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ABSTRACT. In this paper we define the sequence space �M (∆m, p, q, s) on a
seminormed complex linear space by using an Orlicz function. We study its differ-
ent algebraic and topological properties like solidness, symmetricity, monotonicity,
convergence free etc. We prove some inclusion relations involving �M (∆m, p, q, s).
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1. Introduction

Let �∞, c and c0 be the linear spaces of bounded, convergent and null sequences
x = (xk) with complex terms, respectively, normed by ‖x‖∞ = sup

k
|xk|, where

k ∈ N, the set of positive integers. Throughout the paper w(X), �∞(X), c(X)
and c0(X) denote class of all, bounded, convergent and null X-valued sequences,
where (X, q) is a seminormed space, seminormed by q. The zero sequence is
denoted by θ̄ = (θ, θ, . . . ), where θ is the zero element of X. These spaces
are seminormed spaces seminormed by g (x) = sup

k∈N

q (xk). For X = C, the set

of complex numbers, these represent the corresponding scalar valued sequence
spaces.

The idea of difference sequence sets was introduced by K i z m a z [7] and
this subject was generalized by E t and Ç o l a k [4]. After then the difference
sequence spaces have been studied by various mathematicians such as E t [3],
E t and N u r a y [5], M a l k o w s k y and P a r a s h a r [13], M u r s a l e e n [14],
T r i p a t h y [18], [19], T r i p a t h y et. al. [20].
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The study of Orlicz sequence spaces was initiated with a certain specific pur-
pose in Banach space theory. Indeed, L i n d b e r g [9] got interested in Orlicz
spaces in connection with finding Banach spaces with symmetric Schauder bases
having complementary subspaces isomorphic to c0 or �p (1 ≤ p < ∞). Subse-
quently L i n d e n s t r a u s s and T z a f r i r i [10] investigated Orlicz sequence
spaces in more detail and they proved that every Orlicz sequence space �M con-
tains a subspace isomorphic to �p (1 ≤ p < ∞).

P a r a s h a r and C h o u d h a r y [16] have introduced and discussed some
properties of the four sequence spaces defined by using an Orlicz function M ,
which generalized the sequence space �M and strongly summable sequence spaces
[C, 1, p], [C, 1, p]0 and [C, 1, p]∞. Later on different types of sequence spaces
were introduced by using an Orlicz function by B e k t a s and A l t i n [1],
T r i p a t h y [19], T r i p a t h y et al. [20], T r i p a t h y and M a h a n t a [21],
[22] and many others. The Orlicz sequence spaces are the special cases of Orlicz
spaces introduced in [8]. Orlicz spaces find a number of useful applications in
the theory of nonlinear integral equations. Whereas the Orlicz sequence spaces
are the generalizations of �p-spaces, the Lp-spaces find themselves enveloped in
Orlicz spaces.

The main purpose of this paper is to introduce and study the sequence space
�M (∆m, p, q, s) which arises from the notation of generalized difference operator
∆m and the concept of an Orlicz function.

2. Definitions and background

In this section, using the generalized difference operator ∆m and the con-
cept of an Orlicz function, we generalize the sequence space �M (p) which was
introduced by P a r a s h a r an C h o u d h a r y [16].

The difference sequence spaces, Z (∆) =
{
x = (xk) : ∆x ∈ Z

}
, where

Z = �∞, c and c0, were studied by K i z m a z [7]. The notion of difference
sequence spaces was generalized by E t and Ç o l a k [4] as follows:

Z (∆m) =
{
x = (xk) : (∆mxk) ∈ Z

}
,

for Z = �∞, c and c0, where m ∈ N, ∆mxk = ∆m−1xk − ∆m−1xk+1 and

so ∆mxk =
m∑

v=0
(−1)v

(
m
v

)
xk+v. These sequence spaces are BK-spaces with the

norm ‖x‖∆ =
m∑

i=1
|xi| + ‖∆mx‖∞.

It is trivial that the generalized difference operator ∆m is a linear operator.
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An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous,
non-decreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (x) → ∞,
as x → ∞ (for detail see K r a s n o s e l s k i i and R u t i c k i i [8]).

If the convexity of Orlicz function M is replaced by M (x+y) ≤ M (x)+M (y)
then this function is called modulus function, introduced by N a k a n o [15] and
further investigated by R u c k l e [17], M a d d o x [11], B i l g i n [2] and others.
L i n d e n s t r a u s s and T z a f r i r i [10] defined the sequence space �M such as:

�M =
{

x ∈ ω :
∞∑

k=1

M
(

|xk|
ρ

)
< ∞ for some ρ > 0

}
.

The space �M with the norm ‖x‖ = inf
{

ρ > 0 :
∞∑

k=1

M
(

|xk|
ρ

)
≤ 1

}
becomes

a Banach space which is called an Orlicz sequence space. For M (t) = tp,
1 ≤ p< ∞, the spaces �M coincide with the classical sequence spaces �p.

���������� 1� Let p = (pk) be a sequence of strictly positive real numbers, X
be a seminormed space with the seminorm q and M be an Orlicz function. We
define the sequence space �M (∆m, p, q, s) as follows:

�M (∆m, p, q, s) =
{

x∈w(X) :
∞∑

k=1

k−s
[
M

(
q
(

∆mxk

ρ

))]pk

< ∞, s≥0, ρ>0
}

.

We get the following sequence spaces from �M (∆m, p, q, s) on giving particular
values to p and s. Taking pk = 1 for all k ∈ N we have

�M (∆m, q, s) =
{

x ∈ w(X) :
∞∑

k=1

k−s
[
M

(
q
(

∆mxk

ρ

))]
< ∞, s ≥ 0, ρ > 0

}
.

If we take s = 0, then we have

�M (∆m, p, q) =
{

x ∈ w(X) :
∞∑

k=1

[
M

(
q
(

∆mxk

ρ

))]pk

< ∞, ρ > 0
}

.

If we take pk = 1 for all k ∈ N and s = 0, then we have

�M (∆m, q) =
{

x ∈ w(X) :
∞∑

k=1

[
M

(
q
(

∆mxk

ρ

))]
< ∞, ρ > 0

}
.

In addition to the above sequence spaces, we have �M (∆m, p, q, s) = �M (p) due
to P a r a s h a r and C h o u d h a r y [16], on taking m = 0, s = 0, q (x) = |x|
and X = C.

The sequence space �M (∆m, p, q, s) contains some unbounded sequences for
m ≥ 1. This is clear from the following example.

Example 1. Let X = C, s = 0, M (x) = x and q (x) = |x| and pk = 1 for all
k ∈ N. Let xk = km−1 for all k ∈ N. Then (xk) ∈ �M (∆m, p, q, s) and (xk) /∈ �∞.
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A sequence space E is said to be symmetric if
(
xπ(k)

) ∈ E, whenever (xk) ∈ E,
where π is a permutation of N.

A sequence space E is said to be convergence free if (yk) ∈ E, whenever
(xk) ∈ E and yk = θ when xk = θ.

A sequence space E is said to be solid (or normal) if (αkxk) ∈ E, whenever
(xk) ∈ E, for all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ N.

A sequence space E is said to be monotone if it contains the canonical pre-
images of all its step-spaces (see K a m t h a n and G u p t a [6, p. 48]).

Remark 1� It is well known that a sequence spaces E is normal implies that E
is monotone (see for instance K a m t h a n and G u p t a [6, p. 48]).

Remark 2� If M is a convex function and M (0) = 0, then M (λx) ≤ λM (x)
for all λ with 0 < λ < 1.

The following inequality will be used throughout this paper. Let p = (pk) be
a sequence of strictly positive real numbers with 0 < pk ≤ sup

k∈N

pk = G, and let

D = max{1, 2G−1}. Then for all ak, bk ∈ C, we have

|ak + bk|pk ≤ D
{|ak|pk + |bk|p

}
([12]). (1)

3. Main results

In this section we will prove the results of this article involving the sequence
space �M (∆m, p, q, s).

�	��
�� 1� The sequence space �M (∆m, p, q, s) is linear space over C.

P r o o f. Let x, y ∈ �M (∆m, p, q, s) and α, β ∈ C. Then there exist some positive
numbers ρ1 and ρ2 such that

∞∑
k=1

k−s

[
M

(
q

(
∆mxk

ρ1

))]pk

< ∞

and
∞∑

k=1

k−s

[
M

(
q

(
∆myk

ρ2

))]pk

< ∞.
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Define ρ3 = max
{
2|α|ρ1, 2|β|ρ2

}
. Since M is non-decreasing convex function, q

is a seminorm and ∆m is linear, we have

∞∑
k=1

k−s

[
M

(
q

(
∆m (αxk + βyk)

ρ3

))]pk

≤D

∞∑
k=1

k−s

[
M

(
q

(
∆mxk

ρ1

))]pk

+ D

∞∑
k=1

k−s

[
M

(
q

(
∆myk

ρ2

))]pk

< ∞.

This proves that �M (∆m, p, q, s) is linear space. �

�	��
�� 2� Let p = (pk) ∈ �∞ and s > 1. The sequence space �M (∆m, p, q, s)
is paranormed (not necessarily totally paranormed) space, paranormed by

g∆(x) =
m∑

k=1

q(xk) + inf
{

ρ
pn
H : M

(
q
(

∆mxk

ρ

))
≤ 1, n ∈ N

}
,

where H = max
{

1, sup
k∈N

pk

}
.

P r o o f. Clearly g∆(x) = g∆(−x). Let x = θ̄ ∈ �M (∆m, p, q, s). Then there
exist ρ1 > 0, ρ2 > 0 such that

M

(
q

(
∆mxk

ρ1

))
≤ 1 and M

(
q

(
∆myk

ρ2

))
≤ 1.

Let ρ = ρ1 + ρ2. Then we have

M

(
q

(
∆m(xk + yk)

ρ

))
= M

(
ρ1

ρ
q

(
∆mxk

ρ1

)
+

ρ2

ρ
q

(
∆myk

ρ2

))

≤ ρ1

ρ
M

(
q

(
∆mxk

ρ1

))
+

ρ2

ρ
M

(
q

(
∆myk

ρ2

))
≤ 1.

Hence

g∆(x + y) =
m∑

k=1

q(xk + yk) + inf
{
ρ

pn
H : M

(
q
(

∆m(xk+yk)
ρ

))
≤ 1, n ∈ N

}
,

≤
m∑

k=1

q(xk) +
m∑

k=1

q(yk) + inf
{

(ρ1+ρ2)
pn
H : M

(
q
(

∆mxk

ρ1

))
≤ 1,

M
(
q
(

∆myk

ρ2

))
≤ 1, n ∈ N

}
,

≤ g∆(x) + g∆(y) ρ = ρ1 + ρ2.
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Finally we prove that the scalar multiplication is continuous. Let λ be any
number. From the linearity of ∆m and the definition,

g∆(λx) =
m∑

k=1

q(λxk) + inf
{
ρ

pn
H : M

(
q
(

λ∆mxk

ρ

))
≤ 1, n ∈ N

}

= |λ|
m∑

k=1

q(xk) + inf
{

(|λ|r) pn
H : M

(
q
(

∆mxk

r

))
≤ 1, n ∈ N

}
,

where r = ρ
λ .

Now it can be easily verified that λ → 0 and x fixed implies g∆(λx) → 0;
λ fixed and x → θ̄ implies g∆(x) → 0 in �M (∆m, p, q, s); λ → 0 and x → θ̄
implies g∆(x) → 0 in �M (∆m, p, q, s). �

Remark 3� The space �M (∆m, p, q, s) will be a totally paranormed sequence
space if m = 0 and the seminorm q is replaced by a norm.

�	��
�� 3� Let M , M1, M2 be Orlicz functions and s, s1, s2 be non-negative
real numbers. Then we have

(i) �M1 (∆m, p, q, s)
⋂

�M2(∆m, p, q, s) ⊆ �M1+M2(∆m, p, q, s).
(ii) If s1 ≤ s2, then �M (∆m, p, q, s1) ⊆ �M (∆m, p, q, s2).

P r o o f.
(i) From (1) we have

k−s

[
(M1 + M2)

(
q

(
∆mxk

ρ

))]pk

= k−s

[
M1

(
q

(
∆mxk

ρ

))
+ M2

(
q

(
∆mxk

ρ

))]pk

≤Dk−s

[
M1

(
q

(
∆mxk

ρ

))]pk

+ Dk−s

[
M2

(
q

(
∆mxk

ρ

))]pk

.

Let x ∈ �M1(∆
m, p, q, s) ∩ �M2(∆

m, p, q, s); when adding the above inequality
from k = 1 to ∞, we get x ∈ �M1+M2(∆

m, p, q, s).
(ii) Let s1 ≤ s2 and x ∈ �M (∆m, p, q, s1). Since k−s2 ≤ k−s1 , we have

x ∈ �M (∆m, p, q, s2).
This completes the proof of Theorem 3. �

�	��
�� 4� Let m ≥ 1, then the inclusion �M (∆m−1, q, s) ⊂ �M (∆m, q, s) is
strict. In general �M (∆i, q, s) ⊂ �M (∆m, q, s) for all i = 0, 1, 2, . . . , m − 1 and
the inclusion is strict.
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P r o o f. Let x ∈ �M (∆m−1, q, s). Then we have
∞∑

k=1

k−s

[
M

(
q

(
∆m−1xk

ρ

))]
< ∞ (2)

for some ρ > 0. Since M is non-decreasing convex function and q is a seminorm,
we have

∞∑
k=1

k−s

[
M

(
q

(
∆mxk

2ρ

))]

=
∞∑

k=1

k−s

[
M

(
q

(
∆m−1xk − ∆m−1xk+1

2ρ

))]

≤
∞∑

k=1

k−s

[
1
2
M

(
q

(
∆m−1xk

ρ

))]
+

∞∑
k=1

k−s

[
1
2
M

(
q

(
∆m−1xk+1

ρ

))]

<∞, by (2).

Thus �M (∆m−1, q, s) ⊂ �M (∆m, q, s). Proceeding in this way one will have
�M (∆i, q, s) ⊂ �M (∆m, q, s) for all i = 0, 1, 2, . . . , m − 1. �

To show that the inclusion is strict, consider the following example.

Example 2. Let X = C, M (x) = xp, q (x) = |x|, s = 0. Consider the sequence
(xk) =

(
km−1

)
. Then (xk) ∈ �M (∆m, q, s), but (xk) /∈ �M (∆m−1, q, s) since

∆mxk = 0 and ∆m−1xk = (−1)m−1 (m − 1)! for all k ∈ N.

�	��
�� 5� The space �M (∆m, p, q, s) is not convergence free.

P r o o f. The result follows from the following example. �

Example 3. Let X = C, q (x) = |x|, M (x) = x, m = 1, s = 2, pk = 2 for all
k ∈ N. Consider the sequence (xk) defined by xk = 1 for k = 2n − 1, n ∈ N,
and xk = 0 otherwise. Then (xk) ∈ � (∆, 2, 2). Now consider the sequence
(yk) defined by yk = k for k = 2n − 1, n ∈ N, and yk = 0 otherwise. Then
(yk) /∈ � (∆, 2, 2). Hence � (∆, 2, 2) is not convergence free.

�	��
�� 6� The space �M (∆m, p, q, s) is not symmetric in general.

P r o o f. The result follows from the following example. �

Example 4. Let X = C, q (x) = |x|, M (x) = xp for p ≥ 1, m = 1, s = 2, pk = 2
for all k ∈ N. Consider the sequence (xk) defined by xk = k for all k ∈ N. Then
(xk) ∈ � (∆, 2, 2). Now consider the rearranged sequence (yk) of (xk) defined by

(yk) = (x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, . . . ) .

Then (yk) /∈ � (∆, 2, 2). Hence � (∆, 2, 2) is not symmetric.

321



BINOD CHANDRA TRIPATHY — YAVUZ ALTIN — MIKAIL ET

�	��
�� 7� Let 0 < pk ≤ tk < ∞ for each k ∈ N. Then �M (∆m, p, q) ⊆
�M (∆m, t, q).

P r o o f. Let x ∈ �M (∆m, p, q). Then there exists some ρ > 0 such that
∞∑

k=1

[
M

(
q

(
∆mxk

ρ

))]pk

< ∞.

This implies that M
(
q
(

∆mxk

ρ

))
≤ 1 for sufficiently large values of k, say k ≥ k0

for some fixed k0 ∈ N. Since pk ≤ tk for each k ∈ N, we get

M

(
q

(
∆mxk

ρ

))tk

≤ M

(
q

(
∆mxk

ρ

))pk

for all k ≥ k0 and therefore
∑
k≥k0

[
M

(
q

(
∆mxk

ρ

))]tk

≤
∑
k≥k0

[
M

(
q

(
∆mxk

ρ

))]pk

< ∞.

Hence x ∈ �M (∆m, t, q). �

The following result is a consequence of Theorem 7.

��
�

�
� 8�

(i) If 0 < pk ≤ 1 for each k ∈ N, then �M (∆m, p, q) ⊆ �M (∆m, q).
(ii) If pk ≥ 1 for all k ∈ N , then �M (∆m, q) ⊆ �M (∆m, p, q).

�
��������� 9� For any two sequences p = (pk) and t = (tk) of strictly posi-
tive real numbers and any two seminorms q1 and q2 we have �M (∆m, p, q1, r) ∩
�M (∆n, t, q2, s) 
= ∅ for all m, n ∈ N and r > 0, s > 0.

Remark 4� In general it becomes difficult to predict about the intersection
relation in the above result. For this consider the following examples.

Example 5. Let X = C, M (x) = xp for p ≥ 1, q1 (x) = |x| = q2 (x), n = 0,
m > 0, r > 2, s = 0. Let pk = 1 and tk = 2 + k−1 for all k ∈ N. Then
the sequence (xk) = (km) belongs to �M (∆m, p, q1, r), but does not belong to
�M = �M (∆n, t, q2, s).

Example 6. Let X = c0, m = n = 0, pk = tk = 1 for all k ∈ N, r = s = 0
and M (x) = x. Let the sequence x =

(
x(k)

)
where x(k) ∈ c0 for all k ∈ N

be defined by x(1) = x(2) = (1, 1, 0, 0, . . . ) and for k > 2, let x(k) =
(
x

(k)
i

)
=(

1, 1, 0, . . . , 0, k−2, 0, 0, . . .
)

where the k−2 appears at the kth place. Consider
the seminorms

q1

((
x

(k)
i

))
= sup

i∈N

|x(k)
i | and q2

((
x

(k)
i

))
= |x(k)

1 − x
(k)
2 | + sup

i>2
|x(k)

i |.
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Then q1

((
x(k)

))
= 1 for all k ∈ N and q2

((
x(k)

))
= k−2 for all k ∈ N. Thus(

x(k)
) ∈ �M (q1), but

(
x(k)

)
/∈ �M (q2).

�	��
�� 10� The sequence space �M (p, q, s) is solid.

P r o o f. Let (xk) ∈ �M (p, q, s), i.e.
∞∑

k=1

k−s

[
M

(
q

(
xk

ρ

))]pk

< ∞.

Let (αk) be sequence of scalars such that |αk| ≤ 1 for all k ∈ N. Then the result
follows from the following inequality

∞∑
k=1

k−s

[
M

(
q

(
αkxk

ρ

))]pk

≤
∞∑

k=1

k−s

[
M

(
q

(
xk

ρ

))]pk

.

�

Remark 5� In general it is difficult to predict about the solidity of �M (∆m, p, q, s)
when m > 0. For this consider the following example.

Example 7. Let m = 1 and pk = 1 for all k ∈ N, M (x) = x and q (x) = |x| for
all x ∈ C and s = 0. Then (xk) =

(
k−1

) ∈ �M (∆) but (αkxk) /∈ �M (∆) when
αk = (−1)k for all k ∈ N. Hence �M (∆) is not solid.

We have the following result in view of Remark 2 and Theorem 10.

��
�

�
� 11� The sequence space �M (p, q, s) is monotone.
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