

DOI: 10.2478/s12175-008-0077-0 Math. Slovaca **58** (2008), No. 3, 315–324

GENERALIZED DIFFERENCE SEQUENCE SPACES ON SEMINORMED SPACE DEFINED BY ORLICZ FUNCTIONS

BINOD CHANDRA TRIPATHY* — YAVUZ ALTIN** — MIKAIL ET**

(Communicated by Pavel Kostyrko)

ABSTRACT. In this paper we define the sequence space ℓ_M (Δ^m, p, q, s) on a seminormed complex linear space by using an Orlicz function. We study its different algebraic and topological properties like solidness, symmetricity, monotonicity, convergence free etc. We prove some inclusion relations involving ℓ_M (Δ^m, p, q, s).

©2008 Mathematical Institute Slovak Academy of Sciences

1. Introduction

Let ℓ_{∞} , c and c_0 be the linear spaces of bounded, convergent and null sequences $x=(x_k)$ with complex terms, respectively, normed by $\|x\|_{\infty}=\sup_k |x_k|$, where $k\in\mathbb{N}$, the set of positive integers. Throughout the paper w(X), $\ell_{\infty}(X)$, c(X) and $c_0(X)$ denote class of all, bounded, convergent and null X-valued sequences, where (X,q) is a seminormed space, seminormed by q. The zero sequence is denoted by $\bar{\theta}=(\theta,\theta,\dots)$, where θ is the zero element of X. These spaces are seminormed spaces seminormed by $g(x)=\sup_{k\in\mathbb{N}}q(x_k)$. For $X=\mathbb{C}$, the set of complex numbers, these represent the corresponding scalar valued sequence spaces.

The idea of difference sequence sets was introduced by Kizmaz [7] and this subject was generalized by Et and Çolak [4]. After then the difference sequence spaces have been studied by various mathematicians such as Et [3], Et and Nuray [5], Malkowsky and Parashar [13], Mursaleen [14], Tripathy [18], [19], Tripathy et. al. [20].

 $2000 \; \text{Mathematics Subject Classification: Primary 40C05, 46A45}.$

Keywords: Orlicz function, difference sequence, solid space, symmetric space, sequence algebra.

The study of Orlicz sequence spaces was initiated with a certain specific purpose in Banach space theory. Indeed, Lindberg [9] got interested in Orlicz spaces in connection with finding Banach spaces with symmetric Schauder bases having complementary subspaces isomorphic to c_0 or ℓ_p ($1 \le p < \infty$). Subsequently Lindenstrauss and Tzafriri [10] investigated Orlicz sequence spaces in more detail and they proved that every Orlicz sequence space ℓ_M contains a subspace isomorphic to ℓ_p ($1 \le p < \infty$).

Parashar and Choudhary [16] have introduced and discussed some properties of the four sequence spaces defined by using an Orlicz function M, which generalized the sequence space ℓ_M and strongly summable sequence spaces $[C,1,p], [C,1,p]_0$ and $[C,1,p]_{\infty}$. Later on different types of sequence spaces were introduced by using an Orlicz function by Bektas and Altin [1], Tripathy [19], Tripathy et al. [20], Tripathy and Mahanta [21], [22] and many others. The Orlicz sequence spaces are the special cases of Orlicz spaces introduced in [8]. Orlicz spaces find a number of useful applications in the theory of nonlinear integral equations. Whereas the Orlicz sequence spaces are the generalizations of ℓ_p -spaces, the L_p -spaces find themselves enveloped in Orlicz spaces.

The main purpose of this paper is to introduce and study the sequence space $\ell_M(\Delta^m, p, q, s)$ which arises from the notation of generalized difference operator Δ^m and the concept of an Orlicz function.

2. Definitions and background

In this section, using the generalized difference operator Δ^m and the concept of an Orlicz function, we generalize the sequence space $\ell_M(p)$ which was introduced by Parashar an Choudhary [16].

The difference sequence spaces, $Z(\Delta) = \{x = (x_k) : \Delta x \in Z\}$, where $Z = \ell_{\infty}$, c and c_0 , were studied by Kizmaz [7]. The notion of difference sequence spaces was generalized by Et and Çolak [4] as follows:

$$Z(\Delta^m) = \{ x = (x_k) : (\Delta^m x_k) \in Z \},\$$

for $Z = \ell_{\infty}$, c and c_0 , where $m \in \mathbb{N}$, $\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$ and so $\Delta^m x_k = \sum_{v=0}^m (-1)^v \binom{m}{v} x_{k+v}$. These sequence spaces are BK-spaces with the norm $\|x\|_{\Delta} = \sum_{i=1}^m |x_i| + \|\Delta^m x\|_{\infty}$.

It is trivial that the generalized difference operator Δ^m is a linear operator.

GENERALIZED DIFFERENCE SEQUENCE SPACES ON SEMINORMED SPACE

An Orlicz function is a function $M: [0, \infty) \to [0, \infty)$ which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$, as $x \to \infty$ (for detail see Krasnoselskii and Rutickii [8]).

If the convexity of Orlicz function M is replaced by $M(x+y) \leq M(x) + M(y)$ then this function is called modulus function, introduced by Nakano [15] and further investigated by Ruckle [17], Maddox [11], Bilgin [2] and others. Lindenstrauss and Tzafriri [10] defined the sequence space ℓ_M such as:

$$\ell_M = \left\{ x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0 \right\}.$$

The space ℓ_M with the norm $||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}$ becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p$, $1 \le p < \infty$, the spaces ℓ_M coincide with the classical sequence spaces ℓ_p .

DEFINITION 1. Let $p = (p_k)$ be a sequence of strictly positive real numbers, X be a seminormed space with the seminorm q and M be an Orlicz function. We define the sequence space $\ell_M(\Delta^m, p, q, s)$ as follows:

$$\ell_M(\Delta^m,p,q,s) = \left\{ x \in w(X) : \sum_{k=1}^{\infty} k^{-s} \left[M\left(q\left(\frac{\Delta^m x_k}{\rho}\right)\right) \right]^{p_k} < \infty, \ s \ge 0, \ \rho > 0 \right\}.$$

We get the following sequence spaces from $\ell_M(\Delta^m, p, q, s)$ on giving particular values to p and s. Taking $p_k = 1$ for all $k \in \mathbb{N}$ we have

$$\ell_M(\Delta^m, q, s) = \left\{ x \in w(X) : \sum_{k=1}^{\infty} k^{-s} \left[M\left(q\left(\frac{\Delta^m x_k}{\rho}\right)\right) \right] < \infty, \ s \ge 0, \ \rho > 0 \right\}.$$

If we take s = 0, then we have

$$\ell_M(\Delta^m, p, q) = \left\{ x \in w(X) : \sum_{k=1}^{\infty} \left[M\left(q\left(\frac{\Delta^m x_k}{\rho}\right)\right) \right]^{p_k} < \infty, \ \rho > 0 \right\}.$$

If we take $p_k = 1$ for all $k \in \mathbb{N}$ and s = 0, then we have

$$\ell_M(\Delta^m, q) = \left\{ x \in w(X) : \sum_{k=1}^{\infty} \left[M\left(q\left(\frac{\Delta^m x_k}{\rho}\right)\right) \right] < \infty, \ \rho > 0 \right\}.$$

In addition to the above sequence spaces, we have $\ell_M(\Delta^m, p, q, s) = \ell_M(p)$ due to Parashar and Choudhary [16], on taking m = 0, s = 0, q(x) = |x| and $X = \mathbb{C}$.

The sequence space $\ell_M(\Delta^m, p, q, s)$ contains some unbounded sequences for $m \geq 1$. This is clear from the following example.

Example 1. Let $X = \mathbb{C}$, s = 0, M(x) = x and q(x) = |x| and $p_k = 1$ for all $k \in \mathbb{N}$. Let $x_k = k^{m-1}$ for all $k \in \mathbb{N}$. Then $(x_k) \in \ell_M(\Delta^m, p, q, s)$ and $(x_k) \notin \ell_\infty$.

BINOD CHANDRA TRIPATHY — YAVUZ ALTIN — MIKAIL ET

A sequence space E is said to be *symmetric* if $(x_{\pi(k)}) \in E$, whenever $(x_k) \in E$, where π is a permutation of \mathbb{N} .

A sequence space E is said to be convergence free if $(y_k) \in E$, whenever $(x_k) \in E$ and $y_k = \theta$ when $x_k = \theta$.

A sequence space E is said to be *solid* (or *normal*) if $(\alpha_k x_k) \in E$, whenever $(x_k) \in E$, for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$.

A sequence space E is said to be *monotone* if it contains the canonical preimages of all its step-spaces (see Kamthan and Gupta [6, p. 48]).

Remark 1. It is well known that a sequence spaces E is normal implies that E is monotone (see for instance K a m t h a n and G u p t a [6, p. 48]).

Remark 2. If M is a convex function and M(0) = 0, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

The following inequality will be used throughout this paper. Let $p = (p_k)$ be a sequence of strictly positive real numbers with $0 < p_k \le \sup_{k \in \mathbb{N}} p_k = G$, and let

 $D = \max\{1, 2^{G-1}\}$. Then for all $a_k, b_k \in \mathbb{C}$, we have

$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^p\} \qquad ([12]). \tag{1}$$

3. Main results

In this section we will prove the results of this article involving the sequence space $\ell_M(\Delta^m, p, q, s)$.

Theorem 1. The sequence space $\ell_M(\Delta^m, p, q, s)$ is linear space over \mathbb{C} .

Proof. Let $x, y \in \ell_M(\Delta^m, p, q, s)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist some positive numbers ρ_1 and ρ_2 such that

$$\sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\Delta^m x_k}{\rho_1} \right) \right) \right]^{p_k} < \infty$$

and

$$\sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\Delta^m y_k}{\rho_2} \right) \right) \right]^{p_k} < \infty.$$

GENERALIZED DIFFERENCE SEQUENCE SPACES ON SEMINORMED SPACE

Define $\rho_3 = \max\{2|\alpha|\rho_1, 2|\beta|\rho_2\}$. Since M is non-decreasing convex function, q is a seminorm and Δ^m is linear, we have

$$\begin{split} &\sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\Delta^m \left(\alpha x_k + \beta y_k \right)}{\rho_3} \right) \right) \right]^{p_k} \\ &\leq D \sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\Delta^m x_k}{\rho_1} \right) \right) \right]^{p_k} + D \sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\Delta^m y_k}{\rho_2} \right) \right) \right]^{p_k} < \infty. \end{split}$$

This proves that $\ell_M(\Delta^m, p, q, s)$ is linear space.

THEOREM 2. Let $p = (p_k) \in \ell_{\infty}$ and s > 1. The sequence space $\ell_M(\Delta^m, p, q, s)$ is paranormed (not necessarily totally paranormed) space, paranormed by

$$g_{\Delta}(x) = \sum_{k=1}^{m} q(x_k) + \inf \left\{ \rho^{\frac{p_n}{H}} : M\left(q\left(\frac{\Delta^m x_k}{\rho}\right)\right) \le 1, \ n \in \mathbb{N} \right\},$$

where $H = \max \{1, \sup_{k \in \mathbb{N}} p_k \}$.

Proof. Clearly $g_{\Delta}(x) = g_{\Delta}(-x)$. Let $x = \bar{\theta} \in \ell_M(\Delta^m, p, q, s)$. Then there exist $\rho_1 > 0, \, \rho_2 > 0$ such that

$$M\left(q\left(\frac{\Delta^m x_k}{\rho_1}\right)\right) \le 1$$
 and $M\left(q\left(\frac{\Delta^m y_k}{\rho_2}\right)\right) \le 1$.

Let $\rho = \rho_1 + \rho_2$. Then we have

$$\begin{split} M\left(q\left(\frac{\Delta^m(x_k+y_k)}{\rho}\right)\right) &= M\left(\frac{\rho_1}{\rho}q\left(\frac{\Delta^mx_k}{\rho_1}\right) + \frac{\rho_2}{\rho}q\left(\frac{\Delta^my_k}{\rho_2}\right)\right) \\ &\leq \frac{\rho_1}{\rho}M\left(q\left(\frac{\Delta^mx_k}{\rho_1}\right)\right) + \frac{\rho_2}{\rho}M\left(q\left(\frac{\Delta^my_k}{\rho_2}\right)\right) \leq 1. \end{split}$$

Hence

$$g_{\Delta}(x+y) = \sum_{k=1}^{m} q(x_k + y_k) + \inf\left\{\rho^{\frac{p_n}{H}}: M\left(q\left(\frac{\Delta^m(x_k + y_k)}{\rho}\right)\right) \le 1, n \in \mathbb{N}\right\},$$

$$\le \sum_{k=1}^{m} q(x_k) + \sum_{k=1}^{m} q(y_k) + \inf\left\{\left(\rho_{1+}\rho_{2}\right)^{\frac{p_n}{H}}: M\left(q\left(\frac{\Delta^m x_k}{\rho_{1}}\right)\right) \le 1, n \in \mathbb{N}\right\},$$

$$M\left(q\left(\frac{\Delta^m y_k}{\rho_{2}}\right)\right) \le 1, n \in \mathbb{N},$$

$$\le g_{\Delta}(x) + g_{\Delta}(y) \qquad \rho = \rho_{1} + \rho_{2}.$$

Finally we prove that the scalar multiplication is continuous. Let λ be any number. From the linearity of Δ^m and the definition,

$$g_{\Delta}(\lambda x) = \sum_{k=1}^{m} q(\lambda x_k) + \inf \left\{ \rho^{\frac{p_n}{H}} : M\left(q\left(\frac{\lambda \Delta^m x_k}{\rho}\right)\right) \le 1, \ n \in \mathbb{N} \right\}$$
$$= |\lambda| \sum_{k=1}^{m} q(x_k) + \inf \left\{ (|\lambda| r)^{\frac{p_n}{H}} : M\left(q\left(\frac{\Delta^m x_k}{r}\right)\right) \le 1, \ n \in \mathbb{N} \right\},$$

where $r = \frac{\rho}{\lambda}$.

Now it can be easily verified that $\lambda \to 0$ and x fixed implies $g_{\Delta}(\lambda x) \to 0$; λ fixed and $x \to \bar{\theta}$ implies $g_{\Delta}(x) \to 0$ in $\ell_M(\Delta^m, p, q, s)$; $\lambda \to 0$ and $x \to \bar{\theta}$ implies $g_{\Delta}(x) \to 0$ in $\ell_M(\Delta^m, p, q, s)$.

Remark 3. The space $\ell_M(\Delta^m, p, q, s)$ will be a totally paranormed sequence space if m = 0 and the seminorm q is replaced by a norm.

THEOREM 3. Let M, M_1 , M_2 be Orlicz functions and s, s_1 , s_2 be non-negative real numbers. Then we have

- (i) $\ell_{M_1}(\Delta^m, p, q, s) \cap \ell_{M_2}(\Delta^m, p, q, s) \subseteq \ell_{M_1 + M_2}(\Delta^m, p, q, s)$.
- (ii) If $s_1 \leq s_2$, then $\ell_M(\Delta^m, p, q, s_1) \subseteq \ell_M(\Delta^m, p, q, s_2)$.

Proof.

(i) From (1) we have

$$k^{-s} \left[(M_1 + M_2) \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right]^{p_k}$$

$$= k^{-s} \left[M_1 \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) + M_2 \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right]^{p_k}$$

$$\leq Dk^{-s} \left[M_1 \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right]^{p_k} + Dk^{-s} \left[M_2 \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right]^{p_k}.$$

Let $x \in \ell_{M_1}(\Delta^m, p, q, s) \cap \ell_{M_2}(\Delta^m, p, q, s)$; when adding the above inequality from k = 1 to ∞ , we get $x \in \ell_{M_1 + M_2}(\Delta^m, p, q, s)$.

(ii) Let $s_1 \leq s_2$ and $x \in \ell_M(\Delta^m, p, q, s_1)$. Since $k^{-s_2} \leq k^{-s_1}$, we have $x \in \ell_M(\Delta^m, p, q, s_2)$.

This completes the proof of Theorem 3.

THEOREM 4. Let $m \geq 1$, then the inclusion $\ell_M(\Delta^{m-1}, q, s) \subset \ell_M(\Delta^m, q, s)$ is strict. In general $\ell_M(\Delta^i, q, s) \subset \ell_M(\Delta^m, q, s)$ for all i = 0, 1, 2, ..., m-1 and the inclusion is strict.

Proof. Let $x \in \ell_M(\Delta^{m-1}, q, s)$. Then we have

$$\sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\Delta^{m-1} x_k}{\rho} \right) \right) \right] < \infty \tag{2}$$

for some $\rho > 0$. Since M is non-decreasing convex function and q is a seminorm, we have

$$\sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\Delta^m x_k}{2\rho} \right) \right) \right]$$

$$= \sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}}{2\rho} \right) \right) \right]$$

$$\leq \sum_{k=1}^{\infty} k^{-s} \left[\frac{1}{2} M \left(q \left(\frac{\Delta^{m-1} x_k}{\rho} \right) \right) \right] + \sum_{k=1}^{\infty} k^{-s} \left[\frac{1}{2} M \left(q \left(\frac{\Delta^{m-1} x_{k+1}}{\rho} \right) \right) \right]$$

$$< \infty, \quad \text{by (2)}.$$

Thus $\ell_M(\Delta^{m-1}, q, s) \subset \ell_M(\Delta^m, q, s)$. Proceeding in this way one will have $\ell_M(\Delta^i, q, s) \subset \ell_M(\Delta^m, q, s)$ for all i = 0, 1, 2, ..., m - 1.

To show that the inclusion is strict, consider the following example.

Example 2. Let $X = \mathbb{C}$, $M(x) = x^p$, q(x) = |x|, s = 0. Consider the sequence $(x_k) = (k^{m-1})$. Then $(x_k) \in \ell_M(\Delta^m, q, s)$, but $(x_k) \notin \ell_M(\Delta^{m-1}, q, s)$ since $\Delta^m x_k = 0$ and $\Delta^{m-1} x_k = (-1)^{m-1} (m-1)!$ for all $k \in \mathbb{N}$.

THEOREM 5. The space $\ell_M(\Delta^m, p, q, s)$ is not convergence free.

Proof. The result follows from the following example. \Box

Example 3. Let $X = \mathbb{C}$, q(x) = |x|, M(x) = x, m = 1, s = 2, $p_k = 2$ for all $k \in \mathbb{N}$. Consider the sequence (x_k) defined by $x_k = 1$ for k = 2n - 1, $n \in \mathbb{N}$, and $x_k = 0$ otherwise. Then $(x_k) \in \ell(\Delta, 2, 2)$. Now consider the sequence (y_k) defined by $y_k = k$ for k = 2n - 1, $n \in \mathbb{N}$, and $y_k = 0$ otherwise. Then $(y_k) \notin \ell(\Delta, 2, 2)$. Hence $\ell(\Delta, 2, 2)$ is not convergence free.

Theorem 6. The space $\ell_M(\Delta^m, p, q, s)$ is not symmetric in general.

Proof. The result follows from the following example.

Example 4. Let $X = \mathbb{C}$, q(x) = |x|, $M(x) = x^p$ for $p \ge 1$, m = 1, s = 2, $p_k = 2$ for all $k \in \mathbb{N}$. Consider the sequence (x_k) defined by $x_k = k$ for all $k \in \mathbb{N}$. Then $(x_k) \in \ell(\Delta, 2, 2)$. Now consider the rearranged sequence (y_k) of (x_k) defined by

$$(y_k) = (x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10}, \dots)$$

Then $(y_k) \notin \ell(\Delta, 2, 2)$. Hence $\ell(\Delta, 2, 2)$ is not symmetric.

THEOREM 7. Let $0 < p_k \le t_k < \infty$ for each $k \in \mathbb{N}$. Then $\ell_M(\Delta^m, p, q) \subseteq \ell_M(\Delta^m, t, q)$.

Proof. Let $x \in \ell_M(\Delta^m, p, q)$. Then there exists some $\rho > 0$ such that

$$\sum_{k=1}^{\infty} \left[M \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right]^{p_k} < \infty.$$

This implies that $M\left(q\left(\frac{\Delta^m x_k}{\rho}\right)\right) \leq 1$ for sufficiently large values of k, say $k \geq k_0$ for some fixed $k_0 \in \mathbb{N}$. Since $p_k \leq t_k$ for each $k \in \mathbb{N}$, we get

$$M\left(q\left(\frac{\Delta^m x_k}{\rho}\right)\right)^{t_k} \le M\left(q\left(\frac{\Delta^m x_k}{\rho}\right)\right)^{p_k}$$

for all $k \geq k_0$ and therefore

$$\sum_{k > k_0} \left[M \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right]^{t_k} \le \sum_{k > k_0} \left[M \left(q \left(\frac{\Delta^m x_k}{\rho} \right) \right) \right]^{p_k} < \infty.$$

Hence $x \in \ell_M(\Delta^m, t, q)$.

The following result is a consequence of Theorem 7.

COROLLARY 8.

- (i) If $0 < p_k \le 1$ for each $k \in \mathbb{N}$, then $\ell_M(\Delta^m, p, q) \subseteq \ell_M(\Delta^m, q)$.
- (ii) If $p_k \ge 1$ for all $k \in \mathbb{N}$, then $\ell_M(\Delta^m, q) \subseteq \ell_M(\Delta^m, p, q)$.

PROPOSITION 9. For any two sequences $p=(p_k)$ and $t=(t_k)$ of strictly positive real numbers and any two seminorms q_1 and q_2 we have $\ell_M(\Delta^m, p, q_1, r) \cap \ell_M(\Delta^n, t, q_2, s) \neq \emptyset$ for all $m, n \in \mathbb{N}$ and r > 0, s > 0.

Remark 4. In general it becomes difficult to predict about the intersection relation in the above result. For this consider the following examples.

Example 5. Let $X = \mathbb{C}$, $M(x) = x^p$ for $p \ge 1$, $q_1(x) = |x| = q_2(x)$, n = 0, m > 0, r > 2, s = 0. Let $p_k = 1$ and $t_k = 2 + k^{-1}$ for all $k \in \mathbb{N}$. Then the sequence $(x_k) = (k^m)$ belongs to $\ell_M(\Delta^m, p, q_1, r)$, but does not belong to $\ell_M = \ell_M(\Delta^n, t, q_2, s)$.

Example 6. Let $X = c_0$, m = n = 0, $p_k = t_k = 1$ for all $k \in \mathbb{N}$, r = s = 0 and M(x) = x. Let the sequence $x = (x^{(k)})$ where $x^{(k)} \in c_0$ for all $k \in \mathbb{N}$ be defined by $x^{(1)} = x^{(2)} = (1, 1, 0, 0, \dots)$ and for k > 2, let $x^{(k)} = (x_i^{(k)}) = (1, 1, 0, \dots, 0, k^{-2}, 0, 0, \dots)$ where the k^{-2} appears at the kth place. Consider the seminorms

$$q_1\left(\left(x_i^{(k)}\right)\right) = \sup_{i \in \mathbb{N}} |x_i^{(k)}| \quad \text{and} \quad q_2\left(\left(x_i^{(k)}\right)\right) = |x_1^{(k)} - x_2^{(k)}| + \sup_{i>2} |x_i^{(k)}|.$$

Then $q_1((x^{(k)})) = 1$ for all $k \in \mathbb{N}$ and $q_2((x^{(k)})) = k^{-2}$ for all $k \in \mathbb{N}$. Thus $(x^{(k)}) \in \ell_M(q_1)$, but $(x^{(k)}) \notin \ell_M(q_2)$.

THEOREM 10. The sequence space $\ell_M(p,q,s)$ is solid.

Proof. Let $(x_k) \in \ell_M(p,q,s)$, i.e.

$$\sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{x_k}{\rho} \right) \right) \right]^{p_k} < \infty.$$

Let (α_k) be sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Then the result follows from the following inequality

$$\sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{\alpha_k x_k}{\rho} \right) \right) \right]^{p_k} \le \sum_{k=1}^{\infty} k^{-s} \left[M \left(q \left(\frac{x_k}{\rho} \right) \right) \right]^{p_k}.$$

Remark 5. In general it is difficult to predict about the solidity of $\ell_M(\Delta^m, p, q, s)$ when m > 0. For this consider the following example.

Example 7. Let m=1 and $p_k=1$ for all $k \in \mathbb{N}$, M(x)=x and q(x)=|x| for all $x \in \mathbb{C}$ and s=0. Then $(x_k)=(k^{-1})\in \ell_M(\Delta)$ but $(\alpha_k x_k) \notin \ell_M(\Delta)$ when $\alpha_k=(-1)^k$ for all $k \in \mathbb{N}$. Hence $\ell_M(\Delta)$ is not solid.

We have the following result in view of Remark 2 and Theorem 10.

Corollary 11. The sequence space $\ell_M(p,q,s)$ is monotone.

Acknowledgement. The authors thank the referees for their comments.

REFERENCES

- [1] BEKTAS, C.—ALTIN, Y.: The sequence space ℓ_M (p,q,s) on seminormed spaces, Indian J. Pure Appl. Math. **34** (2003), 529–534.
- [2] BILGIN, T.: The sequence space $\ell(p,f,q,s)$ on seminormed spaces, Bull. Calcutta Math. Soc. **86** (1994), 295–304.
- [3] ET, M.: On some topological properties of generalized difference sequence spaces, Int. J. Math. Math. Sci. 24 (2000), 785-791.
- [4] ET, M.—ÇOLAK, R.: On some generalized difference sequence spaces, Soochow J. Math. **21** (1995), 377–386.
- [5] ET, M.—NURAY, F.: Δ^m -Statistical convergence, Indian J. Pure Appl. Math. **32** (2001), 961–969.
- [6] KAMTHAN, P. K.—GUPTA, M.: Sequence spaces and series. Lecture Notes in Pure and Appl. Math. 65, Marcel Dekker, Inc., New York, 1981.
- [7] KIZMAZ, H.: On certain sequence spaces, Canad. Math. Bull 24 (1981), 169-176.
- [8] KRASNOSELSKII, M. A.—RUTICKII, Y. B.: Convex Functions and Orlicz Spaces, Groningen, Netherlands, 1961.

BINOD CHANDRA TRIPATHY — YAVUZ ALTIN — MIKAIL ET

- [9] LINDBERG, K.: On subspaces of Orlicz sequence spaces, Studia Math. 45 (1973), 119–146.
- [10] LINDENSTRAUSS, J.—TZAFRIRI, L.: On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379–390.
- [11] MADDOX, I. J.: Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161–166.
- [12] MADDOX, I. J.: Elements of Functional Analysis, Cambridge Univ. Press, Cambridge, 1970.
- [13] MALKOWSKY, E.—PARASHAR, S. D.: Matrix transformations in spaces of bounded convergent and difference sequences of order m, Analysis (Munich) 17 (1997), 87–97.
- [14] MURSALEEN, M.: Generalized spaces of difference sequences, J. Math. Anal. Appl. 203 (1996), 738–745.
- [15] NAKANO, H.: Concave modulars, J. Math. Soc. Japan 5 (1953), 29-49.
- [16] PARASHAR, S. D.—CHOUDHARY, B.: Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1994), 419–428.
- [17] RUCKLE, W. H.: FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.
- [18] TRIPATHY, B. C.: On generalized difference paranormed statistically convergent sequences, Indian J. Pure Appl. Math. 35 (2004), 655–663.
- [19] TRIPATHY, B. C.: Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex space, Soochow J. Math. 30 (2004), 431–446.
- [20] TRIPATHY, B. C.—ET, M.—ALTIN, Y.: Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Anal. Appl. 1 (2003), 175–192.
- [21] TRIPATHY, B. C.—MAHANTA, S.: On a class of sequences related to the l^p spaces defined by Orlicz functions, Soochow J. Math. 29 (2003), 379–391.
- [22] TRIPATHY, B. C.—MAHANTA, S.: On a class of generalized lacunary difference sequence spaces defined by Orlicz functions, Acta Math. Appl. Sinica (English Ser.) 20 (2004), 231–238.

Received 7. 9. 2006 Revised 16. 11. 2006 *Mathematical Sciences Division Institue of Advanced Study in Science and Technology Paschim Baragoan, Garchuk Guwahati-781 035 INDIA

 $\begin{tabular}{ll} E-mail: tripathybc@yahoo.com \\ tripathybc@rediffmail.com \end{tabular}$

** Department of Mathematics Firat University 23119, Elazig TURKEY

 $E\text{-}mail: \ yaltin 23@yahoo.com} \\ \text{mikailet @yahoo.com}$