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1. Introduction

The set C(X) of all real-valued continuous functions as well as the set C∗(X)
of all bounded real-valued continuous functions on a Tychonoff space X has a
number of natural topologies. Two commonly used among them are the topo-
logy of uniform convergence u and the compact-open topology k. While the
topology of uniform convergence on C(X) has been used for more than a cen-
tury as the proper setting to study the uniform convergence of sequences of
functions, the compact-open topology on C(X) made its appearance in 1945
in a paper by R a l p h H . F o x , [12] and soon after, it was developed by
R i c h a r d F . A r e n s in [3] and by A r e n s and J a m e s D u g u n d j i in [4].
This topology was shown in [17] to be the proper setting to study sequences of
functions which converge uniformly on compact subsets. But soon, it also turned
out to be a natural and interesting locally convex topology on C(X) from the
measure-theoretic viewpoint. In fact, continuous functions and Baire measures
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on Tychonoff spaces are linked by the process of integration. A number of natu-
ral locally convex topologies on spaces of continuous functions have been studied
in order to clarify this relationship. For more information on these topologies,
see [44].

The compact-open topology and the topology of uniform convergence on
C(X) (or on C∗(X)) are equal if and only if X is compact. Since compact-
ness is such a strong condition, there is a considerable gap between these two
topologies. This gap has been especially felt in topological measure theory;
consequently in the last five decades, there have been quite a few topologies
introduced that lie between k and u, such as the strict topology, the σ-compact-
open topology, the topology of uniform convergence on σ-compact subsets and
the topology of uniform convergence on bounded subsets. (See for example, [5],
[8], [14], [16], [19], [21], [22], [23], [37], [38].)

The pseudocompact-open topology ps is another natural and interesting lo-
cally convex topology on C(X), from the viewpoint of both topology and mea-
sure theory, though it has not received much attention from the researchers
until a formal study of this topology was done in [20]. The spaces C(X),
equipped with the point-open topology p, the compact-open topology k and the
pseudocompact-open topology ps, are denoted by Cp(X), Ck(X) and Cps(X)
respectively.

In [20], in addition to studying some basic properties of Cps(X) and comparing
it with Ck(X), the submetrizability, metrizability and separability of Cps(X)
have been studied. But another important family of properties, the completeness
properties of Cps(X), is yet to be studied. In this paper, we plan to do exactly
that. Here we would like to recall that the completeness properties of Cp(X)
were studied in [24] while those of Ck(X) were studied in [25]. The situation for
Cps(X) is analogous in some instances to the case for the compact-open topology.
But we should keep in mind that while a compact subset in a Tychonoff space
is C-embedded, a closed pseudocompact subset need not be so. Also a closed
subset of a pseudocompact subset need not be pseudocompact. Often these two
facts make the study of Cps(X), in particular, the study of some completeness
properties of Cps(X), difficult.

In Section 2 of this paper, we begin the study of the completeness proper-
ties of Cps(X) by recalling the definition of the pseudocompact-open topology on
C(X) and by having a close look at the uniform completeness of Cps(X). In Sec-
tion 3, we study various kinds of completeness of this topology such as complete
metrizability, Čech-completeness, local Čech-completeness, sieve-completeness
and partition-completeness of Cps(X). Since Cps(X) is a locally convex space,
we also look at the barreledness of Cps(X). In Section 3, we also study spe-
cially the almost Čech-completeness and pseudocompleteness of Cps(X). Here
we would like to mention that in [25], these two properties for Ck(X) have been
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studied after studying in detail the compact-open topology on R
X , the set of

all real-valued functions on X and subsequently after using several significant
results. But here we use the techniques of locally convex spaces in order to have
a shorter and more elegant route to the study of almost Čech-completeness and
pseudocompleteness of Cps(X). It suffices to mention that these techniques may
be equally used for Ck(X) also.

Throughout this paper, all spaces are Tychonoff spaces. The Stone-Čech-
compactification of a space X is denoted by βX and R denotes the space of real
numbers.

2. Uniform Completeness of Cps(X)

There are three ways to consider the pseudocompact-open topology on C(X).
First, one can use as subbase the family

{
[A, V ] : A is a pseudocompact

subset of X and V is an open subset of R
}

where [A, V ] =
{
f ∈ C(X) :

f(A) ⊆ V
}
. But one can also consider this topology as the topology of uniform

convergence on the pseudocompact subsets of X, in which case the basic open
sets will be of the form 〈f, A, ε〉 =

{
g ∈ C(X) : |g(x)−f(x)| < ε for all x ∈ A

}
,

where f ∈ C(X), A is a pseudocompact subset of X and ε is a positive real
number.

The third way is to look at the pseudocompact-open topology as a locally con-
vex topology on C(X). For each pseudocompact subset A of X and ε > 0, we de-
fine the seminorm pA on C(X) and VA,ε as follows: pA(f) = sup

{|f(x)| : x ∈ A
}

and VA,ε =
{
f ∈ C(X) : pA(f) < ε

}
. Let V =

{
VA,ε : A is a pseudocompact

subset of X, ε > 0
}
. Then for each f ∈ C(X), f + V =

{
f + V : V ∈ V

}

forms a neighborhood base at f . This topology is locally convex since it is gen-
erated by a collections of seminorms and it is same as the pseudocompact-open
topology on C(X). It is also easy to see that this topology is Hausdorff.

The topology of uniform convergence on the pseudocompact subsets of X is
actually generated by the uniformity of uniform convergence on these subsets.
When this uniformity is complete, Cps(X) is said to be uniformly complete.
This uniform completeness can also be seen as the completeness of a topological
group. A topological group E is called complete provided that every Cauchy
net in E converges to some element in E, where a net (xα) in E is Cauchy if for
every neighborhood U of 0 in E, there is an α0 such that xα1 − xα2 ∈ U for all
α1, α2 ≥ α0 (for E additive). One can check that Cps(X) is uniformly complete
if and only if it is complete as an additive topological group. Also Cps(X) is
completely metrizable if and only if it is uniformly complete and metrizable,
(see [7, pp. 34, 36]).
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In order to characterize the uniform completeness of Cps(X), we need to talk
about ps-continuous functions and psf -spaces.

���������� 2.1� A function f : X → R is said to be ps-continuous if for every
pseudocompact subset A of X, there exists a continuous function g : X → R

such that g|A = f |A. A space X is called a psf -space if every ps-continuous
function on X is continuous.

The following characterization of uniform completeness of Cps(X) has been
proved in a broader context of the G -open topology in [23].

�	��
�� 2.2� The space Cps(X) is uniformly complete if and only if X is a
psf -space.

Before investigating which spaces are psf -spaces, we would like to give an
example of a space which is not a psf -space. Let X be an uncountable non-
discrete P -space. (See [15, 4N, 9L].) Since X is a P -space, the point-open and
pseudocompact-open topologies on C(X) coincide. But since X is not a discrete
space, by [26, Corollary 5.1.2(b)], Cp(X) is not uniformly complete. Hence X is
not a psf -space.

But now we will see that the family of psf -spaces is quite large. In particular
many well-known spaces are psf -spaces. But in order to identify these spaces,
we need to talk about pseudo-k-spaces and quasi-k-spaces.

A subset Y of a space X is said to be pseudo-k-closed (quasi-k-closed) in X

if Y ∩ A is closed in A for every pseudocompact (countably compact) subset
A of X. A space X is said to be a pseudo-k-space (quasi-k-space) if every
pseudo-k-closed (quasi-k-closed) subset of X is closed in X.

A space X is called locally pseudocompact (locally countably compact) if
every point in X has a pseudocompact (countably compact) neighborhood. A
space X is a q-space if for each point x ∈ X, there exists a sequence {Un : n ∈ N}
of neighborhoods of x such that if xn ∈ Un for each n, then {xn : n ∈ N} has
a cluster point. A property stronger that being a q-space is that of being an
M -space, which can be characterized as a space that can be mapped onto a
metric space by a quasi-perfect map (a continuous closed map in which inverse
images of points are countably compact).

It can be easily seen that every quasi-k-space is a pseudo-k-space which, in
turn, is a psf -space.

The next result for the quasi-k-space was proved in [36]. The analogous result
for the pseudo-k-spaces can be proved in a similar manner.
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�	��
�� 2.3� For a space X, the following assertions are equivalent.

(a) X is a pseudo-k-space (quasi-k-space).
(b) X is a quotient space of a disjoint topological sum of pseudocompact (count-

ably compact) spaces.
(c) X is a quotient space of a locally pseudocompact (locally countably compact)

space.

The next result is a minor modification of the first corollary of [33] for
Tychonoff spaces.

�	��
�� 2.4� For a space X, the following assertions are equivalent.

(a) X is a quasi-k-space.
(b) X is a quotient space of a q-space.
(c) X is a quotient space of an M -space.

From the last two results, it is clear that the family of psf -spaces includes
pseudo-k-spaces, locally pseudocompact spaces and quotient spaces of q-spaces.

3. Complete metrizability and
some related completeness properties of Cps(X)

In this section, we study various kinds of completeness of Cps(X). In par-
ticular, here we study the complete metrizability of Cps(X) in a wider setting,
more precisely, in relation to several other completeness properties. So we first
recall the definitions of various kinds of completeness.

A space X is called Čech-complete if X is a Gδ-set in βX. A space X is called
locally Čech-complete if every point x ∈ X has a Čech-complete neighborhood.
Another completeness property which is implied by Čech-completeness is that
of pseudocompleteness, introduced in [35]. This is a space having a sequence of
π-bases

{
Bn : n ∈ N

}
such that whenever Bn ∈ Bn for each n and Bn+1 ⊆ Bn,

then
⋂{Bn : n ∈ N} �= ∅.

In [1], it has been shown that a space having a dense Čech-complete subspace
is pseudocomplete and a pseudocomplete space is a Baire space. Also note that
since a locally Baire space is a Baire space, every locally Čech-complete space is
a Baire space.

In order to deal with sieve-completeness, partition-completeness and almost
Čech-completeness, one needs to recall the definitions of these concepts from [29].
The central idea of all these concepts is that of a complete sequence of subsets
of X.
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Let F and U be two collections of subsets of X. Then F is said to be
controlled by U if for each U ∈ U , there exists some F ∈ F such that F ⊆ U .
A sequence (Un) of subsets of X is said to be complete if every filter base F
on X which is controlled by (Un) clusters at some x ∈ X. A sequence (Un) of
collections of subsets of X is called complete if (Un) is a complete sequence of
subsets of X whenever Un ∈ Un for all n. It has been shown in [13, Theorem 2.8]
that the following statements are equivalent for a Tychonoff space X:

(a) X is a Gδ-subset of any Hausdorff space in which it is densely embedded;
(b) X has a complete sequence of open covers;

(c) X is Čech-complete.

From this result, it easily follows that a Tychonoff space X is Čech-complete
if and only if X is a Gδ-subset of any Tychonoff space in which it is densely
embedded.

For the definitions of sieve, sieve-completeness and partition-completeness, see
[9], [29], and [30]. The term “sieve-complete” is due to M i c h a e l [27], but the
sieve-complete spaces were studied earlier under different names: as λb-spaces by
W i c k e in [45], as spaces satisfying condition K by W i c k e and W o r r e l J r .
in [46] and as monotonically Čech-complete spaces by C h a b e r , Č o b a n and
N a g a m i in [10]. Every space with a complete sequence of open covers is sieve-
complete; the converse is generally false, but it is true in paracompact spaces,
see [10, Remark 3.9] and [27, Theorem 3.2]. So a Čech-complete space is sieve-
complete and a paracompact sieve-complete space is Čech-complete.

We call a collection U of subsets of X an almost-cover of X if
⋃

U is dense
in X. We call a space almost Čech-complete if X has a complete sequence of
open almost-covers. Such a space has been simply called almost complete in [29].
Every almost Čech-complete space is a Baire space, see [29, Proposition 4.5].

The property of being a Baire space is the weakest one among the complete-
ness properties we consider here. Since Cps(X) is a locally convex space, Cps(X)
is a Baire space if and only if Cps(X) is of second category in itself. Also since
a locally convex Baire space is barreled, first we find a necessary condition for
Cps(X) to be barreled. A locally convex space X is called barreled (tonnelé) if
each barrel in X is a neighborhood of 0. A subset E in a locally convex space X
is called a barrel (tonneau) if E is closed, convex, balanced and absorbing in X.
The absorbing sets are also called absorbent. For details on barreled spaces,
see [34].

In order to state the next result, we need the following definition. A subset A
of a space X is called bounded or relatively pseudocompact if f(A) is bounded
in R for all f ∈ C(X). For detailed remarks on bounded subsets, see [20].
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�	��
�� 3.1� If Cps(X) is barreled, then every bounded subset of X is con-
tained in a pseudocompact subset of X.

P r o o f. Let A be a bounded subset of X and let W =
{
f ∈ C(X) : pA(f) ≤ 1

}
.

Then it is routine to check that W is closed, convex, balanced and absorbing,
that is, W is a barrel in Cps(X). Since Cps(X) is barreled, W is a neighborhood
of 0 and consequently there exist a closed pseudocompact subset P of X and
ε > 0 such that 〈0, P, ε〉 ⊆ W . We claim that A ⊆ P . If not, let x0 ∈ A \ P .
So there exists a continuous function f : X → [0, 2] such that f(x) = 0 for all
x ∈ P and f(x0) = 2. Clearly f ∈ 〈0, P, ε〉, but f /∈ W . Hence we must have
A ⊆ P . �
Example 3.2. If X is realcompact, then every closed pseudocompact subset of X

is compact and consequently the pseudocompact-open and compact-open topo-
logies on C(X) coincide. But by the famous Nachbin-Shirota theorem, Ck(X)
is barreled if X is realcompact, see [18, Theorem 5, p. 234]. Hence if X is real-
compact, then Cps(X) is barreled. In particular, since the Niemytzki plane L is
realcompact, (see [11, 3.11.B.(b), p. 219]), Cps(L) is barreled.

But there are spaces X such that Cps(X) is not barreled. Let D be the
Dieudonne plank with the underlying set [0, ω1] × [0, ω0] \ {(ω1, ω0)} where ω0

and ω1 denote respectively the first infinite and the first uncountable ordinal.
For the details of this plank, see [40, Example 89] and [23, Example 3.16]. Every
pseudocompact subset of D is compact. The subset C = {ω1}×[0, ω0) is bounded
in D, but it is not contained in any pseudocompact subset of D. Hence Cps(D)
is not barreled. In [42], T o d d constructed an example of a space T which has
an infinite bounded subset, but the pseudocompact subsets of which are finite.
So Cps(T ) is not barreled either.

�	��
�� 3.3� For any space X, the following assertions are equivalent.

(a) Cps(X) is completely metrizable.

(b) Cps(X) is Čech-complete.

(c) Cps(X) is locally Čech-complete.

(d) Cps(X) is sieve-complete.

(e) Cps(X) is an open continuous image of a paracompact Čech-complete space.

(f) Cps(X) is an open continuous image of a Čech-complete space.

(g) Cps(X) is partition-complete.

(h) X is a hemipseudocompact psf -space, (X is called hemipseudocompact if
there exists a sequence of pseudocompact sets {An : n ∈ N} in X such
that for any pseudocompact subset A of X, A ⊆ An holds for some n).
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P r o o f. We have earlier noted that Cps(X) is completely metrizable if and
only if it is uniformly complete and metrizable. Hence by [20, Theorem 5.7]
and by Theorem 2.2, (a) ⇐⇒ (h). Note that (a) =⇒ (b) =⇒ (c) and
(a) =⇒ (e) =⇒ (f). By [29, Proposition 4.4], (b) =⇒ (d) =⇒ (g). Also
(c) =⇒ (f), see [11, 3.12.19.(d), p. 237].

(f) =⇒ (a). A Čech-complete space is of pointwise countable type and
the property of being pointwise countable type is preserved by open continuous
maps. Hence Cps(X) is of pointwise countable type and consequently by [20,
Theorem 5.7], Cps(X) is metrizable and hence Cps(X) is paracompact. So by
Pasynkov’s theorem, (see [11, 5.5.8.(b), p. 341]), Cps(X) is Čech-complete. But
a Čech-complete metrizable space is completely metrizable.

(g) =⇒ (a). If Cps(X) is partition-complete, then by [29, Propositions 4.4
and 4.7], Cps(X) contains a dense Čech-complete subspace. Hence Cps(X) con-
tains a dense subspace of pointwise countable type and consequently by [20,
Theorem 5.7], Cps(X) is metrizable. But by [28, Theorem 1.5] and [29, Proposi-
tion 2.1], a metrizable space is completely metrizable if and only if it is partition-
complete. Hence Cps(X) is completely metrizable. �

Now we would like to extend the list of equivalent completeness proper-
ties given in Theorem 3.3, by including the pseudocompleteness and almost
Čech-completeness. In order to do this, first we need to embed the space
Cps(X) in a larger locally convex function space. Recall that R

X denotes
the set of all real-valued functions defined on X. Let PC(X) =

{
f ∈ R

X :
f |A is continuous for each pseudocompact subset A of X

}
. As in case of

Cps(X), we can define the pseudocompact-open topology on PC(X) in three dif-
ferent ways. In particular, this is a locally convex Hausdorff topology on PC(X)
generated by the family of seminorms {pA : A is a pseudocompact subset of X},
where for f ∈ PC(X), pA(f) is defined as follows : pA(f) = sup

{|f(x)| : x ∈ A
}
.

We denote the space PC(X) with the pseudocompact-open topology by
PCps(X). It is clear that Cps(X) is a subspace of PCps(X). Moreover the
proof of the following result is immediate.

�	��
�� 3.4� If every closed pseudocompact subset of X is C-embedded in X,
then C(X) is dense in PCps(X).

In the next theorem, the term σ-space refers to a space having a σ-locally
finite network. Every metrizable space is a σ-space.
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�	��
�� 3.5� For a space X, consider the following conditions.

(a) Cps(X) is completely metrizable.

(b) Cps(X) is a pseudocomplete σ-space.

(c) Cps(X) is a pseudocomplete q-space.

(d) Cps(X) contains a dense completely metrizable subspace.

(e) Cps(X) contains a dense Čech-complete subspace.

(f) Cps(X) is almost Čech-complete.

Then (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) ⇐⇒ (f).

P r o o f.
(a) =⇒ (b) and (d) =⇒ (e). These are immediate.
(b) =⇒ (c). A Baire space, which is a σ-space as well, has a dense metrizable

subspace, see [43]. So if Cps(X) is a pseudocomplete σ-space, then it contains a
dense metrizable space. Since every metrizable space is of pointwise countable
type, by [20, Theorem 5.7], Cps(X) is a q-space.

(c) =⇒ (d). If Cps(X) is a q-space, then by [20, Theorem 5.7], Cps(X) is
metrizable. But a metrizable space is pseudocomplete if and only if it contains
a dense completely metrizable subspace, see [1, Corollary in 2.4].

(e) ⇐⇒ (f) follows from [29, Propositions 4.4, 4.7]. �

Remark 3.6� If Cps(X) is only assumed to be pseudocomplete, it may not be
almost Čech-complete. Consider the non-discrete uncountable P -space S given
in [15, [4N]]. It can be easily shown that S is a normal space. Since every
pseudocompact subset of S is finite, the pseudocompact-open topology ps on
C(S) coincides with the point-open topology p on C(S). Since S is uncountable,
Cp(S) is not metrizable. But by [24, Theorem 8.4], Cp(S) is pseudocomplete,
since every countable subset in a P -space is closed. But since Cp(S) is not
metrizable, by [20, Theorem 5.7], it is not almost Čech-complete either.

�	��
�� 3.7� If every closed pseudocompact subset of X is C-embedded in X,
then the following assertions are equivalent.

(a) Cps(X) is completely metrizable.

(b) Cps(X) is almost Čech-complete.

(c) X is a hemipseudocompact psf -space.

P r o o f. We only need to show that (b) =⇒ (c). If Cps(X) is almost Čech-
complete, then Cps(X) contains a dense Čech-complete subspace G. Since every
closed pseudocompact subset of X is C-embedded in X, C(X) is dense in
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PCps(X) and consequently G is dense in PCps(X) also. Now since PCps(X)
contains a dense Baire subspace G, PCps(X) is itself a Baire space. Also since
G is Čech-complete, G is a Gδ-set in PCps(X).

Note that every ps-continuous function on X is in PCps(X). In order to
show that X is a psf -space, we will show that PC(X) = C(X). So let f ∈
PC(X). Define the map Tf : PCps(X) → PCps(X) by Tf (g) = f + g for all
g ∈ PC(X). Since PCps(X) is a locally convex space, Tf is a homeomorphism
and consequently Tf (G) is a dense Gδ-subset of PCps(X). Since PCps(X) is a
Baire space, G ∩ Tf (G) �= ∅. Let h ∈ G ∩ Tf (G). Then there exists g ∈ G such
that h = f + g. So f = g − h ∈ C(X). �
Remark 3.8� There is a family of Tychonoff spaces X, known as σ-functionally
normal spaces, in which every closed pseudocompact subset of X is C-embedded
in X. A space X is called σ-functionally normal if for any two disjoint closed
sets A and B in X, there is a sequence (fn) in C(X) such that if x ∈ A and
y ∈ B, then there exists n such that fn(x) �= fn(y). Obviously a normal space
is σ-functionally normal, but the converse need not be true. The Niemytzki
plane L and Tychonoff plank are σ-functionally normal, but not normal. Every
closed pseudocompact subset in a σ-functionally normal space is C-embedded.
For details on σ-functionally normal spaces, see [6].

Whenever X is an M -space, we can add more statements to the list in The-
orem 3.3. But in order to do that, we need to recall the following definitions.
A continuous map f : X → Y is called p-covering if, given any pseudocompact
subset A in Y , there exists a pseudocompact subset C in X such that A ⊆ f(C).
A space X is called a strongly Baire space if every closed subspace of X is a
Baire space.

A space X is hemicountably compact if there exists a sequence of countably
compact sets {An : n ∈ N} in X such that for any countably compact subset
A of X, A ⊆ An holds for some n. Since a closed subspace of an M -space
is again an M -space and a pseudocompact M -space is countably compact, (see
[39, Theorem 2]), every closed pseudocompact subset of an M -space is countably
compact. Consequently, it can be easily seen that an M -space is hemipseudo-
compact if and only if it is hemicountably compact.

�	��
�� 3.9� If X is an M -space, then the following assertions are equivalent.

(a) Cps(X) is completely metrizable.

(b) Cps(X) is metrizable.

(c) Cps(X) is a submetrizable strongly Baire space.

(d) X is locally countably compact as well as hemicountably compact.
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P r o o f.

(b) =⇒ (a). Since X is an M -space, X is a psf space and consequently
Cps(X) is (uniformly) complete. In addition, if Cps(X) is metrizable, it becomes
completely metrizable.

(a) =⇒ (c). This is immediate.

(c) =⇒ (d). Since X is an M -space, there exist a metric space M and a
quasi-perfect surjection f : X → M . Now let A be a pseudocompact, that is,
a compact subset of M . Hence by [11, Theorem 3.10.9], f−1(A) is countably
compact in X. Since f(f−1(A)) = A, f is a p-covering map. Hence by [20,
Theorem 4.7], f∗ : Cps(M ) → Cps(X) is an embedding. Here f∗(g) = g ◦ f for
all g in C(M ). Since f is a closed continuous surjection, it is a quotient map.
Hence by [26, Theorem 2.2.10], f∗(C(M )) is a closed subset of Cp(X). Hence
f∗(C(M )) is also closed in Cps(X). Since Cps(X) is a strongly Baire space,
f∗(C(M )) is a Baire subspace of Cps(X). But since f∗ is an embedding, Cps(M )
is also a Baire space. Now since M is a metric space, the pseudocompact-open
topology on C(M ) coincides with the compact-open topology on C(M ). Hence
Ck(M ) is a Baire space.

Now since Cps(X) is submetrizable, by [20, Theorem 5.4], there exists a se-

quence {An : n ∈ N} of pseudocompact subsets of X such that
∞⋃

n=1
An is dense

in X. Hence M = f(X) =
∞⋃

n=1
f(An). Since each f(An) is compact, by [25,

Theorem 3.1], Ck(M ) is submetrizable. Now since Ck(M ) is a submetrizable
Baire space, by [25, Theorem 7.2], M is a locally compact Lindelöf space. But a
locally compact Lindelöf space is hemicompact. Now it is routine to check that
X is locally countably compact as well as hemicountably compact.

(d) =⇒ (a). By Theorem 2.3, a locally countably compact space is a quasi-
k-space. But a quasi-k-space is a psf -space. �
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