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TRINOMIAL RANDOM WALK WITH ONE OR TWO
IMPERFECT ABSORBING BARRIERS

M. A. EL-SHEHAWEY

(Communicated by Gejza Wimmer)

ABSTRACT. Trinomial random walk, with one or two barriers, on the non-
negative integers is discussed. At the barriers, the particle is either annihilated
or reflects back to the system with respective probabilities 1 — p, p at the ori-
gin and 1 —w, w at L, 0 < p,w < 1. Theoretical formulae are given for the
probability distribution, its generating function as well as the mean of the time
taken before absorption. In the one-boundary case, very qualitatively different
asymptotic forms for the result, depending on the relationship between transition
probabilities and the annihilation probability, are obtained.
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1. Introduction

Relatively random walk problems with absorbing or reflecting barriers, often
serve as reduced examples of much more complicated many-body phenomena.
They play an essential role in various fields such as physics, chemistry, biology,
meteorology, geography, mathematics, computer science and others. For com-
prehensive treatments of random walk and their applications, cf. Kac (1954),
Weesakul (1961), Parzen (1962), Cox and Miller (1965), Feller
(1968), Srinivasan and Mehata (1976), Isoifescu (1980), Berg
(1983), Percus (1985) and Murthy and Kehr (1989). Despite its long
history, novel aspects continue to surface, cf., Weiss (1994), El-Shehawey
(1994), Durrett (1995), Hughes (1996), Norris (1997), Canjar (2000),
El-Shehawy (2000), (2002) and Ethier and Khoshnevisan (2002).
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Keywords: random walk, imperfect absorbing barrier, difference equation generating func-
tion, absorption probability.
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In this paper, a trinomial random walk (R.W.), on the set of integers S =
{0,1,..., L}, governed by unsymmetric imperfect absorbing barriers at 0 and L
is investigated. A particle, starting from the initial position zg, g € S, moves
one unit to the right or to the left with probabilities @ and [, respectively. The
probability that it does not move will be taken as v = 1 — (o + (3). When the
barriers 0 or L are reached, it is annihilated or reflectes (to the points 1 and L—1,
respectively) with respective probabilities 1 —p and p at 0 and 1 —w and w at L,
0 < p,w < 1. This corresponds to the situation when, at the barriers 0 or L, the
particle is either lost from the system with respective probabilities 1 —p and 1 —w
or turned back with probabilities p and w, and reduces to the classical problems
of R.W. with absorbing, reflecting and combination of absorbing and reflecting
barriers. Such model is a generalization of many particular R.W. problems,
depending on appropriate choices of the reflect boundary probabilities p and w.

The definition of reflecting barrier in Feller [10, p. 343] is modified to be
at the points 0 and L, and the particle is allowed to start from (or reach to)
the barriers. Instead, whenever the particle is at point 1, it has probability p of
moving to position 2 and probability ¢ to stay at 1.

Generating functions for the probability of being in a certain position after a
given number of transitions have been extensively studied (cf. Feller (1968),
Srinivasan and Mehata (1976), Percus (1985), and El-Shehawy
(2000)). However, determination of explicit expressions for the probability dis-
tribution from the generating functions is generally quit difficult. The purpose of
this paper is to find closed form expressions for the L+ 1 probabilities, p, (x| z¢)
for all x,xq € 5, that the particle starting from zg € S is at x € S at step n.
These are easily derived from their generating functions. This work is a gener-
alization to previous works, it is apparently not covered by the literature. In
Section 2, the difference equation, with its associated initial and boundary condi-
tions, and the corresponding system of generating functions are presented. Exact
solution of this system is collected in a simple general form in Theorem 2.1, with
proof given in the Appendix. In Section 3, some theoretical different formulae
of generating functions for R.W. models as special cases, for completeness, are
introduced explicitly through appropriate choices of the reflection probabilities p
and w. Explicit expressions for the simple two cases p,,(z | x¢), x = 0, L are dis-
cussed in Section 4. The mean occupation total and the absorption probabilities
are obtained in Section 5. In Section 6 the one boundary case is investigated;
explicit formula for the n-step probability v, (x | o), as well as, the survival
probability and the mean number of steps taken until annihilated are also pre-
sented.
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2. Solution for the difference equations

Let p,(z | ©o) be the n-step transition probability that the particle reaches
the position z at time n given that xy was its initial position, x,zg € S. Then
pn(x | o) satisfies the following difference equation:

Forn>1,2€{2,3,...,L —2}

pn(z | 20) = app_1(x — 1| 20) + Ypn-1(x | o) + Ppn-1(x + 1| x0). (2.1)

Subject to the following “initial and boundary” conditions

po(z | o) = Og.20; x,x9 €S, (2.2)
Pn(1 | 20) = pPn—1(0 | 20) + YPr—1(1 | z0) + BPn—1(2 | 20),
Pn(0 | 20) = Bpn—1(1| o),
pn(L* 1 | Z ) = OPp— 1(L 2 | l’o) +YPn— 1( -1 | 1'0) +an—l(L | m0)7
pn(L xO) = apn—l(L -1 | 1'0)

(2.3)
where 6, ,, denotes the Kronecker delta.

To solve (2.1)—(2.3), we first calculate the probability generating function
(pef)

(z;2 | o) Z "oz | T0), |z| <1, (2.4)
n=0
and then the probability
1 = i dz

where the integration path is the circle around z = 0 in the complex plane.
Multiplying the equations (2.1) and (2.3) by 2" and summing over n =
1,2,..., we obtain the recursion
G(z;2 | w0) = 05 ., (2) + AM(2)G(2;0 — 1 | 20) + pu(2)G (252 4+ 1| x0),

2.5
ze{23,...,L -2}, (25)

subject to the boundary conditions

G(2,0 ] 20) = 00,00 (2) + p0(2)G(2: 1 | 20),

Glzi1 | 20) = & o (2) + p°()G(5:0 | 20) + (2) G52 | w0),

G(z L —1]m0) =067 1 ,,(2) + AM2)G(2; L — 2 | w0) + w°(2)G(2; L | o),

G(z L | ©0) = 01,40(2) + Xo(2)G(2; L — 1| x0) 20
2.6
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with the denotations

z oz
)= 2 A =~ p(2) =Bz, el2) = az,
1—~z 11—~z (2.7)
o _ Pz o . wz o _ 5%300 ‘
P (Z)_ 1_727 w (Z)_ 1_72 and 5m,xo(z)_ 1_72'

Solving (2.5) and (2.6) systematically we get the next general theorem (for details
of the calculations see Appendix):

THEOREM 2.1. In the presence of the unsymmetric imperfect absorbing bound-
aries at 0 and L, the pgf of the n-step occupation probabilities p,(x | o) for all
deferent values of x, xg € S are given by

A+ 2py /B0, _ z;B,a,w), =0

1 p\f L )

Gz 0)=532(5)" Viwzfaw), zeS 2400 (28)
20 (02— 01) (5

\I,L—:Eo(z;ﬂ7a7w)7 Z':O, 1'065, l’o#O,L
(o o) mq]m(z;aaﬁ) PV L —zy(2; 8, ,w),
« :L‘E{l,2,...,l‘()}, xo €S, 9 #0,L
A mq’zo(@0475>P)\I’L—m(z§57047w)7
x€{xg,xo+1,...,L—1}, 29 €S, 29#0,L
\Ilmo(z;a7/87p)7 l':L, JJ()ES, m0#07L'
(2.9)

3(L-1)
| A

G(z;x | L) can easily be obtained from formula (2.8) on replacing «, 3, p,w
and z by 8, a,w, p and L — x, respectively, where

\I/k(z;a,ﬁ,j) = jz\/g(elf_l - 9]5_1) - (9]19 - 05) ) j = p,W, (210)

A:\I/L(z;a,ﬁ,p)zw\/g\I/L_l(z;a,ﬂ,p), (2.11)
01 =61(2) = m {(1 —zv) + \/(1 —2y)° — 42204[3} ,
1 2
O = 05(2) = 2ovad {(1 —zy) — \/(1 —2z7)" — 42204[3} , (2.12)

with the assumption that z is real and positive and that the function inside the
square root (2.12) is positive, i.e.
1

1 (Va-VB)"

0<z<
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Formulae (2.9)—(2.12) include generalizations of previous works (cf. Cox
and Miller (1965), Feller (1968), Srinivasan and Mehata (1976),
Percus (1985), and E1-Shehawy (2000) among others.

Note that, most of earlier work on the subject has mainly been confined to
cases where the particle does not allow to start from or reach the end points.
Here no such assumption exists (cf. formula (2.8)).

3. R.W. for some special cases

Many interesting pgf as special cases can be derived from Theorem 2.1 through
an appropriate choice of the reflection probabilities p and w. In the following
several special cases are listed:

Case (i). p = w. When p = w, the pgf G(z;x | z¢), for all z,zy € S, becomes

(5)
> 2"pala | wo) = =
n=0 z\/ Oé,B (92 — 91) A
[af—ag—zp\/g(af—l—eg—l)] [af"”ﬂ—92“”30—zp\/g(af"”ﬂ‘l—ag—fo—l)],
xo#0, z€{1,2,...,z0},

[or0—a50—sp (070 =05 ")] [o8 =02 B (00 o) (3)° 7,
96'075117 T e {l’o,l‘o‘l*l,...,[/*l},

Z 2"pn(0 ] 2g) =

ﬁ

L [y 3 (011 - ofo0) - (oo~ of)] 0.2

= 1+sz§[Zp\/g(9L 2 gL=2) _ (pL-1 _ gL~ 1)}, -
zp(62—61) (B 3(L-1)
A (E) ) zo =L
(3.2)
Z 2"pn(L | x0)
n=0

g $(L—=g)
(ﬁ |:Zp\/> 9060—1 9900 1) _ (9%‘0 _ 9;‘0)} , To 7& O,L (3 3)
G (L—1)
= p(‘92A 61) <%)2 , 9 =0
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where 07 and 6, are given in formula (2.12), and

A=- [ef — 0% - jT”_ﬂm +8) (087 =057 + o222 (052 - 0572) | (34

This pgf arises from the R.W. running between symmetry imperfect absorbing
barriers at 0 and L and starting at xg, xg € S.

Case (ii). p = w = 0. When p = w = 0 the pgf becomes

oo HL—QE(] o HL—QE(] ,8 To
ann(o | ZE()) =12 - ) Zo 7é 0)L7 (35)
nZ:O 91L — 92L «Q
Z 2"pn(x | o) =
n=0
(67 =03) (01770 =05770) 1 5\ B(@0—2)
_| ey (8) s setas
- 9730 _0730 GL—I_GL—J: l(:ﬂo—(ﬂ)
(zi/@(zﬂl)—(ei)(gf—zé)) (g) 2 s wo#L, we{zowotl, wo+2,..,L—1},
(3.6)
oo (aaco - 9300) < o )L—ﬂco
N 1 2 3
ZZ pn(L|xO): oL _ gL s l’o?éO,L, (37)
n=0 1 2

where 6 and 6, are given in formula (2.12). This pgf arises from the R.W.
between perfect absorbing barriers at 0 and L and starting at xg, zg € S.

Formula (3.6) represents the pgf of the m-step occupation probabilities
pn(x | xo), that the particle, starting from zy € S, z¢ # 0, L, arrives at lo-
cation z € S, zp # 0, L after n steps, while formulae (3.5) and (3.7) represent a
well known results for the pgf of the absorption probabilities at 0 and L at the
nth step (cf. Feller (1968) and E1-Shehawey (2002)).

Case (iii). p = w = 1. When p = w = 1, the pgf G(z;x | x¢), for all z,z¢ € S,

becomes
: ()~
> 2 pnlx | @) = - X
n=0 zv/afB (6 — 601) A
ot/ Bl o0 0= /B (a0 a0 )]
z0#0, z€{l1,2,...,z0},

(070030 —=/Z (070 —050 )] [0F T 0y T =T (0F T ey )] ()70,
xo# L, =€ {xo,x0+ 1,20 +2,...,L—1},

(3.8)
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L-
e R CRRT ) HE
l(r—
2(92—191) (g>2(L ! ’ xo =L,
(3.9)
Z 2"pp(L | zo) =
n=0
% L(L—=p) zo—1 zo—1 o To ]
\/> 9 9 ) — (91 - 92 )_ ;Lo 7é 0,L (3.10)
— 2(62—191) <%)§ ) xg =0,
1+Z\ﬁ[ \/g o1 —0,7) = (007 =071 |, wo=1L
where
&=M%4¢%W@>@?l%*%f@?2%”ﬂ’

(3.11)
and 61,02 are given as in formula (2.12). This pgf arises from the R.W. between
two fully reflecting barriers at 0 and L, starting at xg, g € S.

Case (iv). p =0 and 0 < w < 1. When p = 0 and 0 < w < 1 the pgf
G(z;x | zo), for all x, 29 € S, becomes

- (2)
nzzoznp”(m ) = TaB 0= 0) A

05 — 051 [p-e0 — 00 — s[5 (o801 — gbee)),
o #0, x € {1,2,...,%0},

T—xo
[9%0 _ 9;‘0] [elL—gc _ 95—1: _ zw\/% (elL—gc—l _ 92L—gc—1)} <%) ,
xo# L, x€{xo,x0+1,20+2,...,L—1},

X

(3.12)
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Zz”pn(O | z9) =
Q 1
a Z [zw\/7 <0L zo—1 9L Tg— 1) _ (ef—xo _95—10)}’ To 7éO’L

=

= 1, Ty = 0
Hr-1
zw(9A22—01) <§)2( )7 zo =1L,
(3.13)
(3)277 gwo _ gro
) T(92( 701()7 1‘0750,.[/
> 2"pu(L | o) =4 0, 2o =0 (3.14)

1+ % <0§_1 - 95_1)7 zo = L,

Ay = zw\/g@f—l - 95—1) - (ef - 95) (3.15)

and 61, 02 are given as in formulae (2.12). This pgf arises from the R.W. in the
presence of perfect absorbing barrier at 0 and imperfect one at L.

where

Case (V). w = 0and 0 < p < 1. When w =0 and 0 < p < 1, the pgf
G(z;x | zo), for all x, 29 € S, becomes

: )"
2"pn (x| x0) “ X
ne 0 | Z\/ (92 — 91) Ag (3 16)
L EN) GL zo} {HI—BQ—Z/)\/_(BI 1 Ga: 1)}7 z0#0, z€{1,2,...,z0} '
et Aot B s ] .
ToF#L, 906{0607900-5-1 z0+2,...,L—1},
8Y3%0
(o) 7( aiz <9L—w0 — QL_wO) , X0 75 O, L
2"pn(0 | @o) = 22\ & (pL—1 _ gL—1 (3.17)
’l’;) ! L+ Az (92 9 ) , Lo = 0
0’ xTo = La

Zznpn(L | :I;O) =
n=0

a (L zg)
(E _° [Zp\f (o7o" 9%—1)(9?0930)}, 9 #0,L (3.18)

zp(62—061) 2 _
2V A23 (ﬁ) s :ro—()

1, o = L,
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where

Ag = zp\/g (ot —o057 1) — (oF —0%), (3.19)

and 01, 05 are given as in formulae (2.12). This pgf arises from the R.W. in the
presence of imperfectly absorbing barrier at 0 and perfect absorbing one at L.

4. Closed form expressions for p,(z | z9), x =0, L

Theorem 2.1 enables us to find explicit expressions for the n-step probabilities
pn(z | x0) for all z,29g € S. Only closed-form expressions for p, (0 | z¢) and
pn(L | 2o) will be formally established here.

From Theorem 2.1 for x =0 and zg € S, 29 # 0, L

oo

Z 2"pn (0] zo) =

n=0

(&) oy Bl ) - ey O

(1 — pwz2) (02 — 0357%) — [1 _ W} (1+62) (1— 625-2) '

Hence from (2.4a)

Pn(0 | 20) =

(4) [T (0 o)~ (o)

_ ]4
2 L0 pa) (03 - E72) - 1 - Ot () (1 - 63 ) 1
To—n— d g(92—92]4*2580) .
30 o 1 ( \’{9;4-\/_(924,_1) - (1 — §2L-2 1)
v : -1
= ob <°‘) 7{ (1—6%) [y9+\/_(92 )] y
2mi oL 1, e
161<1 [79+\/_(62+1)]
(1= 0°572) (10 + Vo (0* + 1))
<,0\/7+w\/>> pw 92 92L—2)
(4.2)
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(using the substitution % =~v++Vaf (9 + %))7 or

pn(O | 330) =
= coef. of 1/}%(“7%) in \/O‘_ﬁ<§> Ewox
= W+ VEB(1+ )" (1)
L\/% (¥ +9F770) — (WP +VaB (1 +v)) (1 - wL—zO)}
X — (WP + VaB (1 +4)]” (vL —1) +
P [(p\/g +w\/%> (WP +VaB (1 + ) (1 —pE=1) — pw (¢_¢L—1)}

1
=coef. of wé("_w(’) in (afB)2 <E> ’ X
o

JLtbe gty [ gl

1=V (VI (550) - ) Vi (Vi (52) - )] .
Hence
n (3 %IO
Pn(0 | 2o) = (af)? (E) X
zgo (%(H_T;O)._i) (%y a zgo (%(n—zZ)—i—l) <%>1
§ +% i=0 k:_o{(%(n+w2)—i—L) - (%("ﬂo;l—i—;;_l)} (%)1% (%)k
_%ﬁ iijo kéo{(l("“‘woil)—i—L) - (%(n+zo—71l)—i—L—l)} (%)l_k %)k
_iijo ’“Z;:O{( ntzo)-imz-1) = () ("+930;L—i—L—2)} <%>1_k (%)k
- (ap)? (é)ézo )
«
£ (-0 (5) + £ £ (5) ()
X w=B n+1 2L—wg42i41 it N
B (%(ner(J)foi) po 4 (%(n+zo)7L7i71) st
=767 (a1 o) T
(4.4)

pn(L | o) can be obtained from p,(0 | xg) by the transformation a < f3,
p < w and g — L — 9. Therefore p, (L | zo) has the following form

(L | 7o) = (afB) 2 (%) 1z0 y

X n+1 L—z0+2i+1 [ w—3 —a\* (w=p\7F
2 G-Lheg—) R (%5 > +1ZO,€ZO( ) (%) (4.5)
X pfa( n+1 )fo(]+2i+1 _ ( n+1 ) L+xzo+2i43
«a %(n—L—zo)—i n+1 Lin—L—mzg)—i—1 n+1
__ ( n+1 ) L+xzg+2i+2
Vapg %(nfongl)fi n+1
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Explicit expressions of p,, (0 | o), pn(L | x9) for g € {0, L} and p,(x | zo)

for z,x9 € S, x # 0,L can be similarly obtained from Theorm 2.1, using the
technique we have used to get (4.4).

5. The mean occupation total and
the absorption probabilities

Explicit expressions for the mean number of times the position z, x € S is
occupied, given the starting position xg, xo € S, denoted by E [N,,.], can be
easily obtained from Theorem 2.1 by putting z = 1. Thus

p 1_(g>L—x_w|:1_<g)L—a:—1:|’ 0> 3
S (OO ORI ON LI
(1-w)(L—2z)+w, a=0

forz e S,z #0,L;

= NOELIE ORI
A e
B [Nzoal = 3= ﬁ+ {1 (%) p(l <%) )} y (5.3)
9 _1 B %)L—xo B % (1 B <%)L—zo—l>} Ca<s
LI —p e+ p)[(1 —w) (L — )+, a=p
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forzg € S, g #0,L, x € {1,2,...,20};

rpy Y
T (@) e
ENaye] = 5= (%5);”’ [1_ <%) _ p<1_ (%yo—l " (5.4)
i-(5) - (1-(5) )] a<o
o [(T=p)wo+pl[(1 —w) (L —2) + ], a=p

for zg € S, 29 #0,L, x € {zg,z0+1,..., L —1}.

Further, for any xg, x¢g € S, we obtain

E[Nxoo]:§ L (s) 1_(%)“%—1]’ wey (69
(1 -w) (L —x0) + w, a=p0
and
(8- (). x>
1 —xo —zo —1
ElNes] = 53 (3)" (%)LP[(%)L - (3)" } wepg (56
(1—p)zo +p, a=p,
where

(5.7)
Formulae (5.1)—(5.7), in the case p = w = 0, agree with the well-known

results for a R.W. between fully absorbing barriers at 0 and L and starting at
xo, o € S, 0 #0,L (cf. Kemeny and Snell [14, p. 151] and Tosifescu
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[11, p. 101] in the case v = 0). In this case
E [N =
((5)"-1)((

re{l,2,...,x0}, a#p (5.8)

/—\
[~}
o)
|
—_
Z
|
~—~
2w |l
~ | ~~—
™
|
_
S—]

x € {xg,xo+1,...,L -1}, a# [,

_Q{x(L—xo), xe{l,2,...,x0}, a=p (5.9)

ENmm—_
[Naoa] L |xg(L—2), z€{xg,x0+1,...,L—1}, a=p

and F [N()o] =F [NLL] =1.

Notice that formula (5.9) can be obtained from (5.8) by interchanging « and 3;
p and w and replacing xg by L — xg. Starting from xg, ¢ € S, the probabilities
of absorption ”with probabilities 1 — p and 1 — w” which occur at 0 and L,
respectively, will be denoted by ¢,,(j), 7 = 0, L. Using (5.5) and (5.6) we get

(&) (8) o[ () ~() 7
e (e ) G
0= S iy <8 o0
L—iﬂo-ﬁ-lfl_p aAe
L+1_p+1_w’ Oé:ﬂ?
1-(2) - [1-($)" "]
(1—2) -5 (—)(2) @« 0
oo (D) =4 () -(8) —o((8) ()" 5.11
BRI Re= e = 07 L
zo+ 125
TiE s a=p

By an alternative method, formulae (5.10) and (5.11) can be obtained respec-
tively by solving the following difference equations:

(1=p) [1+ 20 (0)], 20 =0
Qo (0) = § @agt1 (0) + Yqug (0) + Bauo—1 (0), w0 € {1,2,...,L—1} (5:12)
wqr—1 (0), o= 1L
and
pq (L), zo=0
Goy (L) = { QQzor1 (L) + 7Gx, (L) + Bquy—1 (L), 0 €{1,2,...,L—1}
(1-w) [1 + g (L)} , o = L.

(5.13)
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Obviously ¢z, (0)+¢z, (L) = 1. We see that formulae (5.10) and (5.11) in the case
~ = 0 agree with that of E1-Shehawey (2000) and with that of Percus
(1985) in the case p = w (see also Feller [10, p. 344-349], Kemeney and
Snell [14, p. 153] and Tosifeacu [11, p. 180] in the case p = w = 0 and
v =0).

6. The one-boundary case (L — c0)

Let v,(x | 29) be the n-step probability that the particle is at position z
at time n, given that its initial position was xg, for the case L infinite. Let
®(z;x | z¢) denotes its pgf such that

o0

O(zy2 | zo) = Z 2" (x| xo), |z] < 1. (6.1)

n=0

Theorem 2.1 can be easily modified to the one-boundary case by taking the limit
as L — 00, to obtain on the semi-infinte lattice segment 0, 1, 2,

P x
@(z;$|x):$<9\/§> , 0 <z < oo, (6.2)
’ 1—zp9\/§ B

®(z; | 00) %[ o Zpe\/g( 92%2)} - ( 7 )L—x
<1 — zpB\/E> (1 _ ZwH\/7) L—oo o (6.3)
0<x <o
ik
(250 | zo) = 1=z 0<zp<o0

N AV
D(z;00 | ) = (1 ipﬂ\/:)<l w0\ /F ) quo(\/g) , 0< 2 <0

1—zw0,/% ? Lo = 00
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and

O(zy2 | z) = __v X

2B (1-6?)

p2z—1

(a—zp\/g) R
lle <9\/; , <z, 0<x9<00 (6.6)
X

2w —
(9_‘2’)\/%)9 P N
ll N 1_Zp9\/§ (9 B ) , T >zo, 0<x9<o00.

For x, g > 0 define T}, as the number of times the position = is occupied given
the starting position zp. Therefore explicit expressions for the mean, F [T, .],
can be easily obtained from (6.2)-(6.6) by setting z = 1 and

Thus
et >
i) =25, " 67)
|5 (5)  ass
and
1 _1=p(2) (o)
E[Toox] = 2 l_w(%) |:1 1-p (ﬁ) :| , a<f (6 8)
ﬂ O> « 2/6
for 0 < x < o0
1 ﬁ Zo
E[Tho] = { =#(5) (8) " a>s (6.9)
1T1p7 (0% S /8
and
1| 1= (B8)7
E[Tpyo0) = q 17 [l =) (0‘) ] a>5 (6.10)
0, « S/B
for 0 < xp < o0;
[ (] @ e
B [Togs] = | 524 |1 - 1—1P_(p§) (%)” 7 o< p (6.11)
é [I + 1Tppi| ’ o = /3
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for 0 <z < xp, 0 < zg < 00;

1| _1=p (B)"
a7 |1 —(2) <a) ) a>f
= 1-p g a0 AN .
E[TIEQIE] B+Oé 1— 1—(p ) <B) (E) , « < ﬂ (6 12)
% |:ZEO + ﬁ} s a=0
for xp <z, 0 < g < 0
||, a8
E[Too] = 177 [1-%(5) (6.13)
0, a>f
and
L, a >
E [Tooo) = {l o< g (6.14)
R

Notice that (1 — p) E [T,,0] and (1 — w) E [T,,| are, respectively, the prob-
ability of absorption at 0 and the survival probability ”the probability never to
have visited the absorbing barrier”, they, respectively, denoted by B,, (0) and
By, (00). Therefore

Zo
) , a>f0, 0<zy< o0

,_.
|
=7

—~

o @

S—|
/
Q=

1’ a < ) 0< 29 <@
Bz (0= w(1-9) g ’ (6.15)
) a < P, xg= 00
ey :
07 « 2 ﬂ, o = 00,
and
o
L= o (2)" a>8, 0<w<oo
< <
By, (OO): 0’1_ a—g’ 0<zp<o0 (616)
7@1’ a<p, xg=00
=D :
17 o> ,8, To = OQ.

Obviously By, (0) 4+ By, (00) = 1.
Starting from zg, the mean number of steps the particle is at z after time n
has elapsed; x, o € {0,1,...} my be obtained from

N d

n=0 z=1
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and are found to be

p(2)(v+2a)
, 1%)[x+ (l)ng) :|, >0
Moz = —= p(7+2ﬁ * (6.18)
|O[—,6'| 1p[m+ }(ﬁ) ) Oé<ﬂ
0, a=0
for 0 < x < oo; and
1 p(£)(v+20) | (40
| ﬁﬁﬂf“* ) (3) 7 e
Mgo0 = 7|a — ﬁ| 1%,; [IO I p(%ﬁﬁ)} ’ a< 3 (6.19)
0, a=p
for 0 < xp < o0;
B(y+2a)
o o 70
S o (y+25) 6.20
Mmoo a—3 | -7 a<pf (6.20)
OO? o = 57
ro—x o
m o 1 (g) aco, (ﬁy ) (g) Vm,aco (ﬁ)a; %ap) , o> /B
T (e =B Vs (@8) = (§) Voura (0850, 22) a<p
(6.21)
for 0 < zp < o0, z € {1,2,...,20}; and
1 Uiﬂ,mo(ﬁva)f(g) miﬂo (ﬂ,Oé pﬁ )> a>ﬂ
Mgz = T o2 T—T0 T
(o =B0" | (2)" " Vs (03— (3) wm0<,@pﬁg>,tl<ﬂ
(6.22)

for 0 < xg < 00, x € {xo, 29+ 1,...,L — 1}; where
20¢(7+2ﬁ)

— )

Upao (0, 3) =2 — 20+ 7 +

p8) _ =% _ 2a 17 f{ﬁ(l_%) ]
zm()( 7ﬂap7 a)_ 1—p |:J,’+l'0 ﬂ+a+5_a+ (1— P)( EB)

(6.23)

If we denote by E,,0 the mean number of steps taken until being annihilated
given that the particle is annihilated with probability 1 — p at the origin. Then
for 0 < xy < o0,

Q «
) +7p(c‘)(7:§ ), a> 0

(1= p) Mayo 1 1=p( 2
E, o= °~ = +26 6.24
CT B, Jaog |ttt a<s 02

00, a=0
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Using fomulae (6.2)—(6.6) and u = 71— {1 — 2y — \/(1 — 27)? — 4a 822 } we

can now obtain explicit expressions for v,(x | xg), © > 1, zg > 0. Notice first
that from (6.4) and (6.6) we get

®(2:0w0) | a—p(1—zv) [ ()™= % (ua)™*1—(8)**!
(s | o) = 2ptlz) | =gl (T Q) 1y (e TG

1 (ua)* %0 — (%)z o 0, x=1,2,..., x9g—1
Zﬁz o uoz—f 1, T =X, $0+1,....

(6.25)
Hence using the same technique as in Section 4 we get for x > 1, g > 0
1 (au? +uy + B)"
’Un(l‘ | 1'0) = % yntz—zo+l
lu|<1
(o uy ) [ rau?[1-(gu?)" "] -B(gu?) "]
(B+au?)[(a—p)u+B-+uy]
1= (52) 7 ooyem] [
T Tle—pur+Btun] 011~ <5u )
= coef. of 1/15("‘“”_””0)
(Brrvitay) [(B+ay) (%5 )" —ap(*5)"]
] n (B+ap)[(a—p)p+yv/P+8]
in (ﬂ+’yﬂ+m/}) o1 .
G0 s Y P ()™
[(a—p)+vVP+8] B ]
= coef. of tpz(ntT=w0)
- [%—w((ﬂ—%)ﬂf ()] 6.26)
1— p—a)Vip—~ .
i ﬂ”(Jr\/_( +a\/_>> ﬂ( 3
i (5)]

where

5= 0, z=1,2,...,29—1
B 1, z=z9,20+1,....
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Therefore

( ) (%(n—‘:n—xo)) - ( (7L+:E+:EO +1) Z: ( a )
n ﬁ T—Xo " =
’Un(m | 1‘0) = (O‘B) 2 <a> x [<%(n+x+xa)+i—1) - (%(n+x+x(1)+i+1) -

ﬁ ;::0 (%(n—&-x—&-nxo—i-l)—&-i) (%)

(6.27)
Notice that

i(p;a)i [(%(n—i—m—i—nxo)—i—i—l) B (%(n—l—m—i—nxo)—l—i—i-l)]

< (n+x+xo +1>
:p;a<%(n+z+xo)>+§(pp_72;>zl<%(n+x+xo ><pa>

(6.28)

( (n+7aL:—a:0)) - P;O‘( (n+7;+w()))+

vn(z | 7o) = (af)? (ﬁ> s 5 ( ) i‘i (3 (n+m+mo)+z) (%)Z

; (% (n+a:+a:0+1)+z) (%)IL

S
b F

(6.29
whereas v, (0 | x¢) is obtained immediately from the relation v, (0 | z¢) =
Bun—1(1| z0), and formula (6.29) with z = 1:

(0 | ) ( IB)% (,8) %mo ’L;() (pa )’L ( (n{f;:—:)l—i-z-ﬁ—l) $0jl‘_~2_i1+1 - (6 30)
Zo « 00 i .
; (%(n—l—mo—&-l)-l-z) (%)

Appendix

We present here details of the calculations leading to the proof of Theorem 2.1.
Solving the recursion (2.5) with the boundary conditions (2.6) systematically,
starting with the following formula

(22 | w0) = ﬁ [(1— go(2)) G:1 | 20) — 65 0. (2) = p°(Db0a] (1)
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where
vo(2) = po(2)p°(2).

Equation (2.5) can be reduced from the second order to the first order by suc-
cessively eliminating one of the G(z;z | z¢) in each equation of the system, to
obtain finally

Gz 2| xo) =
1

= M(Z) (1 — 90:70—3(2)) |:(1 - 9013—2(2)) G(z;;p —1 | xO)

(2)

- z—: Ot (2) (L= 01 (2)) X7F72(2) = p° (2)AT2(2) 00,0 |
k=0

for x € {2,3,..., L — 2}, where ¢, (2) satisfies the following difference equations

p°(2)po(2), i=0
P A j=-1
#i(2) wi—1(2) + M2)u(z) (1 — @j2(2)), j=12...,L -2 (3)

pj—2(2) + Mo(2)w(2) (1 —pr-3(2)), j=L-1

On account of the boundary conditions (2.6), we obtain

G(z;L—1|x) = ﬁ}(z) [)\(Z)G(Z;L =2 x0) =071 4,(2) + w° (z)éL,wo] ,
(4)
where
eL(2) = Ao(2)w’(2).
Now, G(z; L — 1| x¢) can easily be expressed in terms of ¢;(z), as
G(z L—1|z9) =
1 L—2
= o L—k—2
= m ];) Ory1,20(2) (1 = r—1(2)) A (2) (5)
+ 02 ()N T2(2)00,20 + (1 = 91-3(2)) W (2)0L 1z |
where
®(2) = pr—2(2) + ¢1(2) (1 — pr-3(2)) - (6)
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Reversing the recursive process which leads to (2), we obtain general expressions
for all G(z;x | xo), x,z9 € S in the form

G(z 2| xo) =

(1= o2(2)) (1 = ¢54(2)) 05,4, (2)
+ (1= phial) 07 ()AL (2) oz,

1)+ Z 07100 (2) (1 = 11 (2) No7H1(2)| (7)
1_(1)(2) o L—z—-1
+<1fsox 2(2)) [6° (2)0L,00i" 71 (2)
+ z 01 (9) (1= 2 (2) ()]

forx€{2,3,...,L—2},

Glai1 20) = 1y (1~ #5() A (o,

L—2
+ D07 b (2) (L= ¢1 i (2) B2 7F2(2) (8)
k=0

+ w° (z)éL,wo,uL_Q(z)}
Gz L—1|z) =
=10 11)(2) [pO(Z)(SO,mO)\L 2(2) + Z Oni1.20(2) (1 — pr1(2)) AL=E=2 () o)
()00 (1 - @L_s(z))} ,

G(z;0 | »o) and G(z; L | zp) can be easily obtained from formulae (2.6), (8)
and (9), where 7 (2) satisfies the following recurrence relations

Ao(2) w(z2), ji=0
01-(2) = { Pij+1(2) + A2)u(2) (1 = vi_j40(2)), G=1,2,...,L—2
©5(2) + po(2)p°(2) (1 — 3(2)), j=L-1

(10)
Explicit expressions for ¢;(2), ¢} (2)are immediately obtained by the standard

method of solution of the second order linear recurrence relation (cf. Micken
(1990) and Elaydi (1999)):

Jj+1
o g ) B -0 (22)

(11)
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1— 2y

i 1 . , Qs ,
1— Yr_j (z) = 91 — 02 |:(9{+2 N 9%-"—2) o Zw\/g (9{4-1 o 9%-"—1)
(12)

where 61, 02 are given as (2.12).We assume that z is real and positive and that
the function inside the square root (2.12) is positive, i.e.

1
1-(Va-vB)®

Inserting formulae (11) and (12) into (6), we obtain

(1—27)° > 42208 or 0<z<

1—®(z) (13)

Z\/a—ﬂ>L—l

A0 (Z;O[,,B,p,W) <1—Z’y

9, — 6,

where
z

AO(Z;O@ﬂ?pvw):afie%im

(Bp+ aw) (67 —65°")
+ pwz? (91L—2 _ 92L—2) (14)
= A0 (Z;ﬁ)aawap)
which will be abbreviated to Ag.

Formulae (2.6), (7)—(9), and (11)—(14) enable us to find explicit expressions
for all G(z;x | xg), z,xp € S as

G20 | 20) =
A + zp\/g [HlL_l T zw\/%(ef_2 - 95_2)} ) 29 =0

— ALO (g)%ﬂ?o [alL_gco . 92L—aco . zw\/% <91L—gco—1 B 92L—a:0—1)} w0 £0.L

L(L-1)
ZwW (91 *92) (g)2 s o :L>

(15)
(é) 3 (zo—x)

VaB (61— 62) Ay
{ef—eg—zp\/g(ef—l—ag—l)} [9f‘”“‘0—6§"”0 —zw\/%(ef‘”’o‘l—eg‘”’o‘l)} ,

z0€S, o#0, z€{1,2,...,z0}

(070030 —2p/Z (07071 —030 )] [0F 7 05—~z /5 (0~ 05 —1) ] ()77,
x0 €S, xo#L, x € {xo,x0+1,20+2,...,L—1}

G(z x| zo) =

(16)

374



TRINOMIAL RANDOM WALK WITH ONE OR TWO IMPERFECT ABSORBING BARRIERS

and

G(z; L | z9) =
1(L-1)
Zp(91 *92) (%)2 s Zo =0
1 a 3(L=wo) i T zo— To— 17
Ao (3)2 910—920_'”\/%(91] b5 1)]’ zo # 0, L 0

Ao+ zw\/% oLt — g1 _ zp\/g(alH - 95-2)} . zo=1L

where Ag, 01 and 0 are respectively given as in formulae (14) and (2.12). Ob-
viously, formula (17) can easily be obtained from formula (15) on replacing
a, 3, p,w and xg by B, a,w, p and L — xq, respectively.

[10]
[11]
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[13]
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