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b
ABSTRACT. We can consider the Riemann-Stieltjes integral f fdg as an inte-

a
gral of a point function f with respect to an interval function g. We could extend
it to the Henstock-Stieltjes integral. In this paper, we extend it to a generalized

b
Stieltjes integral f fdg of a point function f with respect to a function g of di-

a
visions of an interval. Then we prove for this integral the standard results in the
theory of integration, including the controlled convergence theorem.
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1. Introduction

The Riemann-Stieltjes integral is well-known. It can be extended to the
Henstock-Stieltjes integral ([3]). Das et al [9] extended it further to include
b

the case when g in [ fdg is a second difference function g(u,v,w) = g(w) —

a
2¢g(v) + g(u) or other similar functions. To unify the approach, we defined in the
language of Henstock the GRy, integral ([6]) and the modified GRy, integral ([7],
[8]) and proved some properties for both the integrals. So far, we have proved
among other results the Saks-Henstock lemma, one version of the fundamental
theorem of calculus and the equi-integrability convergence theorem.

b
The GRy, integral is in fact, a Stieltjes integral [ fdg of a point function f

a
with respect to a function g of divisions of an interval. We considered g as a
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division function so that the Saks-Henstock lemma holds. We modified the G Ry,
integral in [7] so that further properties of the integral can be proved. As we
proceed to develop the full theory, we realize that we need a second function ¢ for
the tagging of the subintervals in addition to the first é function for the division of
each subinterval. Hence we define in this paper a generalized Henstock-Stieltjes
integral or in symbol GSj integral which is an extension of the GRj integral
and its modified version; the controlled convergence theorem is proved for the

GSj, integral. For similar integrals existing in the literature, see also D as and
Kundu [10], [11].

2. Preliminaries

DEFINITION 2.1. Given §: [a,b] — R4, we call a division D given by a =
ap < ag < -+ < app1 = b and {z1,29,...,x,} satisfying x; € [a;,ait1] C
(x; —0(x), i + 0(xy)) for i = 1,2,...,p a d-fine division of [a, b].

We write b; = a;41, ¢ = 1,2,...,p, and denote a J-fine division by D =
{[ai, bz], IEZ] ip:1'

A é-fine division D = {[a;, b;]; 2;}7_; is called a strictly 6-fine division of [a, b]
if either x; = a; or x; = b;.

We can make a J-fine division D = {[ai, i }p of [a,b] a strictly o-fine
division of [a, b] by splitting [a;, b;] at z; as ([a;, b; ] x;) = ([ai, xz} x)U([x4, bi]; x4)
when a; < x; < b;.

So, given §: [a,b] — Ry, there always exists a strictly J-fine division of [a, b].
DEFINITION 2.2. Let k be a fixed positive integer and § be a positive function

defined on [a,b]. We shall call a division D of [a,b] given by a = z¢p < 21 <
- < xp, = b with associated points {&o, &1, ..., &n—k} satisfying

G € (i, i) C (& —0(&), & +6(&))  for i=0,1,...,n—k
a 6%-fine division of |a, b).

For a given positive function J, we denote a d*-fine division D by
{[xi,xi+k],§i}i:0 1\ n_n Using the compactness of [a,b] it is easy to verify
that such a 6*-fine division exists. When k = 1, it coincides with the usual
definition of J-fine division.

Let g be a real-valued function defined on closed interval [a,b]**! in the
(k 4 1)-dimensional space, and f be a real-valued function deﬁned on [a,b].

Given a d-fine division D = {([x;, zi&], &) },_ o1....n_p Ve call Z f&)g(xi, ...
.y Titk), the Riemann sum of f with respect to g and denote 1t by s(f,g; D).
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P

Next, let [a;, b;], i = 1,2,...,p, be pairwise non-overlapping, and J [a;, b;] C
i=1

[a,b]. Then {D;}i=1,2,. ., is said to be a §*-fine partial division of [a,b] if each

D; is a 6*-fine division of [a;, b;]. Its corresponding partial Riemann sum is given

by éS(f,g;Di)-

Let g be a real-valued function defined on a closed interval [a,b]**! in the
(k + 1)-dimensional space.

Now corresponding to the division z; < ;41 < -+ < @4 Of [T, x;4%] We can
associate a real-valued function g(z;, Z;+1,...,Zi+k). In this sense we regard g
as a division function.

Let z € [z, x;4k) where x; < z;41 < -+ < Zj+k. The jump of ¢g at =, denoted
by J(g;x), is defined by

J(gix) = Jm g(zi,. .. ipr),
Bt
if the limit exists and is finite.

In what follows we assume that J(g;x) exists for all = € [a, b].

DEFINITION 2.3. Let f: [a,b] — R, g: [a,b]*T? — R. We say that f is GSk
integrable with respect to g on [a,b] to I if for any € > 0, there is 1 : [a,b] — Ry
such that for every strictly d;-fine division D = {[a;, b;]; z;}¥_; of [a,b] there
exists dy: [a,b] — R, depending on D such that for any 65-fine division D; of
[a;,bi],i=1,...,p, we have

p p—1
Zs(fag; D;) + Z(k’ =) f(bi)J(g;bi) —I| <e.

If fis GSy integrable with respect to g on [a, b, we write (f,g) € GSi[a, ]
b
and denote the integral by [ fdg.

Notation. Henceforth for convenience we shall write {x;,[a;,b;], D;};_; is a
(61,0%)-fine division of [a,b] to mean that {[a;,b;];x;}}_, is a strictly d;-fine
division of [a, b] and depending on which there exists d3: [a,b] — R such that
D; is a 65-fine division of [a;, b;], i = 1,2,...,p.

We shall also say that D = {xy,[a;, b;], Di}}_, is a (81, 05)-fine partial di-
vision of [a,b] if {[a;, b;];z;}Y_, is a strictly d;-fine partial division of [a, b] i.e.
P
U [ai, b;] C [a,b] and depending on which there exists d2: [a,b] — R such that
i=1
D; is a 65-fine division of [a;, b;].

THEOREM 2.4. The GSy integral is uniquely defined.
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Proof. Let us assume that for e > 0, there exist positive functions 01 (), d2(x)
defined on [a, b] such that for every (81, 65)-fine D = {z;,[a;, b;], Di}i_, of [a,b]

we have
p—1

P
Z f7 97 + Z 97 b ) Il
i=1 =1
z): [a,b] — R, such that for every (83, 6%)-fine
e have

<€

—

and also that there exist d3(x), 64
P = {ij {cja dj];Pj};]':l of {aa b}

q

£

iy

)+ (k=1)f(d;)J(g;d;) = I2
Let 05(x) = mln{&l(x), d3(x)}.

We fix a strictly d5-fine division {[a;, b;]; ;}]_, for which there exist 6(z) and
§'(z) such that for any §*-fine D; and §'*-fine P; of [a;, b;] we have

Q

< €.

Z (f.9: D) +Z — 1) f(i)J(g:bi) — | < e (i)
=1
S s(f,0: P +Z — D) T (g:b) ~ I | <. (i)
=1

We take 0g(x) = min{d(x), ' (x )} and fix a Jf-fine division of [a;, b;] for which
both (i) and (ii) hold. Hence |I; — 2| < 2¢. Therefore, I; = I5.
In Section 6, we shall give examples of the G'S}, integral. U

3. Simple properties

The following theorem follows directly from the definition of the G'S integral.

THEOREM 3.1. Let (f;,g) € GSk[a,b] and (f, gi) € GSkla,b] fori=1,2,....n
Then for real numbers A1, A, ..., A\, we have

M) (é&fﬁg) € GSila, b] andfé (A\ofs) dg V;l ([
() (£. 3 hai) € GSila.b] and affd(i; Nos) = £ fb f dgi.

9%@

(iil) If f1(z) < fa(x) for all z € [a,b] and g: [a,b]**! — [0,00), then ffl dg <

b
J fodg.
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THEOREM 3.2. Let a < ¢ < b. If (f,g9) € GSkla,c| and (f,g) € GSklc,b] then
(f:g) € GSk[avb] and

/bfdg—/Cfdg+/bfdg+(k—1)f(C)J(g;C)~

Proof. Since (f,g) € GSkla,c]NGSk[e, b], for € > 0, there exist §; (), d2(z) > 0
defined on [a, ¢] and d3(x), d4(x) > 0 defined on [c, b] respectively such that

360+ 30~ D7 B0~ | fdg] <e

i=1
and
q q—1 b
(g P+ 0= D) T(gsdy) ~ [ 1 <
j=1 j=1 p

for every (81, 65)-fine division {w;, [a;, b;], D;}!_, of [a, ¢] and (83, 8%)-fine division
{ys, [ej, d;], Py}i—y of [c, b] respectively.

We define d5(z) = min{d;(z),c — 2} when x € [a, ¢); min{d3(x),x — ¢} when
x € (¢,b], and min{d;(c),d3(c)} when x = c.

We note that with the above definition of ds5, ¢ is always a division point of
any strictly ds-fine division of [a, b].

Leta=u1 <vy=us<ve=u3 < - <Us=C=1Usp] < Vsp1 < -~ <V =0
be a strictly 05-fine division of [a, b] with z; being a tag point of [u;,v;]. Then
{lur,vi]; z0}7—, and {[ug,vi]; z1}_, ., are a strictly é;-fine division of [a,c] and
a strictly ds-fine division of [c,b] respectively. So, there exist d; defined on
[a,c] and & defined on [c,b] such that for every &¢°-fine division D] of [uy,v)],
l=1,2,...,s, and for every d§"fine division D} of [u, v}, | = s+1,5+2,...,7,
we have

s s—1

> s(f9: D) + D (k= 1) f(w)J (g;v) — /fdg’ <e

=1 =1

and
r r—1 b
> s(ha D)+ 3 (k= i)l - [ 1| <
l=s+1 l=s+1 °
respectively.

We define dg(x) = d§(z) when x € [a,c), min{dg(c), d¢ (c)} when z = ¢ and
3¢ () when x € (c, b].
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Let us take any 6§-fine division D; of [ug, v}, I = 1,2,...,r. Then,

T

s(f, ;D) +Z — 1) f(vi)J (g5 vi)

{/fdg+/fdg+ = 1)f(c)J(g; )H

c

s s—1
<| 3ot D)+ Y (k= Df ) (giwn) ~ [ g
=1 =1 g
r r—1 b
+ X sthg D)+ 3 (k= D)) - [ fdg| <2
l=5+1 l=s+1 -
So, (f,g) € GSkla,b] and the equality holds. O

Remark 3.3. We here note that if we define F'(u,v) = [ f dg for [u,v] C [a, b]

u
then in general F' is not an additive function on the closed subintervals of [a, b]
for K > 1. But for £ =1 it is additive because the extra term vanishes.

DEFINITION 3.4. Let the domain of F be {[u,v] C [a,b] : u < v}. We call F
to be nearly additive if for a < ¢ < b, F(a,b) = F(a,c) + F(c,c) + F(c,b).

Further, F is called g-nearly additive with respect to f if F(x,z) = (k—1)-
- f(z)J(g;x) for all z € (a,b). So, the integral function F' of the GRy-integral
is g-nearly additive with respect to f in [a, b].

The following two theorems can be easily verified and so the proofs are omit-
ted.

THEOREM 3.5 (Cauchy Condition). (f,g) € GSk[a,b] if and only if for ev-
ery € > 0 there exist positive functions d1,02: [a,b] — Ry such that for any
(61,085)-fine division {x;, [a;, bi], Di}i_, and {y;,[¢;, d;], P;}1_, of [a,b], we have

| (ZS (f,9:Di) + i(k’ = 1) f(bi)J (g3 bi))
q q—1

(Zs (f,9:P) + Y (k- 1)f(dj)J(g;dj)>
j=1

J=1

< €.

THEOREM 3.6. If (f,g) € GSk[a,b] and a < c < d <b, then (f,g) € GSklc,d].

We now prove the Saks-Henstock Lemma analogue for the GSj integral.
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THEOREM 3.7 (Saks-Henstock Lemma). Let f:[a,b] =R and g: [a,b]*1 —R
be such that J(g;x) exists for all x € [a,b]. Then (f,g) € GSkla,b] if and only
if there exists a function F, g-nearly additive with respect to f, satisfying the
condition that for all € > 0 there exist 01,02: [a,b] — Ry such that for any
(61, 0%)-fine partial division D = {x;, [a;,b;], D;}_, of [a,b] we have

/4

Z{S(fvg;Di) — F(ai, b;)} ‘ <e.

i=1

Proof. Let (f,g) € GSkla,b]. So for € > 0 there exist d1,05: [a,b] — Ry such
that for any (81, 65)-fine division {z;, [u,, v.]; Q. }t_, of [a,b] we have

Zs f,9,Q +Z -1)f (g,vr)—F(a,b)‘<e, (7)

where F'(u,v) = ffdg. We define F(u,v) = (k —1)f(u)J(g;u) when u = v.

q
Let {[a;, bi];2;}7_, be a strictly §;-fine partial division of [a,b], and J [¢;, d;]
j=1

p

be the closure of the complement of | [a;, b;] in [a, b]. By Theorem 3.6, (f,g) €
i=1

GSilej,d ], 5 =1,2,...,q, and so we can find d1;(x),ds;(x) >0, =1,2,...,¢,

defined on [¢;, d;] such that for all (815, 65;)-fine {y;s, [¢;s, djs], Djs} oty of [c5, dy],

j=1,2,...,q, we have

Z f797 Z f ]s s)_F(st;djs) < 27
s=1

where we may assume that 01;(z) < 01(z) for = € [¢;,d;], 1 =1,2,...,q

So, {[ai,bi];zi}_ and {[cjs, djs); s }ocy, 7 = 1,2,...,q, together form a
strictly d1-fine division of [a, b].

Let A be the set of common end points of [a;,b;] and [c;, d;]. Hence in view
of (i) above there exists d2: [a,b] — Ry (we may assume that do(z) < dg;(x)
for x € [¢j,d;], j = 1,2,...,q) such that for any &5-fine division D; of [a;, b;],
i=1,2,...,p,and D5, s=1,2,...,m;, j=1,2,...,q, of [¢;s,d;s] we have

SN s D) + > (00 D)

j=1s=1 i=1

+y ™ (k1) f(dy) (g5 ;) + Sk — 1) f @) (g:2) - Flab) | <e.
j=1 s=1 zEA
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p q

By Theorem 3.2, F(a,b) = Z Fa;, b))+ (k—1) > f(z)J(g;2)+ > F(cj,d;).
i=1 zEA j=1
So, we have,
Z{s (1.5 D) = Plas, )}
q my P q mj—1
<IY D s(f gDy + > s(fg: D)+ (k=1)> Y £(dys)J(g:dys)
j=1s=1 i=1 j=1 s=1
k=1) Y £ ) ~ Flab) \
zEA
g m;—1 g my q
‘ k—1) Z Z f(djs) ZZs(f,g; ZF cj,dj) | < 2e.
Jj=1 s=1 j=1s=1 Jj=1
Conversely, let the condition hold.
We take a ((51,55)—ﬁne division {z;, [a;, b;], D;}?_; of [a,b]. Then
F(a;,b;)} ‘ < e
P p—1
Since F is g-nearly additive, then F(a,b) = > F(a;,b;)+ > (k—1)f(b;)J(g;b;).
i=1 i=1
So,
P p—1
> s(fgi D)+ Y (k= D0 i) — Flast)| <
=1 i=1
Hence (f,g) € GSkla, b]. O

4. Some Results

DEFINITION 4.1. Let g: [a,b]**! — R. For X C [a,b] we define the slope
variation

p
SVy'(X) = infsup lngSB?; |s(1, g5 D3),

where the first supremum is taken over all §5-fine divisions D; of [a;, b;] and then
infimum over all §; keeping a strictly d;-fine partial division D = {[a;, b;]; z; }_,
x; € X of [a, b] fixed at present and then supremum over all D and then infimum
over all 4.
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If SVF(X) < oo, we say that g € SV*(X)(of bounded slope variation).
It follows from the above definition that if ¢ € SV*(X) then there
exist 01,09: [a,b] — Ry such that for any (&;,05)-fine partial division
P
{x;,[a;,b;], D;}Y_, with 2; € X of [a,b] we have > [s(1,g;D;)| < Sng(X).
i=1

We now give an example of a function g which belongs to SV ?2|a, b].

Ezample 4.2. Let G be of bounded slope variation on [a,b] and g: [a,b]® — R
Gw)-Gw)  G(v)—G(u)

w—v

be defined as g(u,v,w) = when v < v < w and = 0

otherwise. Then g € SV?[a, b].

Proof. Since G is of bounded slope variation on [a,b] there exists [4, p. 147],
M > 0 such that

n—2

Gxig—Gxi1 G.’Eil—G.’I}i
3 (ire) = G(xiy1)  G@ipa) — G(xi)

Ti4+2 — Ti+1 Tit1 — T

<M

9

n ‘G(ﬂfn) — G(n)

Tp — Tn—1

=0

for any division a = 2o < x1 < xg < -+ < x, = b of [a, b].

Let 01,02: [a,b] — R4 be any two functions, D = {[a;, b;];z;}!_; be any
§1-fine partial division of [a, b] and D; = {[2,, zr41); & }._; be any 65-fine division
of [ai,bi],i = 1,2, ..., p. Then, |s(1,g; Di)| = ‘G(Z”’“)_G(z’*’“”) — Glez)-Glz)

Zl+k—2l4+k—1 zZ2—21

Since G is of bounded slope variation, we have

p
inf inf 1,g9; D;)| < oo.
1?1 s%plglz supZ\S( ;93 Dy)| < o0

tog=1

0

DEFINITION 4.3. Let F' be a function g-nearly additive with respect to f on
[a,b]. F is said to be weakly g-regular with respect to f at x € [a,b] if for all
€ > 0, there exists d1(x) > 0 such that for every [u,v] with z = v or x = v
and [u,v] C (z — 61(x), x4+ d1(x)) there exists §: [a,b] — Ry such that for every
§k-fine division D = {[x;, zi11]; &}y of [u,v] we have

n—k n—=k
Zf(gi)g<xtvaxz+k)_F(u’v) <EZ|g(x’w7xz+k)|
=0 =0

THEOREM 4.4. Let F be a g-nearly additive function defined on [a,b] and g €
SV*[a,b]. If F is weakly g-regular at all x € [a,b], then (f,g) € GSk[a,b] with
primitive F'.
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Proof. Since g € SV*[a,b], we can find M > 0 and &}: [a,b] — R, such
that for any strictly d{-fine partial division {[a;, b;];z;}t_; of [a,b], there ex-
ists 05: [a,b] — R, such that for all §4-fine divisions D; of [a;, b;] we have

p
2 |s(1,g: Di)| < M.

Now, F being weakly g-regular at all x € [a,b], for € > 0 there exists
d3: [a,b] — Ry such that for all strictly ds-fine divisions {[c;, d;];y;}i, there
exists 04 [a,b] — Ry such that for any 6§-fine division P; = {[z}, 2%, ,]; € ?;_Ok
of [¢;, d;] we have

7...’x§+k)_F(Ci,dl)

TLi*kJ
€ . .
]:

We define (51(:1;) = min{d} (z),d3(z)}, = € [a, b].
Let D = {[a;,bi];z;}7_, be a strictly 0;-fine partial division of [a,b]. Then
there exists 0a2: [a,b] — Ry with do(z) < min{d}(z),d4(x)} for = € [a,b] such

that for all 6§-ﬁne divisions D; of [a;,b;], i = 1,2,...,p, we have
P
(£.950) = Fla 00} | < Y [s(F,0: D3) = Flaib)
i=1
< — Z\ (1,9:D;)| < e.
So, by Theorem 3.7, (f,g) € GSka,b] with primitive F. O

In [1], the authors obtained a characterization of the Henstock integral in R".
Keeping in view of this we shall now give a characterization of the GS integral.

DEFINITION 4.5. Let f: [a,b] — R, g: [a,b]*! — R. Further, let F' be g-nearly
additive with respect to f. Given € > 0 and 01, d2: [a,b] — R, we define the set

F5’51’52 = {D D= {xi, [ai, bi]yDi}Zp:l
is a (01, 05)-fine partial division of [a,b] such that

| S (s(h0:0) = Fainb}| = € - Js(1gs Do)}

Let X (e, d1,02) = {a;,. D = {z;,[a;,b;], D;}} 1EF65152}

THEOREM 4.6. Let F' be a function g-nearly additive with respect to f on [a,b]
and g € SV¥[a,b]. Then (f,g) € GSkla,b] with primitive F if for all e > 0 there
exist 81,02 [a,b] — R such that for all (81, 65)-fine partial divisions
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D = {x;,[a;, bi], D-}f 1 € Tes,.6, of [a,b] we have
Z| s(f,g:Di)l <e  and Z‘FC‘“ )| <e.

The converse also holds if [a,b] = U X, where the X;’s are such that for each |

there exist 61, [a,b] — Ry and Ml > 0 such that for any strictly 61 ;-fine partial
division {[a;, b;); 2 }5_, of [a,b] with x; € X, there exists 03;: [a,b] — Ry such
that for any 5§’l—ﬁne division D; of [a;, b;] we have

p
Zsf,g, <MzZ| (1,9; D
i1

Proof. Since g € SVF¥[a,b], there exist &},d5: [a,b] — Ry and M > 0 such
that for any (8, 85°)-fine partial division {y;, [¢;,d;]; P; }i—y of [a,b] we have

q
Z s(1,g; Pj)| < M.

From the given condition, for all € > 0 there exist d1,02: [a,b] — Ry such that
for any (81, 05)-fine partial division D = {t,, [u,,v,], @, }:_; € Tcs,.5, We have

Z| (f,9:Qr)| <€ and Z|Fur,vr>|<e

r=1
We may assume that 01(z) < 01(x) and d2(z) < 05(x) for all = € [a, b].
Let {z;, [a;, b;], D;}?_, be any (1, d5)-fine partial division of [a,b]. Then

Z{s f,9:D;) — F(ai, b;)}
< Z |s(f,9: Di) = Flai, b))+ Y |s(f,9: D) = Flas, b)),

z,€X(€,61,02) z,€X’(€,61,02)

where X’ denotes the complement of X

< D Istf.g D)+ > [Flaib)|+ > |s(f.9:Di) — Flai,by)

xieX(€,51,52) $11€X(E,(51,52) xieX’(€,51,52)

<2+ Y els(1,9:Di)| <2+ eM = (2+ M)e.

z;, €X' (€,01,02)

So, by Theorem 3.7, (f,g) € GSk|a, b].

Conversely, let (f,g) € GSk[a,b] with primitive F' and f satisfy the given
condition. We may assume that the X;’s are disjoint. So, there exist M; > 0
and 01,(z): [a,b] — Ry such that for any strictly 6y ;-fine partial division
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{la;, b;); z;}_, of [a,b] with z; € X, there exists d2;: [a,b] — Ry such that
for any 0% -fine division D; of [a;, b;] we have

p
> s(f,9; D
=1

Now, by the Henstock lemma for € > 0 there exists 93,04, [a,b] — R4 such
that for every (d3, 6§ )-fine partial division {x;, [a;, bi], Di}}_, of [a,b] we have

<MZZ| 197 (1)

62

Z{S f9:D (aubz)}‘ < 2L, (2)

We define 6;(z) = mm{dl’l x),031(x)}, for € X;. Let {[ej,d;];y;}I—, be a
strictly 0;-fine partial division of [a,b]. Then there exists ds: [a,b] — R4 with
d2(z) < min{ds (), d4,(x)} for z € X; such that both (1) and (2) above hold
for any 65-fine division P; of [c;,d;], j =1,2,...,q

We take a (61, 05)-fine partial division {z;,[a;, bi], D;}?_, € Tes,.5, of [a,b].
Then

>_ls(f.9:D:) Z > Is(f, 9D |<ZM1 > Is(1,g: Dyl

3

=1 z;€X; x, €EX

> Ml . > Ml262
S;T ze;(S(fvg»Di)_F(aivbi)Slz;m_ﬁ-

= x; 1 =

M’U

Alsoé\ﬂai,bi)\s 15(f, g: Di) — Flas,b >\+2|<f,g;Di>\<2e. O

-
Il

5. Convergence

In this section we prove some convergence results for the G'Sy, integral.

THEOREM 5.1 (Uniform Convergence Theorem). Let g € SV¥[a,b] and

{fn} be a sequence of functions defined on [a,b] such that (f,,g) € GSkla,b] for

alln =1,2,.... If f, is uniformly convergent to f on [a,b] as n — oo, then
b b

b
J fdg exists and lim [ f,dg= [ fdg.
Proof. Since g € SV¥[a,b] there exist &} : [a,b] — R, and M > 0 such that

for any strictly §1-fine partial division D’ = {[¢;, d;]; & }i_; of [a,b] there exists
84+ [a,b] — R4 such that for any §5-fine division D of [c;,di], i = 1,2,...,q,

q
we have )" |s(1,¢; D) < M.
i=1
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b
Let A, = [ fndg. By the Saks-Henstock lemma, for ¢ > 0 there exists

a

St la,b) — Ry, no = 1,2,..., where 61, < ¢} such that for every strictly
01, n-fine partial division D, = {[al L2 of [a,b] there exists
&b ¢ [a,b] — Ry such that for every 64", -fine division D}" of [a]', b!'] we have

Pn

Zs(fn,g; D")— A, | <e

i=1
We choose 41,41 such that d; p41 < 61, » = 1,2,.... For n,m € N and
n > m we fix a strictly 01 ,-fine partial division {[u]’,v}"];¢}'}]_; of [a,b]. So,
there exists day,: [a,b] — R4 with d9,, < 05 and 02 11 < 2.0, n =1,2,..., such
that for any 65, -fine division D' of [ul',v}"], l = 1,2,...,r, we have

[An = A | < 24+ Y 15(fn, 6 D) = 5(fms 9 D) < 26+ || fo = Finl[(SV; [a, B]),
=1
where [|f, — fmll = sup |fn(x) — fm(2z)|. As f, is uniformly convergent to f,
a<z<b

we have || fr, — fi|| — 0 as n,m — oo. So, there exists a positive integer Ny such
that for n,m > N1, || fn — fm|| < 57. Thus {A,} is a Cauchy sequence in R and
let A= lim A,. We can find a positive integer Ny > N; such that for n > Ns

we have |A,, — A| < e. Let 61(x) = d1,n,(x) for x € [a,b]. Then for any strictly
d1-fine division {[a;, b;]; z;}E_, of [a,b] there exists da: [a,b] — Ry, dz < d2 Ny,
such that for any §5-fine division D; of [a,b] we have

i s(f,9: D ‘ Z{ng, —S(fNQ,g;Di)}’

+ +_L4Ah 44|<:36

p
ZE:S fAbvgv 14Ab
i=1

b
So, (f,g) € GSkla,b] and [ fdg = lim ffndg. O

THEOREM 5.2 (Monotone Convergence Theorem). If
(i) the sequence {f,} is monotonic everywhere in [a,b],

(ii) g is a non-negative function defined on [a,b]** such that

(fn,9) € GSkla,b] for all n and
b
the sequence { ffn dg} s bounded,

(iii) nlLII;O fu(x) = f(x) for all x in |a,b],

b b
then (f,g) € GSkla,b] and [ fdg = lim [ f,dg.
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Proof. We proceed similarly as in the proof of [4, Theorem 3.5.2]. By consid-
ering —f, or f, — f1 instead of f,, if need be, we can achieve that the sequence

b
{fn} is increasing and f, > 0. Since g > 0, { J fn dg} is also monotonic and

b
bounded. So, lim [ f, dg exists. Let us denote it by L. Given € > 0 we can find

b
N such that [ fydg > L — §. Next we find n(z) > N such that, for n > n(z),

3L + 3e

Tﬂfn(f’f') > f(x).

If f(xz) > 0 this is possible because the left-hand side has a limit strictly larger
than the right-hand side; if f(z) = 0 we can take n(z) = N. By the Saks-
Henstock Lemma, there is d1 ,,: [a,b] — R4 such that for any strictly d; ,,-fine
partial division {[c;, d;];&;}_, there exists &5 ,,: [a,b] — Ry such that for every
84, ~fine division P of [¢;, d;] we have

q d;

> ls(farg: PF) _/fn EPETE (i)

i=1

Ci

We define 61 (x) = 01,p(2)(x). Let {[a;, bi]; 2;}7_, be a strictly 6,-fine division of
[a,b]. So, there exists d2,: [a,b] — R so that (i) holds for any 65  -fine DI of
[ai, bz} .

We define dz: [a,b] — Ry by d2(x) = 02 (2)(2) for € [a,b] and take any
6k-fine division D; of [a;, b;].

The proof will be complete if we show that

> s(f.9:Di) + (k= 1) Zf <e
=1

Now,

b;

D p—1
S Fa@odg+(E=1)D fug,)(0:)(g:bi)
=1

=17

bz

b
/deg+ 1) ZfN Hgib) = [ fwdg> 15,

M@

% 1
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Denoting by

N the largest n(z;) we also have

b;
p

bi)

Now
p
Z{s fn(ac) gv /fn(x)dg}‘
i=1
Z 5(fr(es)>9; D
1=1 n(x;)=l
Again,

p

> s(f.9; D

i=1

k—1) Zf

M'@

(fn(ac )s .97

i=1

p b p—1
> / Fatey g+ (k= 1) fagen (0:) I (g
i=1 i=1

and on the other hand
(3L +e¢ P
oA st
i=1

p
<3 5w 9 Di) + (k

i=1

b;
D ¢ p—1
€
<Y [ Fuer ot 5 B DY fugey ()
i=1; i=1

So,

P

> s(f,9;:D
i=1

This completes the proof.

k—1) Zf

+(k—1) an(m)(bz‘)J(g;bz‘)
i—1

€ 2e
b)—g>L-
p—1
- 1)Zf(bi)=](9§ bi):|
=1
i=1
(g,bi) <L+ g

)L <
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DEFINITION 5.3. Let F be an interval function defined on & = {[u,v] : u,v €

[a,b], u < v}. For X C [a,b] we say that F is AC*(X) if for all e > 0 there

exist 01 : [a,b] — R4 and i > 0 such that for every strictly d;-fine partial division
P

D = {la;, bi]; z;}F_; of [a,b] with x; € X and )" (b; — a;) < n we have

i=1

p
Z |F(0,i, bl)‘ < €.
=1

A sequence of interval functions {F,,}, each defined on  is said to be uniformly
AC*(X), and we write F,, € UAC*(X) if the above inequality holds with F
replaced by F,, for all n and where 1, n are independent of n.

{F,} is said to be UAC*GJa,b] if [a,b] = |J Y;, where each Y} is closed and
{F,} is UAC*(Y;) for all j. i=1

DEFINITION 5.4. Let X C [a,b] be closed and f,,: [a,b] — R. We say that the
sequence { f,, } has uniformly locally broken small Riemann sum with respect to g
on X to be denoted by f, € ULBRS}(X) if for e > 0 there are 6 : [a,b] — Ry
and n > 0 such that for every open set G with |G| < n and for every strictly
d1-fine partial division {[a;, b;]; x;}r_1, x; € X, of [a, b] there exists 0z : [a, b]— R4
such that for all 65-fine division D; of [a;, b;] we have

p
Z |s(fn,9: Di|lG)| < € for all n
i=1

where d1, d2, 1 are independent of n and s(f,, g; D;|G) denote the part of the
Riemann sum s( fy, g; D;) for which the associated points of D; are in G and |G|
denotes the measure of G.
{fn} is said to be ULBS*G(X) if X = |J Y; with each Y; closed and such
. 2

that {fn} is ULBS(Y;) for all j.

Now we prove a version of the controlled convergence theorem for the Hen-
stock-Stieltjes integral. We first prove the absolute version in Theorem 5.5 below
and then the non-absolute version in Theorem 5.6. Although Theorem 5.5 is a
particular case of Theorem 5.6, the proof of it is presented here for the better
understanding of the new technique used, specially in the use of the concept in
Definition 5.4.

THEOREM 5.5. Let
(i) g € SV¥[a,b] and J(g;x) =0 for all z € [a,b],
(i) (fn,9) € GSkla,b] for all n with primitive F,,

(i) f, — f as n — oo everywhere in |a,b),
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(iv) {F,} is UAC*[a,b],
(v) {fn} is ULBRS¥[a,b],
(vi) {F.(a,b)} converges.

b b
Then (f,g) € GSkla,b] and lim [ f,dg= [ fdg.

Proof. Let lim F,(a,b) = A and |F,(a,b) — A| < € for n > N;7. Since g €

SV*[a,b], for e > 0 we can find M > 0 and 6}, 85: [a,b] — R, such that for any
(67, 84")-fine partial division {y;, [¢;, d;], P;}I_; of [a,b] we have

> Is(Lgi Py)l < M. 1)

Again as {F,} is UAC¥]a, b] there exist 67 : [a,b] — Ry and n; > 0 such that for
every strictly 07-fine partial division {[u,,v.|;t,}5_; of [a,b] with Y (v, — u,)
r=1

< 11 we have
Z |E (g, vp)| < e (2)
r=1

Here 67,604 and 7, are independent of n.

Also since {f,} is ULBRS¥[a,b] there exist d5: [a,b] — Ry and 7, > 0 such
that for every open set G with |G| < 1y and for every strictly ds-fine division
{[evs, Bsl; Vs Yooy of [a,b] there exists d4: [a,b] — R, such that for all §5-fine
divisions Dj of [as, Bs] we have

Z‘S(fnvg;Ds‘G” <€ (3)
s=1
for all n and d3, d4, 12 are independent of n. Now since (f,,g9) € GSkla,b],
n = 1,2,..., by the Saks-Henstock lemma there exist 01,02, [a,b] — Ry
such that for every (81,05 ,)-fine partial division {z}, [af,b}?], DI}, of [a,b]
we have

i{S(fmg;D?) — Fu(ai’, b))} | <e (4)

Also by condition (iii), using the Egoroff theorem we can find ([5]) an open set
G and a positive integer N > N; with |G| < n = min{n;, 72} such that for all
n > N we have

sup [ fn(x) — f(2)] < ()

£
z€la,b]—-G M’
Let us write [a,b] — G = X.
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We choose an open set H D X such that |H — X| < n. Now, for n > N we
choose 01: [a,b] — Ry such that 6;(z) < min{d|(x), 0 (z),d3(x),01,,(x)} and
also (x — 01(x),z + 61(z)) C H when z € X; (x — d1(x),z + 61(z)) C G when
z€G—H;and (z —01(x),z+01(x)) CH—-X whenz € (H—- X)NG.

Let {[a;, b;i]; 2}, be a strictly d;-fine division of [a,b]. Then we can find
S2: [a,b] — R, such that (1), (2), (3), (4) above hold for any 65-fine division D;
of [a;, b;]. Now

Zs(f’g;Di)—A‘
<|A - F,(a,b)| + ‘ Z{Fn(aubi) — 8(fns9:Di)} ‘

+‘Z{8(fmg;D s(f,g; D ‘ Z\F ai,b +‘Z (f,9:D
1

where ), >~ denote the partial sums for which z; ¢ G and x; € G respectively.
1

2
By the definition of 41, it follows that
Z\ (fn,9; DilG) \—Z\ (fnr9: Di)| < e,

independent of n.
Taking the limit as n — oo, we get

Z\ (f,9:Di)| < e

Now, we split > {s(fn,9; Di) — s(f,g; D;)} into two partial sums >, > where
1 3 71

>, > contain those terms for which the associated points of D; are in X and

3 2
(H — X) N G respectively.
Since |H — X| is open and |H — X| < n by (3) we have

‘Z{S(fnvgvD f797 ‘ Zi fmg, |+Zi fg, |<26
4

Also using (4) we get
‘ Z{S(fn,g; D;) —s(f,9;Di)} ‘ <e.
3

So, applying all the above inequalities we get

g; D ‘<7e
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Hence, the proof is complete. O

Remark 5.6. We note that in order to prove the integrability of (f,g) in The-
orem 4.6 we need to impose conditions on F' and also on the Riemann sum of
(f,9)- Tt seems unavoidable that we need to impose both conditions in order to
carry through the proof of the controlled convergence. Further complications oc-
cur due to the use of two § functions. When we take a Riemann sum s(f,, g; D;)
with D; being a §5-fine division of [a;, b;] and {[a;, b;]; x;} being strictly d;-fine,
there is no way to ensure that the associated points of D; will always belong to
a given set. The condition in Definition 5.4 is to ensure that those broken pieces
of the Riemann sum with associated points not belonging to the given set will
still be small. The broken pieces are broken with respect to §; though not with
05. This condition is crucial in the proof of the controlled convergence theorem.

THEOREM 5.7. Let
(i) g € SV¥[a,b] and J(g;x) =0 for all x € [a,b],
(ii) (fn,9) € GSkla,b] for all n with primitive F,,
(iii) f, — f as n — oo everywhere in |a,b),
(iv) {F,} is UAC*G]a,b),
(v) {fn} is ULBRS¥Gla, ],
(vi) {F.(a,b)} converges.

b b
Then (f,g) € GSkla,b) and lim [ f,dg= [ fdg.

Proof. Let lim F,(a,b) = A and Ny be an integer such that for n > Ny

|Fp(a,b) — Al <. (1)
Using the conditions (iv) and (v) and without any loss of generality we can find

a sequence of pairwise disjoint sets Yy, closed in [a,b], with |J Y; = [a, ] such
q=1

that {F,} is UAC*(Y,) and {f.} is ULBRS¥(Y,) for each ¢ = 1,2,.... Now,

since g € SV¥[a,b] there exist M > 0 and &}, &5 such that for all (5], 55)-fine

partial divisions {y;, [c;, d;], P;j}’_; of [a,b] we have

> Is(1,9; Py < M. (2)
j=1
Since {f,} is ULBRS;“(YQ), for each ¢ = 1,2, ..., there exist d34: [a,b] — R4
and 71, > 0 such that for every open set G; with |G| < 114 and for every

strictly d3q-fine partial division {[cvsq, Bsql; Vsqtoz1 Of [a,b] with v, € Yg, there
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exists d4q: [a,b] — Ry such that for all 0% -fine divisions Dsq of [ttsq, Bsq] We
have
t

€
Z‘s(fnvg;Dsq‘G;)‘ < 2 (3)
s=1
for all n where 34,044,714 are independent of n.
Since {F,,} is UAC*(Y,), for each ¢ = 1,2,... there exist 83, [a,b] — Ry and
N2q > 0 such that for every strictly d; -fine partial division {[uyq, vrq];trq}iz; of

w
[a,b], trq € Yq, with > (vrq — urq) < 124 We have
r=1

w

D 1Fulurg veg)| < 5 )

r=1
for all n where d3,, 724 are independent of n.
Again as (f,,g) € GSkla,b], n =1,2,..., by the Saks-Henstock lemma there

exist 61,5, 02,0 [a,b] — Ry such that for every (81,05 ,)-fine partial division

{al', [al*, b], D}, of [a,b] we have

Pn

Z ‘{s(fnvg;D?) - Fn<a?v b?)}‘ <

i=1

€
on (5)
Also by condition (iii) and applying Egoroff’s theorem, for each ¢ = 1,2,...
there exist G4 open in Y, with |G| < 1y = min{n4, 724} and a positive integer
N4 > Ny such that for all n > N, we have

sup | fu(@) = f(2)] < — (6)

€Y, —G, M?24

Let us write Y, — G4y = X4, ¢ =1,2,... . We choose an open set H, D X, such
that |[Hy — X4| <nq. Forx €Yy, ¢=1,2,..., we define

01(z) < min{d|(2), d3q(), 03,(x), 51.n(x)}

and also we take 01(z) so that (z — d1(x),z + d1(x)) C Hy when z € X,
(x—01(x), z+01(z)) C Ggwhenx € Gy—H,, and (z—61(x), x+01(z)) C Hy—X,
when z € (H, — X,) NYj,.

Let {[a, b;i]; 2}, be a strictly d;-fine division of [a,b]. Then we can find
S2: [a,b] — R4 such that (2), (3), (5) above hold for any d5-fine division D; of
[CLi, bz}
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Now,

<|FNab A|+

ZZ{S fNgs9: Di) — Fin,(ai, b;)} ’

q=1 1q

i[z{s (fn,9:D S(fvg;Di)}:| ‘
i

> AFw, (aib) — FN(ai,bi)}} ‘
Iq

qg=1 2q q=1 2q
where ), > denote the partial sums for which z; € X, and z; € G, respec-
lg 2q
tively. Since there can be at most p distinct Ng’s, let N = max{N,}. Now,
|A — Fn(a,b)| <€, by (1).

ZZ{S(quag§D FN (ai, bi) ‘

(o]

(fng> 95 Di) — Fn,(ai, b))}

g=1 1q
< Z 2_n = €,
by (5). Now, n=1
Z[Z{s P 5D = s(7.: D)) |
q=1

oo
<2
q=1

! "
where Z 1 Z » denote the partial sums of 12; for which the associated

Z,{S(qu;g; Dz) - s(fyg7Dz)}‘ + Z//{s(quvg; DZ) - s(fag; Dz)}

g=1

points of D; are in X, and H,; — X, respectively.
!
Now by (6), | >-{s(fn,,9; Di) — s(f,9; Di)| < 57. Also by the way we defined
1q

91, if an associated point of D; is in (H, — Xq) N'Y, then the corresponding
subinterval is contained in (H, — X,)NY,, ¢=1,2,.... So, by (3),

"
Z Is(fny 95 Di)| < 2—2, for all n.
1q
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Taking the limit as n — oo we get

€
Z | faga 2_

So,
12 26
Z ‘{S(quag; D’L) _S(f;g7 )}| < %
1q
and
- >\ 3¢
{S(qu’g; D’L) - S(fag7 D’L)} ’ < Z % = 3e.
q=1 q=1
Again,

> {Fw,(ai,bi) — Fx(ai, bi)} ‘

q—l 1q

ZZ{FN ai,b z (levgv )}‘

g=1 1q
S S b - s(vagi D IR 95 SN
g=1 1q q=1 1q

ES0 S g D+ S0 S sy g D0) — s D)
g=1 1q g=1 1q

Z Z{FN aw 'i (fN797 )}‘

n>Ng N,
S (Fa et - s(negiD \+322—2
n=1 N=n g=1

> € Sy
n=1 q=1
Also by (3), (4) we have

ZZ | levgv ‘<6

g=1 1q

and

ZZ | fN797 ‘<6

g=1 1q
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Hence combining all the above inequalities we have

Z (f,g;:D ‘ < 1le.

6. Examples

DEFINITION 6.1. A function f defined on [a, b] is said to be a requlated function
if f has one-sided limits at every point of [a, b], see [2, p. 139].

Also it is known that a function f is a regulated function on [a, b], if and only
if there is a sequence of step functions { f,, }, uniformly convergent to f on [a, b].

In this section we give an example of g so that if f is regulated then (f,g) €
GSkla,b]. We also derive an integration by parts formula for suitable choices
of g. For simplicity, we write the example for k = 2.

Example 6.2. Let us define g: [a,b]> — R by g(u,v,w) = G(wu)):vG(v) — G(vz:f(“)

for u < v < w and = 0 otherwise, where G is the Henstock primitive of a function
g* which is continuous and of bounded variation on [a, b]. Then (f,g) € GSs[a, b]
for any regulated function f on [a,b].

Proof. Since G is derivable on [a,b] we have J(g;c) = 0 for all ¢ € [a,b].
Let € > 0. For any function 0;: [a,b] — R4 we take a strictly d;-fine division
{la;, bi]; z;}E_; of [a,b]. Then using continuity of g* we choose dz: [a,b] — R
such that for any 03-fine division D; = {[z%, 2}, ,]; € ?;62 of [a;, b;] we have

€
g*(ai) — g™ (z)] < =
9" (ai) — g (2)] p

whenever = € [z, z%) and
€
9" (bi) = g™ (y)| < -
g7 (bi) — 9" (y)] p

Then

n—17 n}

> s(L.gi D)~ (0~ @)

whenever y € (2!

NE

{s(1,9; Di) = (9" (b:) — g™ (a)) } ‘

1

{g"(8:) = g (b:)} + {97 (i) — g™ (@) }]

IA
M=

-
Il
=
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for some «a; € (xf),2}), B; € (x},_y, %), applying Lagrange’s Mean Value The-
orem on G in [z}, z}] and in [z}, _;,}, ]

Z g (6:)] + 9% (a;) — g"(as)]) < 2e.

Thus (1,g) € GSs[a,b]. Using the elementary properties of the GSj integral
(Theorem 3.1 and Theorem 3.5) we can easily verify that if f is a step function
on [a,b], then (f,g9) € GSzla,b]. Since f is regulated, there is a sequence of
step functions {f,} such that f,, converges to f uniformly on [a,b]. Also since
G is the primitive of a function of bounded variation, it is of bounded slope
variation on [a,b]. So, by Theorem 5.1 we can say that if f is regulated then
(f,9) € GSs[a,b].

We now give an integration by parts formula for £ = 2 and for particular
functions. O

THEOREM 6.3 (Integration by parts). Let f,g: [a,b] — R be continuous
and of bounded variation on [a,b] and F, G be the Henstock primitive of f, g
respectively. We define f1,91: [a,b]> — R by

F(w) - F(v) F(v) — F(u)

w—v v—u

filu,v,w) =

when u < v < w and 0 otherwise,

Gw) =G)  GO) =G

91w, v, w) = w—v v—u
when u < v < w and 0 otherwise.
Then
b b
[ rag+ [ gt =2450)90) - f@)a@).

Proof. Here F', G, being primitive of continuous functions, are of bounded
slope variation on [a,b]. So fi, g1 are SV?2[a,b] by Example 4.2 and thus
(f,91), (g, f1) € GSz[a,b]. Also there exists M; > 0 such that

2

« | G(zis2) = G(a G(xir1) — Gla
(@it2) = G(@iv1)  Grirn) = G@i) | _ M,
e Tit2 — Ti41 Ti+1 — T
and
niQ F(@ivs) = Ftiy)  Flwiey) = Fzi) | _ M,
o Tit2 — Ti41 Tit1 — T4

for any division a = 2o < x1 < ¥ < -+ < x, = b of [a, b].
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As F, G are derivable on [a, b] we have J(fi;2) =0 = J(g1;x) forallz € (a,b).
Since (f, 1), (g9, f1) € GS2]a, b} there exist d1,02: [a,b] — Ry such that for any
(61,05)-fine division {4, [a;, bi], Di};_; of [a,b] where D; = {[z}, 2}, ,]; €4} i
we have

<€

p b
> s(f,01:Di) — /fdg1
i=1 a

and
b

f1; D df
z22;991 /9 1

a

Let {[ai, b;]; x;}_, be a strictly d;-fine division of [a, b] and

{Df |+2rfa1|+22\g +2g<al>+M1}

Since f, g are continuous on [a,b], for € > 0 there exists 7 > 0 such that
|f(21) — f(z2)| < 557 and |g(21) — g(w2)| < 557 Whenever |zy — x3| < 7.

We modify 0o in such a way that do(z) < 3 for all z and let D; =
{[f, 2% o) €2} "% be a 63-fine division of [a;,b;]. Now by some routine cal-
culatlons we can show that

Z (.90 + D809, /13 D3) = 2 0)gb) — Sa)g(a)) | < e
Hence, ) )
b b
/ fdg + / gdfs = 2{7 (0)g(®) — f(@)g(a)}.

O
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