Djs) +
mj−1∑
s=1

f(djs)J(g; djs) − F (cjs, djs)
∣∣∣∣ < ε

q
,

where we may assume that δ1j(x) ≤ δ1(x) for x ∈ [cj , dj ], j = 1, 2, . . . , q.
So, {[ai, bi]; xi}p

i=1 and {[cjs, djs]; yjs}mj

s=1, j = 1, 2, . . . , q, together form a
strictly δ1-fine division of [a, b].

Let Λ be the set of common end points of [ai, bi] and [cj , dj ]. Hence in view
of (i) above there exists δ2 : [a, b] → R+ (we may assume that δ2(x) ≤ δ2j(x)
for x ∈ [cj , dj ], j = 1, 2, . . . , q) such that for any δk

2 -fine division Di of [ai, bi],
i = 1, 2, . . . , p, and Djs, s = 1, 2, . . . , mj, j = 1, 2, . . . , q, of [cjs, djs] we have∣∣∣∣ q∑

j=1

mj∑
s=1

s(f, g; Djs) +
p∑

i=1

s(f, g; Di)

+
q∑

j=1

mj−1∑
s=1

(k − 1)f(djs)J(g; djs) +
∑
x∈Λ

(k − 1)f(x)J(g; x)− F (a, b)
∣∣∣∣ < ε.
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By Theorem 3.2, F (a, b) =
p∑

i=1

F (ai, bi) + (k − 1)
∑
x∈Λ

f(x)J(g; x) +
q∑

j=1

F (cj , dj).

So, we have,∣∣∣∣ p∑
i=1

{s(f, g; Di) − F (ai, bi)}
∣∣∣∣

≤
∣∣∣∣ q∑

j=1

mj∑
s=1

s(f, g; Djs) +
p∑

i=1

s(f, g; Di) + (k − 1)
q∑

j=1

mj−1∑
s=1

f(djs)J(g; djs)

+ (k − 1)
∑
x∈Λ

f(x)J(g; x) − F (a, b)
∣∣∣∣

+
∣∣∣∣ (k − 1)

q∑
j=1

mj−1∑
s=1

f(djs)J(g; djs) +
q∑

j=1

mj∑
s=1

s(f, g; Djs) −
q∑

j=1

F (cj, dj)
∣∣∣∣< 2ε.

Conversely, let the condition hold.
We take a (δ1, δ

k
2 )-fine division {xi, [ai, bi], Di}p

i=1 of [a, b]. Then∣∣∣∣ p∑
i=1

{s(f, g; Di) − F (ai, bi)}
∣∣∣∣ < ε.

Since F is g-nearly additive, then F (a, b) =
p∑

i=1

F (ai, bi)+
p−1∑
i=1

(k−1)f(bi)J(g; bi).

So, ∣∣∣∣ p∑
i=1

s(f, g; Di) +
p−1∑
i=1

(k − 1)f(bi)J(g; bi) − F (a, b)
∣∣∣∣ < ε.

Hence (f, g) ∈ GSk[a, b]. �

4. Some Results

���������� 4.1� Let g : [a, b]k+1 → R. For X ⊂ [a, b] we define the slope
variation

SV k
g (X) = inf

δ1
sup
D

inf
δ2

sup
Di

p∑
i=1

|s(1, g; Di)|,

where the first supremum is taken over all δk
2 -fine divisions Di of [ai, bi] and then

infimum over all δ2 keeping a strictly δ1-fine partial division D = {[ai, bi]; xi}p
i=1,

xi ∈ X of [a, b] fixed at present and then supremum over all D and then infimum
over all δ1.
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If SV k
g (X) < ∞, we say that g ∈ SV k(X)(of bounded slope variation).

It follows from the above definition that if g ∈ SV k(X) then there
exist δ1, δ2 : [a, b] → R+ such that for any (δ1, δ

k
2 )-fine partial division

{xi, [ai, bi], Di}p
i=1, with xi ∈ X of [a, b] we have

p∑
i=1

|s(1, g; Di)| ≤ SV k
g (X).

We now give an example of a function g which belongs to SV 2[a, b].

Example 4.2. Let G be of bounded slope variation on [a, b] and g : [a, b]3 → R

be defined as g(u, v, w) = G(w)−G(v)
w−v − G(v)−G(u)

v−u when u < v < w and = 0
otherwise. Then g ∈ SV 2[a, b].

P r o o f. Since G is of bounded slope variation on [a, b] there exists [4, p. 147],
M > 0 such that

n−2∑
i=0

∣∣∣∣G(xi+2) − G(xi+1)
xi+2 − xi+1

− G(xi+1) − G(xi)
xi+1 − xi

∣∣∣∣+ ∣∣∣∣G(xn) − G(xn−1)
xn − xn−1

∣∣∣∣ < M,

for any division a = x0 < x1 < x2 < · · · < xn = b of [a, b].
Let δ1, δ2 : [a, b] → R+ be any two functions, D = {[ai, bi]; xi}p

i=1 be any
δ1-fine partial division of [a, b] and Di = {[zr, zr+k]; ξr}l

r=1 be any δk
2 -fine division

of [ai, bi], i = 1, 2, . . . , p. Then, |s(1, g; Di)| =
∣∣∣G(zl+k)−G(zl+k−1)

zl+k−zl+k−1
− G(z2)−G(z1)

z2−z1

∣∣∣.
Since G is of bounded slope variation, we have

inf
δ1

sup
D

inf
δ2

sup
Di

p∑
i=1

|s(1, g; Di)| < ∞.

�

���������� 4.3� Let F be a function g-nearly additive with respect to f on
[a, b]. F is said to be weakly g-regular with respect to f at x ∈ [a, b] if for all
ε > 0, there exists δ1(x) > 0 such that for every [u, v] with x = u or x = v
and [u, v] ⊂ (x− δ1(x), x + δ1(x)) there exists δ : [a, b] → R+ such that for every
δk-fine division D = {[xi, xi+k]; ξi}n−k

i=0 of [u, v] we have∣∣∣∣ n−k∑
i=0

f(ξi)g(xi, . . . , xi+k) − F (u, v)
∣∣∣∣ < ε

n−k∑
i=0

|g(xi, . . . , xi+k)|.

�	��
�� 4.4� Let F be a g-nearly additive function defined on [a, b] and g ∈
SV k[a, b]. If F is weakly g-regular at all x ∈ [a, b], then (f, g) ∈ GSk[a, b] with
primitive F .
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P r o o f. Since g ∈ SV k[a, b], we can find M > 0 and δ′1 : [a, b] → R+ such
that for any strictly δ′1-fine partial division {[ai, bi]; xi}p

i=1 of [a, b], there ex-
ists δ′2 : [a, b] → R+ such that for all δ′k2 -fine divisions Di of [ai, bi] we have
p∑

i=1
|s(1, g; Di)| < M .

Now, F being weakly g-regular at all x ∈ [a, b], for ε > 0 there exists
δ3 : [a, b] → R+ such that for all strictly δ3-fine divisions {[ci, di]; yi}q

i=1 there
exists δ4 : [a, b] → R+ such that for any δk

4 -fine division Pi = {[xi
j, x

i
j+k]; ξ

i
j}ni−k

j=0

of [ci, di] we have∣∣∣∣ ni−k∑
j=0

f(ξi
j)g(xi

j, . . . , x
i
j+k) − F (ci, di)

∣∣∣∣ < ε

M

ni−k∑
j=0

|g(xi
j, . . . , x

i
j+k)|.

We define δ1(x) = min{δ′1(x), δ3(x)}, x ∈ [a, b].
Let D = {[ai, bi]; xi}p

i=1 be a strictly δ1-fine partial division of [a, b]. Then
there exists δ2 : [a, b] → R+ with δ2(x) ≤ min{δ′2(x), δ4(x)} for x ∈ [a, b] such
that for all δk

2 -fine divisions Di of [ai, bi], i = 1, 2, . . . , p, we have∣∣∣∣ p∑
i=1

{s(f, g; Di) − F (ai, bi)}
∣∣∣∣ ≤ p∑

i=1

|s(f, g; Di) − F (ai, bi)|

<
ε

M

p∑
i=1

|s(1, g; Di)| < ε.

So, by Theorem 3.7, (f, g) ∈ GSk[a, b] with primitive F . �

In [1], the authors obtained a characterization of the Henstock integral in �m.
Keeping in view of this we shall now give a characterization of the GSk integral.

���������� 4.5� Let f : [a, b] → R, g : [a, b]k+1 → R. Further, let F be g-nearly
additive with respect to f . Given ε > 0 and δ1, δ2 : [a, b] → R+ we define the set

Γε,δ1,δ2 =
{

D : D = {xi, [ai, bi], Di}p
i=1

is a (δ1, δ
k
2 )-fine partial division of [a, b] such that∣∣ p∑

i=1
{s(f, g; Di) − F (ai, bi)}

∣∣ ≥ ε
p∑

i=1
|s(1, g; Di)|

}
.

Let X(ε, δ1, δ2) =
{
xi : D = {xi, [ai, bi], Di}p

i=1 ∈ Γε,δ1,δ2

}
.

�	��
�� 4.6� Let F be a function g-nearly additive with respect to f on [a, b]
and g ∈ SV k[a, b]. Then (f, g) ∈ GSk[a, b] with primitive F if for all ε > 0 there
exist δ1, δ2 : [a, b] → R+ such that for all (δ1, δ

k
2 )-fine partial divisions
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D = {xi, [ai, bi], Di}p
i=1 ∈ Γε,δ1,δ2 of [a, b] we have

p∑
i=1

|s(f, g; Di)| < ε and
p∑

i=1

|F (ai, bi)| < ε.

The converse also holds if [a, b] =
∞⋃
l=1

Xl where the Xl’s are such that for each l

there exist δ1,l : [a, b] → R+ and Ml > 0 such that for any strictly δ1,l-fine partial
division {[ai, bi]; xi}p

i=1 of [a, b] with xi ∈ Xl, there exists δ2,l : [a, b] → R+ such
that for any δk

2,l-fine division Di of [ai, bi] we have∣∣∣∣ p∑
i=1

s(f, g; Di)
∣∣∣∣ ≤ Ml

p∑
i=1

|s(1, g; Di)|.

P r o o f. Since g ∈ SV k[a, b], there exist δ′1, δ
′
2 : [a, b] → R+ and M > 0 such

that for any (δ′1, δ
′k
2 )-fine partial division {yj, [cj , dj]; Pj}q

j=1 of [a, b] we have
q∑

j=1

|s(1, g; Pj)| < M.

From the given condition, for all ε > 0 there exist δ1, δ2 : [a, b] → R+ such that
for any (δ1, δ

k
2 )-fine partial division D = {tr, [ur, vr], Qr}s

r=1 ∈ Γε,δ1,δ2 we have
s∑

r=1

|s(f, g; Qr)| < ε and
s∑

r=1

|F (ur, vr)| < ε.

We may assume that δ1(x) ≤ δ′1(x) and δ2(x) ≤ δ′2(x) for all x ∈ [a, b].
Let {xi, [ai, bi], Di}p

i=1 be any (δ1, δ
k
2 )-fine partial division of [a, b]. Then∣∣∣∣ p∑

i=1

{s(f, g; Di) − F (ai, bi)}
∣∣∣∣

≤
∑

xi∈X(ε,δ1,δ2)

|s(f, g; Di) − F (ai, bi)| +
∑

xi∈X′(ε,δ1,δ2)

|s(f, g; Di) − F (ai, bi)|,

where X ′ denotes the complement of X

≤
∑

xi∈X(ε,δ1,δ2)

|s(f, g; Di)| +
∑

xi∈X(ε,δ1,δ2)

|F (ai, bi)| +
∑

xi∈X′(ε,δ1,δ2)

|s(f, g; Di) − F (ai, bi)|

< 2ε +
∑

xi∈X′(ε,δ1,δ2)

ε|s(1, g; Di)| < 2ε + εM = (2 + M )ε.

So, by Theorem 3.7, (f, g) ∈ GSk[a, b].
Conversely, let (f, g) ∈ GSk[a, b] with primitive F and f satisfy the given

condition. We may assume that the Xl’s are disjoint. So, there exist Ml > 0
and δ1,l(x) : [a, b] → R+ such that for any strictly δ1,l-fine partial division
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{[ai, bi]; xi}p
i=1 of [a, b] with xi ∈ Xl, there exists δ2,l : [a, b] → R+ such that

for any δk
2,l-fine division Di of [ai, bi] we have∣∣∣∣ p∑

i=1

s(f, g; Di)
∣∣∣∣ ≤ Ml

p∑
i=1

|s(1, g; Di)|. (1)

Now, by the Henstock lemma for ε > 0 there exists δ3,l, δ4,l : [a, b] → R+ such
that for every (δ3,l, δ

k
4,l)-fine partial division {xi, [ai, bi], Di}p

i=1 of [a, b] we have∣∣∣∣ p∑
i=1

{s(f, g; Di) − F (ai, bi)}
∣∣∣∣ < ε2

2l+1Ml
. (2)

We define δ1(x) = min
{
δ1,l(x), δ3,l(x)

}
, for x ∈ Xl. Let {[cj , dj]; yj}q

j=1 be a
strictly δ1-fine partial division of [a, b]. Then there exists δ2 : [a, b] → R+ with
δ2(x) ≤ min{δ2,l(x), δ4,l(x)} for x ∈ Xl such that both (1) and (2) above hold
for any δk

2 -fine division Pj of [cj, dj ], j = 1, 2, . . . , q.
We take a (δ1, δ

k
2 )-fine partial division {xi, [ai, bi], Di}p

i=1 ∈ Γε,δ1,δ2 of [a, b].
Then

p∑
i=1

|s(f, g; Di)| ≤
∞∑

l=1

∑
xi∈Xl

|s(f, g; Di)| ≤
∞∑
l=1

Ml

∑
xi∈Xl

|s(1, g; Di)|

≤
∞∑

l=1

Ml

ε

∑
xi∈Xl

|s(f, g; Di) − F (ai, bi)| ≤
∞∑

l=1

Ml2ε2

ε2l+1Ml
= ε.

Also,
p∑

i=1
|F (ai, bi)| ≤

p∑
i=1

|s(f, g; Di) − F (ai, bi)| +
p∑

i=1
|s(f, g; Di)| < 2ε. �

5. Convergence

In this section we prove some convergence results for the GSk integral.

�	��
�� 5.1 (Uniform Convergence Theorem)� Let g ∈ SV k[a, b] and
{fn} be a sequence of functions defined on [a, b] such that (fn, g) ∈ GSk[a, b] for
all n = 1, 2, . . . . If fn is uniformly convergent to f on [a, b] as n → ∞, then
b∫

a

f dg exists and lim
n→∞

b∫
a

fn dg =
b∫
a

f dg.

P r o o f. Since g ∈ SV k[a, b] there exist δ′1 : [a, b] → R+ and M > 0 such that
for any strictly δ′1-fine partial division D′ = {[ci, di]; ξi}q

i=1 of [a, b] there exists
δ′2 : [a, b] → R+ such that for any δ′k2 -fine division D′

i of [ci, di], i = 1, 2, . . . , q,

we have
q∑

i=1

|s(1, g; D′
i)| < M .
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Let An =
b∫

a

fn dg. By the Saks-Henstock lemma, for ε > 0 there exists

δ1,n : [a, b] → R+, n = 1, 2, . . . , where δ1,n ≤ δ′1 such that for every strictly
δ1,n-fine partial division Dn = {[an

i , bn
i ]; xn

i }pn

i=1 of [a, b] there exists
δ′2,n : [a, b] → R+ such that for every δ′k2,n-fine division D′n

i of [an
i , bn

i ] we have∣∣∣∣ pn∑
i=1

s(fn, g; D′n
i ) − An

∣∣∣∣ < ε.

We choose δ1,n+1 such that δ1,n+1 ≤ δ1,n, n = 1, 2, . . . . For n, m ∈ N and
n > m we fix a strictly δ1,n-fine partial division {[un

l , vn
l ]; tnl }r

l=1 of [a, b]. So,
there exists δ2n : [a, b] → R+ with δ2n ≤ δ′2 and δ2,n+1 ≤ δ2,n, n = 1, 2, . . . , such
that for any δk

2n-fine division Dn
l of [un

l , vn
l ], l = 1, 2, . . . , r, we have

|An −Am| < 2ε +
r∑

l=1

|s(fn, g; Dn
i )− s(fm, g; Dm

i )| ≤ 2ε + ||fn − fm||(SV k
g [a, b]),

where ‖fn − fm‖ = sup
a≤x≤b

|fn(x) − fm(x)|. As fn is uniformly convergent to f ,

we have ‖fn−fm‖ → 0 as n, m → ∞. So, there exists a positive integer N1 such
that for n, m > N1, ‖fn − fm‖ < ε

M . Thus {An} is a Cauchy sequence in R and
let A = lim

n→∞An. We can find a positive integer N2 > N1 such that for n ≥ N2

we have |An − A| < ε. Let δ1(x) = δ1,N2(x) for x ∈ [a, b]. Then for any strictly
δ1-fine division {[ai, bi]; xi}p

i=1 of [a, b] there exists δ2 : [a, b] → R+, δ2 ≤ δ2,N2 ,
such that for any δk

2 -fine division Di of [a, b] we have∣∣∣∣ p∑
i=1

s(f, g; Di) − A

∣∣∣∣ ≤ ∣∣∣∣ p∑
i=1

{s(f, g; Di) − s(fN2 , g; Di)}
∣∣∣∣

+
∣∣∣∣ p∑

i=1

s(fN2 , g; Di) − AN2

∣∣∣∣+ |AN2 − A| < 3ε.

So, (f, g) ∈ GSk[a, b] and
b∫

a

f dg = lim
n→∞

b∫
a

fn dg. �

�	��
�� 5.2 (Monotone Convergence Theorem)� If
(i) the sequence {fn} is monotonic everywhere in [a, b],
(ii) g is a non-negative function defined on [a, b]k+1 such that

(fn, g) ∈ GSk[a, b] for all n and

the sequence
{ b∫

a

fn dg
}

is bounded,

(iii) lim
n→∞ fn(x) = f(x) for all x in [a, b],

then (f, g) ∈ GSk[a, b] and
b∫
a

f dg = lim
n→∞

b∫
a

fn dg.
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P r o o f. We proceed similarly as in the proof of [4, Theorem 3.5.2]. By consid-
ering −fn or fn − f1 instead of fn, if need be, we can achieve that the sequence

{fn} is increasing and fn ≥ 0. Since g ≥ 0,
{ b∫

a

fn dg
}

is also monotonic and

bounded. So, lim
n→∞

b∫
a

fn dg exists. Let us denote it by L. Given ε > 0 we can find

N such that
b∫

a

fN dg > L − ε
3 . Next we find n(x) ≥ N such that, for n ≥ n(x),

3L + 3ε

3L + ε
fn(x) ≥ f(x).

If f(x) > 0 this is possible because the left-hand side has a limit strictly larger
than the right-hand side; if f(x) = 0 we can take n(x) = N . By the Saks-
Henstock Lemma, there is δ1,n : [a, b] → R+ such that for any strictly δ1,n-fine
partial division {[ci, di]; ξi}q

i=1 there exists δ′2,n : [a, b] → R+ such that for every
δ′k2,n-fine division Pn

i of [ci, di] we have

q∑
i=1

|s(fn, g; Pn
i ) −

di∫
ci

fn dg| <
ε

3 · 2n
. (i)

We define δ1(x) = δ1,n(x)(x). Let {[ai, bi]; xi}p
i=1 be a strictly δ1-fine division of

[a, b]. So, there exists δ2,n : [a, b] → R so that (i) holds for any δk
2,n-fine Dn

i of
[ai, bi].

We define δ2 : [a, b] → R+ by δ2(x) = δ2,n(x)(x) for x ∈ [a, b] and take any
δk
2 -fine division Di of [ai, bi].

The proof will be complete if we show that∣∣∣∣ p∑
i=1

s(f, g; Di) + (k − 1)
p−1∑
i=1

f(bi)J(g; bi) − L

∣∣∣∣ < ε.

Now,

p∑
i=1

bi∫
ai

fn(xi) dg + (k − 1)
p−1∑
i=1

fn(xi)(bi)J(g; bi)

≥
p∑

i=1

bi∫
ai

fN dg + (k − 1)
p−1∑
i=1

fN (bi)J(g; bi) =

b∫
a

fN dg > L − ε

3
.
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Denoting by N̂ the largest n(xi) we also have

p∑
i=1

bi∫
ai

fn(xi) dg + (k − 1)
p−1∑
i=1

fn(xi)(bi)J(g; bi)

≤
p∑

i=1

bi∫
ai

fN̂ dg + (k − 1)
p−1∑
i=1

fN̂ (bi)J(g; bi) =

b∫
a

fN̂ dg ≤ L.

Now ∣∣∣∣ p∑
i=1

{
s(fn(xi), g; Di) −

bi∫
ai

fn(xi) dg

} ∣∣∣∣
≤

∞∑
l=1

∑
n(xi)=l

∣∣∣∣s(fn(xi), g; Di) −
bi∫

ai

fn(xi) dg

∣∣∣∣ <
∞∑

l=1

ε

3.2l
=

ε

3
.

Again,
p∑

i=1

s(f, g; Di) + (k − 1)
p−1∑
i=1

f(bi)J(g; bi)

≥
p∑

i=1

s(fn(xi), g; Di) + (k − 1)
p−1∑
i=1

fn(xi)(bi)J(g; bi)

>

p∑
i=1

bi∫
ai

fn(xi) dg + (k − 1)
p−1∑
i=1

fn(xi)(bi)J(g; bi) − ε

3
> L − 2ε

3

and on the other hand

(3L + ε)
3(L + ε)

[ p∑
i=1

s(f, g; Di) + (k − 1)
p−1∑
i=1

f(bi)J(g; bi)
]

≤
p∑

i=1

s(fn(xi), g; Di) + (k − 1)
p−1∑
i=1

fn(xi)(bi)J(g; bi)

<

p∑
i=1

bi∫
ai

fn(xi) dg +
ε

3
+ (k − 1)

p−1∑
i=1

fn(xi)(bi)J(g; bi) ≤ L +
ε

3
.

So, ∣∣∣∣ p∑
i=1

s(f, g; Di) + (k − 1)
p−1∑
i=1

f(bi)J(g; bi) − L

∣∣∣∣ < ε.

This completes the proof. �
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���������� 5.3� Let F be an interval function defined on � =
{
[u, v] : u, v ∈

[a, b], u ≤ v
}
. For X ⊆ [a, b] we say that F is ACk(X) if for all ε > 0 there

exist δ1 : [a, b] → R+ and η > 0 such that for every strictly δ1-fine partial division

D = {[ai, bi]; xi}p
i=1 of [a, b] with xi ∈ X and

p∑
i=1

(bi − ai) < η we have

p∑
i=1

|F (ai, bi)| < ε.

A sequence of interval functions {Fn}, each defined on � is said to be uniformly
ACk(X), and we write Fn ∈ UACk(X) if the above inequality holds with F
replaced by Fn for all n and where δ1, η are independent of n.

{Fn} is said to be UACkG[a, b] if [a, b] =
∞⋃

j=1

Yj, where each Yj is closed and
{Fn} is UACk(Yj) for all j.

���������� 5.4� Let X ⊆ [a, b] be closed and fn : [a, b] → R. We say that the
sequence {fn} has uniformly locally broken small Riemann sum with respect to g
on X to be denoted by fn ∈ ULBRSk

g (X) if for ε > 0 there are δ1 : [a, b] → R+

and η > 0 such that for every open set G with |G| < η and for every strictly
δ1-fine partial division {[ai, bi]; xi}p

i=1, xi ∈ X, of [a, b] there exists δ2 : [a, b]→ R+

such that for all δk
2 -fine division Di of [ai, bi] we have

p∑
i=1

|s(fn, g; Di|G)| < ε for all n

where δ1, δ2, η are independent of n and s(fn, g; Di|G) denote the part of the
Riemann sum s(fn, g; Di) for which the associated points of Di are in G and |G|
denotes the measure of G.

{fn} is said to be ULBSk
g G(X) if X =

∞⋃
j=1

Yj with each Yj closed and such

that {fn} is ULBSk
g (Yj) for all j.

Now we prove a version of the controlled convergence theorem for the Hen-
stock-Stieltjes integral. We first prove the absolute version in Theorem 5.5 below
and then the non-absolute version in Theorem 5.6. Although Theorem 5.5 is a
particular case of Theorem 5.6, the proof of it is presented here for the better
understanding of the new technique used, specially in the use of the concept in
Definition 5.4.

�	��
�� 5.5� Let

(i) g ∈ SV k[a, b] and J(g; x) = 0 for all x ∈ [a, b],
(ii) (fn, g) ∈ GSk[a, b] for all n with primitive Fn,
(iii) fn → f as n → ∞ everywhere in [a, b],
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(iv) {Fn} is UACk[a, b],
(v) {fn} is ULBRSk

g [a, b],

(vi) {Fn(a, b)} converges.

Then (f, g) ∈ GSk[a, b] and lim
n→∞

b∫
a

fn dg =
b∫
a

f dg.

P r o o f. Let lim
n→∞ Fn(a, b) = A and |Fn(a, b) − A| < ε for n ≥ N1. Since g ∈

SV k[a, b], for ε > 0 we can find M > 0 and δ′1, δ
′
2 : [a, b] → R+ such that for any

(δ′1, δ
′k
2 )-fine partial division {yj, [cj , dj ], Pj}q

j=1 of [a, b] we have
q∑

j=1

|s(1, g; Pj)| < M. (1)

Again as {Fn} is UACk[a, b] there exist δ′′1 : [a, b] → R+ and η1 > 0 such that for

every strictly δ′′1 -fine partial division {[ur, vr]; tr}s
r=1 of [a, b] with

s∑
r=1

(vr − ur)

< η1 we have
s∑

r=1

|Fn(ur, vr)| < ε. (2)

Here δ′′1 , δ′′2 and η1 are independent of n.
Also since {fn} is ULBRSk

g [a, b] there exist δ3 : [a, b] → R+ and η2 > 0 such
that for every open set G with |G| < η2 and for every strictly δ3-fine division
{[αs, βs]; γs}r

s=1 of [a, b] there exists δ4 : [a, b] → R+ such that for all δk
4 -fine

divisions Ds of [αs, βs] we have
r∑

s=1

|s(fn, g; Ds|G)| < ε (3)

for all n and δ3, δ4, η2 are independent of n. Now since (fn, g) ∈ GSk[a, b],
n = 1, 2, . . . , by the Saks-Henstock lemma there exist δ1,n, δ2,n : [a, b] → R+

such that for every (δ1,n, δk
2,n)-fine partial division {xn

i , [an
i , bn

i ], Dn
i }pn

i=1 of [a, b]
we have ∣∣∣∣ pn∑

i=1

{s(fn, g; Dn
i ) − Fn(an

i , bn
i )}

∣∣∣∣ < ε. (4)

Also by condition (iii), using the Egoroff theorem we can find ([5]) an open set
G and a positive integer N > N1 with |G| < η = min{η1, η2} such that for all
n ≥ N we have

sup
x∈[a,b]−G

|fn(x) − f(x)| <
ε

M
. (5)

Let us write [a, b] − G = X.
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We choose an open set H ⊃ X such that |H − X| < η. Now, for n > N we
choose δ1 : [a, b] → R+ such that δ1(x) < min{δ′1(x), δ′′1 (x), δ3(x), δ1,n(x)} and
also (x − δ1(x), x + δ1(x)) ⊂ H when x ∈ X; (x − δ1(x), x + δ1(x)) ⊂ G when
x ∈ G − H; and (x − δ1(x), x + δ1(x)) ⊂ H − X when x ∈ (H − X) ∩ G.

Let {[ai, bi]; xi}p
i=1 be a strictly δ1-fine division of [a, b]. Then we can find

δ2 : [a, b] → R+ such that (1), (2), (3), (4) above hold for any δk
2 -fine division Di

of [ai, bi]. Now∣∣∣∣ p∑
i=1

s(f, g; Di) − A

∣∣∣∣
≤ |A − Fn(a, b)| +

∣∣∣∣ ∑
1

{Fn(ai, bi) − s(fn, g; Di)}
∣∣∣∣

+
∣∣∣∣ ∑

1

{s(fn, g; Di) − s(f, g; Di)}
∣∣∣∣+∑

2

|Fn(ai, bi)| +
∣∣∣∣ ∑

2

s(f, g; Di)
∣∣∣∣

where
∑
1

,
∑
2

denote the partial sums for which xi /∈ G and xi ∈ G respectively.

By the definition of δ1, it follows that∑
2

|s(fn, g; Di|G)| =
∑
2

|s(fn, g; Di)| < ε,

independent of n.
Taking the limit as n → ∞, we get∑

2

|s(f, g; Di)| ≤ ε.

Now, we split
∑
1
{s(fn, g; Di) − s(f, g; Di)} into two partial sums

∑
3

,
∑
4

where∑
3

,
∑
4

contain those terms for which the associated points of Di are in X and

(H − X) ∩ G respectively.
Since |H − X| is open and |H − X| < η by (3) we have∣∣∣∣ ∑

4

{s(fn, g; Di) − s(f, g; Di)}
∣∣∣∣ ≤∑

4

|s(fn, g; Di)| +
∑
4

|s(f, g; Di)| < 2ε.

Also using (4) we get∣∣∣∣ ∑
3

{s(fn, g; Di) − s(f, g; Di)}
∣∣∣∣ < ε.

So, applying all the above inequalities we get∣∣∣∣ p∑
i=1

s(f, g; Di) − A

∣∣∣∣ < 7ε.
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Hence, the proof is complete. �

Remark 5.6� We note that in order to prove the integrability of (f, g) in The-
orem 4.6 we need to impose conditions on F and also on the Riemann sum of
(f, g). It seems unavoidable that we need to impose both conditions in order to
carry through the proof of the controlled convergence. Further complications oc-
cur due to the use of two δ functions. When we take a Riemann sum s(fn, g; Di)
with Di being a δk

2 -fine division of [ai, bi] and {[ai, bi]; xi} being strictly δ1-fine,
there is no way to ensure that the associated points of Di will always belong to
a given set. The condition in Definition 5.4 is to ensure that those broken pieces
of the Riemann sum with associated points not belonging to the given set will
still be small. The broken pieces are broken with respect to δ1 though not with
δ2. This condition is crucial in the proof of the controlled convergence theorem.

�	��
�� 5.7� Let

(i) g ∈ SV k[a, b] and J(g; x) = 0 for all x ∈ [a, b],
(ii) (fn, g) ∈ GSk[a, b] for all n with primitive Fn,
(iii) fn → f as n → ∞ everywhere in [a, b],
(iv) {Fn} is UACkG[a, b],
(v) {fn} is ULBRSk

g G[a, b],

(vi) {Fn(a, b)} converges.

Then (f, g) ∈ GSk[a, b] and lim
n→∞

b∫
a

fn dg =
b∫
a

f dg.

P r o o f. Let lim
n→∞ Fn(a, b) = A and N0 be an integer such that for n ≥ N0

|Fn(a, b) − A| < ε. (1)

Using the conditions (iv) and (v) and without any loss of generality we can find

a sequence of pairwise disjoint sets Yq, closed in [a, b], with
∞⋃

q=1
Yq = [a, b] such

that {Fn} is UACk(Yq) and {fn} is ULBRSk
g (Yq) for each q = 1, 2, . . . . Now,

since g ∈ SV k[a, b] there exist M > 0 and δ′1, δ′2 such that for all (δ′1, δ′k2 )-fine
partial divisions {yj , [cj, dj ], Pj}r

j=1 of [a, b] we have

r∑
j=1

|s(1, g; Pj)| < M. (2)

Since {fn} is ULBRSk
g (Yq), for each q = 1, 2, . . . , there exist δ3q : [a, b] → R+

and η1,q > 0 such that for every open set G′
q with |G′

q| < η1,q and for every
strictly δ3q-fine partial division {[αsq, βsq]; γsq}t

s=1 of [a, b] with γsq ∈ Yq, there
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exists δ4q : [a, b] → R+ such that for all δk
4q-fine divisions Dsq of [αsq, βsq] we

have
t∑

s=1

|s(fn, g; Dsq|G′
q)| <

ε

2q
(3)

for all n where δ3q, δ4q, η1q are independent of n.
Since {Fn} is UACk(Yq), for each q = 1, 2, . . . there exist δ′3q : [a, b] → R+ and

η2q > 0 such that for every strictly δ′3q-fine partial division {[urq, vrq]; trq}w
r=1 of

[a, b], trq ∈ Yq, with
w∑

r=1
(vrq − urq) < η2q we have

w∑
r=1

|Fn(urq, vrq)| <
ε

2q
(4)

for all n where δ′3q, η2q are independent of n.
Again as (fn, g) ∈ GSk[a, b], n = 1, 2, . . . , by the Saks-Henstock lemma there

exist δ1,n, δ2,n : [a, b] → R+ such that for every (δ1,n, δk
2,n)-fine partial division

{xn
i , [an

i , bn
i ], Dn

i }pn

i=1 of [a, b] we have

pn∑
i=1

|{s(fn, g; Dn
i ) − Fn(an

i , bn
i )}| <

ε

2n
. (5)

Also by condition (iii) and applying Egoroff’s theorem, for each q = 1, 2, . . .
there exist Gq open in Yq with |Gq| < ηq = min{η1q, η2q} and a positive integer
Nq > N0 such that for all n ≥ Nq we have

sup
x∈Yq−Gq

|fn(x) − f(x)| <
ε

M2q
. (6)

Let us write Yq − Gq = Xq, q = 1, 2, . . . . We choose an open set Hq ⊃ Xq such
that |Hq − Xq| < ηq. For x ∈ Yq, q = 1, 2, . . . , we define

δ1(x) < min{δ′1(x), δ3q(x), δ′3q(x), δ1,n(x)}

and also we take δ1(x) so that (x − δ1(x), x + δ1(x)) ⊂ Hq when x ∈ Xq,
(x−δ1(x), x+δ1(x)) ⊂ Gq when x ∈ Gq−Hq, and (x−δ1(x), x+δ1(x)) ⊂ Hq−Xq

when x ∈ (Hq − Xq) ∩ Yq.
Let {[ai, bi]; xi}p

i=1 be a strictly δ1-fine division of [a, b]. Then we can find
δ2 : [a, b] → R+ such that (2), (3), (5) above hold for any δk

2 -fine division Di of
[ai, bi].
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Now, ∣∣∣∣ p∑
i=1

s(f, g; Di) − A

∣∣∣∣
≤ |FN (a, b) − A| +

∣∣∣∣ ∞∑
q=1

∑
1q

{s(fNq
, g; Di) − FNq

(ai, bi)}
∣∣∣∣

+
∣∣∣∣ ∞∑

q=1

[∑
1q

{s(fNq
, g; Di) − s(f, g; Di)}

] ∣∣∣∣
+
∣∣∣∣ ∞∑

q=1

[∑
1q

{FNq
(ai, bi) − FN (ai, bi)}

] ∣∣∣∣
+

∞∑
q=1

∑
2q

|FN (ai, bi)| +
∞∑

q=1

∑
2q

|s(f, g; Di)|,

where
∑
1q

,
∑
2q

denote the partial sums for which xi ∈ Xq and xi ∈ Gq respec-

tively. Since there can be at most p distinct Nq’s, let N = max{Nq}. Now,
|A − FN (a, b)| < ε, by (1).∣∣∣∣ ∞∑

q=1

∑
1q

{s(fNq
, g; Di) − FNq

(ai, bi)}
∣∣∣∣ ≤ ∞∑

n=1

∣∣∣∣ ∑
Nq=n

{s(fNq
, g; Di) − FNq

(ai, bi)}
∣∣∣∣

≤
∞∑

n=1

ε

2n
= ε,

by (5). Now,∣∣∣∣ ∞∑
q=1

[∑
1q

{s(fNq
, g; Di) − s(f, g; Di)}

] ∣∣∣∣
≤

∞∑
q=1

∣∣∣∣∑′

1q

{s(fNq
, g; Di) − s(f, g; Di)}

∣∣∣∣+ ∞∑
q=1

∣∣∣∣∑′′

1q

{s(fNq
, g; Di) − s(f, g; Di)}

∣∣∣∣
where

∑′
1q

,
∑′′

1q
denote the partial sums of

∑
1q

for which the associated

points of Di are in Xq and Hq − Xq respectively.

Now by (6), |
′∑

1q
{s(fNq

, g; Di)− s(f, g; Di)| ≤ ε
2q . Also by the way we defined

δ1, if an associated point of Di is in (Hq − Xq) ∩ Yq then the corresponding
subinterval is contained in (Hq − Xq) ∩ Yq, q = 1, 2, . . . . So, by (3),∑′′

1q

|s(fn, g; Di)| <
ε

2q
, for all n.
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Taking the limit as n → ∞ we get∑′′

1q

|s(f, g; Di)| ≤ ε

2q
.

So, ∑′′

1q

|{s(fNq
, g; Di) − s(f, g; Di)}| <

2ε

2q

and ∣∣∣∣ ∞∑
q=1

{s(fNq
, g; Di) − s(f, g; Di)}

∣∣∣∣ < ∞∑
q=1

3ε

2q
= 3ε.

Again, ∣∣∣∣ ∞∑
q=1

∑
1q

{FNq
(ai, bi) − FN (ai, bi)}

∣∣∣∣
≤
∣∣∣∣ ∞∑

q=1

∑
1q

{FNq
(ai, bi) − s(fNq

, g; Di)}
∣∣∣∣

+
∣∣∣∣ ∞∑

q=1

∑
1q

{FN (ai, bi) − s(fN , g; Di)}
∣∣∣∣+ ∞∑

q=1

∑′′

1q

|s(fNq
, g; Di)|

+
∞∑

q=1

∑′′

1q

|s(fN , g; Di)| +
∞∑

q=1

∑′

1q

|s(fNq
, g; Di) − s(fN , g; Di)|

≤
∣∣∣∣ ∑

n≥N0

∑
Nq=n

{FNq
(ai, bi) − s(fNq

, g; Di)}
∣∣∣∣

+
∣∣∣∣ ∞∑

n=1

∑
N=n

{FN (ai, bi) − s(fN , g; Di)}
∣∣∣∣+ 3

∞∑
q=1

ε

2q

≤ 2
∞∑

n=1

ε

2n
+ 3

∞∑
q=1

ε

2q
= 5ε.

Also by (3), (4) we have
∞∑

q=1

∑′′

1q

|s(fNq
, g; Di)| < ε

and
∞∑

q=1

∑′′

1q

|s(fN , g; Di)| < ε.
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Hence combining all the above inequalities we have∣∣∣∣ p∑
i=1

s(f, g; Di) − A

∣∣∣∣ < 11ε.

�

6. Examples

���������� 6.1� A function f defined on [a, b] is said to be a regulated function
if f has one-sided limits at every point of [a, b], see [2, p. 139].

Also it is known that a function f is a regulated function on [a, b], if and only
if there is a sequence of step functions {fn}, uniformly convergent to f on [a, b].

In this section we give an example of g so that if f is regulated then (f, g) ∈
GSk[a, b]. We also derive an integration by parts formula for suitable choices
of g. For simplicity, we write the example for k = 2.

Example 6.2. Let us define g : [a, b]3 → R by g(u, v, w) = G(w)−G(v)
w−v − G(v)−G(u)

v−u

for u < v < w and = 0 otherwise, where G is the Henstock primitive of a function
g∗ which is continuous and of bounded variation on [a, b]. Then (f, g) ∈ GS2[a, b]
for any regulated function f on [a, b].

P r o o f. Since G is derivable on [a, b] we have J(g; c) = 0 for all c ∈ [a, b].
Let ε > 0. For any function δ1 : [a, b] → R+ we take a strictly δ1-fine division
{[ai, bi]; xi}p

i=1 of [a, b]. Then using continuity of g∗ we choose δ2 : [a, b] → R+

such that for any δ2
2-fine division Di = {[xi

j, x
i
j+2]; ξ

i
j}ni−2

j=0 of [ai, bi] we have

|g∗(ai) − g∗(x)| <
ε

p

whenever x ∈ [xi
0, x

i
1) and

|g∗(bi) − g∗(y)| <
ε

p

whenever y ∈ (xi
ni−1, x

i
ni

]. Then∣∣∣∣ p∑
i=1

s(1, g; Di) − (g∗(b) − g∗(a))
∣∣∣∣

=
∣∣∣∣ p∑

i=1

{
s(1, g; Di) −

(
g∗(bi) − g∗(ai)

)} ∣∣∣∣
≤

p∑
i=1

|{g∗(βi) − g∗(bi)} + {g∗(αi) − g∗(ai)}|
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for some αi ∈ (xi
0, x

i
1), βi ∈ (xi

ni−1, x
i
ni

), applying Lagrange’s Mean Value The-
orem on G in [xi

0, x
i
1] and in [xi

ni−1, x
i
ni

]

≤
p∑

i=1

(|g∗(bi) − g∗(βi)| + |g∗(ai) − g∗(αi)|) < 2ε.

Thus (1, g) ∈ GS2[a, b]. Using the elementary properties of the GSk integral
(Theorem 3.1 and Theorem 3.5) we can easily verify that if f is a step function
on [a, b], then (f, g) ∈ GS2[a, b]. Since f is regulated, there is a sequence of
step functions {fn} such that fn converges to f uniformly on [a, b]. Also since
G is the primitive of a function of bounded variation, it is of bounded slope
variation on [a, b]. So, by Theorem 5.1 we can say that if f is regulated then
(f, g) ∈ GS2[a, b].

We now give an integration by parts formula for k = 2 and for particular
functions. �

�	��
�� 6.3 (Integration by parts)� Let f, g : [a, b] → R be continuous
and of bounded variation on [a, b] and F , G be the Henstock primitive of f , g
respectively. We define f1, g1 : [a, b]3 → R by

f1(u, v, w) =
F (w) − F (v)

w − v
− F (v) − F (u)

v − u

when u < v < w and 0 otherwise,

g1(u, v, w) =
G(w) − G(v)

w − v
− G(v) − G(u)

v − u

when u < v < w and 0 otherwise.
Then

b∫
a

f dg1 +

b∫
a

g df1 = 2{f(b)g(b) − f(a)g(a)}.

P r o o f. Here F , G, being primitive of continuous functions, are of bounded
slope variation on [a, b]. So f1, g1 are SV 2[a, b] by Example 4.2 and thus
(f, g1), (g, f1) ∈ GS2[a, b]. Also there exists M1 > 0 such that

n−2∑
i=0

∣∣∣∣ G(xi+2) − G(xi+1)
xi+2 − xi+1

− G(xi+1) − G(xi)
xi+1 − xi

∣∣∣∣ < M1,

and
n−2∑
i=0

∣∣∣∣ F (xi+2) − F (xi+1)
xi+2 − xi+1

− F (xi+1) − F (xi)
xi+1 − xi

∣∣∣∣ < M1,

for any division a = x0 < x1 < x2 < · · · < xn = b of [a, b].
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As F , G are derivable on [a, b] we have J(f1; x) = 0 = J(g1; x) for all x ∈ (a, b).
Since (f, g1), (g, f1) ∈ GS2[a, b] there exist δ1, δ2 : [a, b] → R+ such that for any
(δ1, δ

2
2)-fine division {xi, [ai, bi], Di}p

i=1 of [a, b] where Di = {[xi
j , x

i
j+2]; ξ

i
j}ni−2

j=0

we have ∣∣∣∣ p∑
i=1

s(f, g1; Di) −
b∫

a

f dg1

∣∣∣∣ < ε

and ∣∣∣∣ p∑
i=1

s(g, f1; Di) −
b∫

a

g df1

∣∣∣∣ < ε.

Let {[ai, bi]; xi}p
i=1 be a strictly δ1-fine division of [a, b] and

M =
{

2
p∑

i=1

|f(bi)| + 2|f(a1)| + 2
p∑

i=1

|g(bi)| + 2|g(a1)| + M1

}
.

Since f , g are continuous on [a, b], for ε > 0 there exists η > 0 such that
|f(x1) − f(x2)| < ε

2M and |g(x1) − g(x2)| < ε
2M whenever |x1 − x2| < η.

We modify δ2 in such a way that δ2(x) < η
2 for all x and let Di =

{[xi
j , x

i
j+2]; ξ

i
j}ni−2

j=0 be a δ2
2-fine division of [ai, bi]. Now by some routine cal-

culations we can show that∣∣∣∣ p∑
i=1

s(f, g1; Di) +
p∑

i=1

s(g, f1; Di) − 2
(
f(b)g(b) − f(a)g(a)

) ∣∣∣∣ < ε.

Hence,
b∫

a

f dg1 +

b∫
a

g df1 = 2{f(b)g(b) − f(a)g(a)}.

�
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