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ON SEMINORMED SPACE
DEFINED BY ORLICZ FUNCTIONS

BinoD CHANDRA TRIPATHY* — YAVUZ ALTIN*®* — MIKAIL ET**

(Communicated by Pavel Kostyrko)

ABSTRACT. In this paper we define the sequence space £j; (A™,p,q,s) on a

seminormed complex linear space by using an Orlicz function. We study its differ-

ent algebraic and topological properties like solidness, symmetricity, monotonicity,

convergence free etc. We prove some inclusion relations involving £5; (A™,p,q, s).
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1. Introduction

Let o, c and ¢q be the linear spaces of bounded, convergent and null sequences
x = (z1) with complex terms, respectively, normed by ||z|ec = sup |z|, where
k

k € N, the set of positive integers. Throughout the paper w(X), £oo(X), ¢(X)

and co(X) denote class of all, bounded, convergent and null X-valued sequences,

where (X, q) is a seminormed space, seminormed by ¢. The zero sequence is

denoted by 6 = (6,6,...), where 6 is the zero element of X. These spaces

are seminormed spaces seminormed by ¢ () = supgq (x). For X = C, the set
keN

of complex numbers, these represent the corresponding scalar valued sequence
spaces.

The idea of difference sequence sets was introduced by Kizmaz [7] and
this subject was generalized by Et and Colak [4]. After then the difference
sequence spaces have been studied by various mathematicians such as Et [3],
Et and Nuray [5], Malkowsky and Parashar [13], Mursaleen [14],
Tripathy [18],[19], Tripathy et. al. [20].
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The study of Orlicz sequence spaces was initiated with a certain specific pur-
pose in Banach space theory. Indeed, Lindberg [9] got interested in Orlicz
spaces in connection with finding Banach spaces with symmetric Schauder bases
having complementary subspaces isomorphic to ¢y or ¢, (1 < p < 00). Subse-
quently Lindenstrauss and Tzafriri [10] investigated Orlicz sequence
spaces in more detail and they proved that every Orlicz sequence space £j; con-
tains a subspace isomorphic to £, (1 < p < 00).

Parashar and Choudhary [16] have introduced and discussed some
properties of the four sequence spaces defined by using an Orlicz function M,
which generalized the sequence space ), and strongly summable sequence spaces
[C,1,p], [C,1,p], and [C,1,p] . Later on different types of sequence spaces
were introduced by using an Orlicz function by Bektas and Altin [1],
Tripathy [19], Tripathy et al. [20], Tripathy and Mahanta [21],
[22] and many others. The Orlicz sequence spaces are the special cases of Orlicz
spaces introduced in [8]. Orlicz spaces find a number of useful applications in
the theory of nonlinear integral equations. Whereas the Orlicz sequence spaces
are the generalizations of £,-spaces, the L,-spaces find themselves enveloped in
Orlicz spaces.

The main purpose of this paper is to introduce and study the sequence space
Ly (A™,p, q, s) which arises from the notation of generalized difference operator
A™ and the concept of an Orlicz function.

2. Definitions and background

In this section, using the generalized difference operator A™ and the con-
cept of an Orlicz function, we generalize the sequence space ¢j;(p) which was
introduced by Parashar an Choudhary [16].

The difference sequence spaces, Z (A) = {z = (z3) : Az € Z}, where
Z = ls, c and ¢y, were studied by Kizmaz [7]. The notion of difference
sequence spaces was generalized by Et and Colak [4] as follows:

Z(A™) ={z = (zp): (A™zy) € Z},

for Z = ls, c and ¢, where m € N, A™x, = A™ g, — A™ 1z, and
m
so A"z = 3 (=1)"(")@k4v. These sequence spaces are BK-spaces with the
v=0
m
norm [[zfla = > [l + [|A™ 2|0

=1
It is trivial that the generalized difference operator A™ is a linear operator.
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An Orlicz function is a function M: [0,00) — [0,00) which is continuous,
non-decreasing and convex with M (0) = 0, M (z) > 0 for z > 0 and M (x) — oo,
as x — oo (for detail see Krasnoselskii and Rutickii [8]).

If the convexity of Orlicz function M is replaced by M (x+y) < M (z)+ M (y)
then this function is called modulus function, introduced by Nakano [15] and
further investigated by Ruckle [17], Maddox [11], Bilgin [2] and others.
Lindenstrauss and Tzafriri [10] defined the sequence space ¢;; such as:

£M:{a:€w: ZM<@)<ooforsome p>0}.
k=1 P

The space £j; with the norm |[|z|| = inf {p >0: > M (%) < 1} becomes
k=1

a Banach space which is called an Orlicz sequence space. For M(t) = tP,
1 < p< oo, the spaces ;s coincide with the classical sequence spaces £p,.

DEFINITION 1. Let p = (pr) be a sequence of strictly positive real numbers, X
be a seminormed space with the seminorm ¢ and M be an Orlicz function. We
define the sequence space £3;(A™, p,q, s) as follows:

Uy (A™,p,q, s) = {xew(X) : kijlk’_s [M (q (%))}pkk 00, >0, p>0}.

We get the following sequence spaces from £y, (A™, p, q, s) on giving particular
values to p and s. Taking pr, = 1 for all k¥ € N we have

U (A™ q,8) = {x cw(X): ki::lk_s [M (q (%))} < o0, §>0, p>0}.

If we take s = 0, then we have
oo m Pk
Ly (A™,p, q :{meX : M (g (252 < 00, p>0}.
u(A™p.0) () 2 [m (o (252))]
If we take pr = 1 for all K € N and s = 0, then we have
Ly (A™ g :{waX: S M (q (8% < 00, >O}.
u(A™.0) s 2 [M(a(252))] <00 0

In addition to the above sequence spaces, we have {3/ (A™,p,q,s) = {y(p) due
to Parashar and Choudhary [16], on taking m = 0, s = 0, ¢ (z) = |z|
and X = C.

The sequence space £ (A™,p,q,s) contains some unbounded sequences for
m > 1. This is clear from the following example.

Ezample 1. Let X = C, s =0, M (z) = z and ¢ (z) = |z| and p = 1 for all
k € N. Let zp, = k™! for all k € N. Then (z1) € £ (A™,p,q,5) and (1) & loo.
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A sequence space E is said to be symmetric if (xﬂ(k)) € F, whenever (z) € F,
where 7 is a permutation of N.

A sequence space F is said to be convergence free if (yi) € E, whenever
(zx) € E and y, = 0 when x, = 0.

A sequence space F is said to be solid (or normal) if (axxy) € E, whenever
(x) € E, for all sequences (ay) of scalars with |ag| <1 for all k£ € N.

A sequence space FE is said to be monotone if it contains the canonical pre-
images of all its step-spaces (see Kamthan and Gupta [6, p. 48]).

Remark 1. It is well known that a sequence spaces E' is normal implies that E
is monotone (see for instance Kamthan and Gupta [6, p. 48]).

Remark 2. If M is a convex function and M (0) = 0, then M (Az) < AM (x)
for all A with 0 < A < 1.

The following inequality will be used throughout this paper. Let p = (pi) be

a sequence of strictly positive real numbers with 0 < pr < suppr = G, and let
keN

D = max{1,2¢71}. Then for all ay,b, € C, we have

Jar + be [ < D{lax[™ +[be["}  ([12]). (1)

3. Main results

In this section we will prove the results of this article involving the sequence
space EM (A”L?pv q, 8)'

THEOREM 1. The sequence space £y (A™,p,q, s) is linear space over C.

Proof. Let z,y € {p(A™,p,q,s) and a, 3 € C. Then there exist some positive
numbers p; and ps such that

(o (55))] <

[ (o () <

and
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Define p3 = max{2|a|p1,2|B|p2}. Since M is non-decreasing convex function, ¢
is a seminorm and A™ is linear, we have

S (o (Beg))

sogze fu (o)) ooz [ (o (55)] <

This proves that £3;(A™, p,q, s) is linear space. O

THEOREM 2. Let p = (pi) € oo and s > 1. The sequence space pr(A™,p,q,s)
is paranormed (not necessarily totally paranormed) space, paranormed by

]iqu +1nf{ g M(q(%))gl, nGN},

where H = max{l, suppk}.
keN

Proof. Clearly ga(z) = ga(—x). Let = 0 € £3y(A™,p,q,s). Then there
exist p; > 0, p2 > 0 such that

M(q<A xk>>g1 and M(q(A yk>>§1.
P1 P2

Let p = p1 + p2. Then we have

(o (F5)) = (G (55 5 (550))

A™ A™
o) el ()
P P1 P P2
Hence
galz +y) = ZQ(fk"f'yk)-Finf{p% : M(Q (w)) <1, TLEN},
k=1
< Zq +Zq Yk +1nf{ p1+P2)ﬁn M <Q<A:f’“)) <1,
k=1 k=1

<ga(®) +ga(y) p = p1+p2.
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Finally we prove that the scalar multiplication is continuous. Let A\ be any
number. From the linearity of A™ and the definition,

ga(Az) = ]iq(/\:rk)—i—inf{p%: M(q (%)) <1, nEN}

POIIED +inf{(|)\|r)%” .M (q(&)) <1, ne N},
k=1

where r = §.

Now it can be easily verified that A — 0 and z fixed implies ga(Az) — 0;

A fixed and # — 6 implies ga(z) — 0 in €3/ (A™,p,q,8); A — 0 and x — 0
implies ga(x) — 0 in £y, (A™,p, q, s). O

Remark 3. The space £y (A™,p,q,s) will be a totally paranormed sequence
space if m = 0 and the seminorm g is replaced by a norm.

THEOREM 3. Let M, My, My be Orlicz functions and s, sy, So be non-negative
real numbers. Then we have

(1) £M1 (Am>p7Q> S) ﬂgMz (Am7p>q7 S) c £M1+M2 (A7n>p7Q> S).
(11) If S1 S 52, then KM(Am)paq) 51) g gM(Amap)Q7 82)'

Proof.
(i) From (1) we have

s ()
e {Ml <q (A";xk>> Y (q (Azmk))]pk
o i o (2] s (52

Let x € £y, (A™,p,q,s) Ny, (A™,p,q, s); when adding the above inequality
from k =1 to oo, we get x € lpr, 401, (A", D, q, 5).

(ii) Let s1 < s9 and = € £y (A™,p,q,s1). Since k752 < k™5 we have
x € Uy (A™p,q, S2).

This completes the proof of Theorem 3. (|

THEOREM 4. Let m > 1, then the inclusion £y (A™ 1, q,8) C lar(A™, q,5s) is
strict. In general £p(AY, q,8) C Ly (A™,q,5) for alli = 0,1,2,....m — 1 and
the inclusion is strict.

320



GENERALIZED DIFFERENCE SEQUENCE SPACES ON SEMINORMED SPACE

Proof. Let x € £3;(A™71,q,5). Then we have

Sl e

for some p > 0. Since M is non-decreasing convex function and ¢ is a seminorm,
we have
_ Am
e (5)
2p
1 L
o _M <q <Am_ll‘k - Am_l%kﬂ))]
I 2p
1 AT ll'k Am_lka
k=% | =M kK™% | = _—
o (1 (55)) - e [ (o (5572))]

< 00, by (2).

WK

ES
Il

M

ES
Il
=

>
Il
_

Thus £y (A™7 1 q,8) C £y (A™,q,5). Proceeding in this way one will have
(A% q,8) Cly(A™, q,8) foralli =0,1,2,...,m — 1. d

To show that the inclusion is strict, consider the following example.

Ezxample 2. Let X = C, M(z) = aP, ¢(x) = |z|, s = 0. Consider the sequence
(zr) = (k™7'). Then (zx) € €ym(A™,q,s), but (zx) ¢ Ly (A™7 1, q,s) since
A™zp =0 and A™ Lz, = (=1)""! (m — 1)! for all k € N.

THEOREM 5. The space {p(A™,p,q,s) is not convergence free.

Proof. The result follows from the following example. O

Ezample 3. et X =C, q(z) = |z|, M(x) =2, m =1, s = 2, p,, = 2 for all
k € N. Consider the sequence (z) defined by z = 1 for k = 2n — 1, n € N,
and zx = 0 otherwise. Then (xx) € ¢(A,2,2). Now consider the sequence
(yr) defined by yr, = k for k = 2n — 1, n € N, and y; = 0 otherwise. Then
(yr) € £ (A,2,2). Hence £ (A,2,2) is not convergence free.

THEOREM 6. The space £y (A™,p,q,s) is not symmetric in general.

Proof. The result follows from the following example. O

Ezample 4. Let X =C, q(x) = |z|, M(z) =aP forp>1,m=1,s=2,p, =2
for all k € N. Consider the sequence (xy) defined by z; = k for all k € N. Then
(zx) € £(A,2,2). Now consider the rearranged sequence (yx) of (xy) defined by

(yk) = (96‘1,96‘2,$47$37$979€5,$1679€6,$257907795367968,1?49796107 . )
Then (yx) ¢ ¢(A,2,2). Hence £ (A,2,2) is not symmetric.
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THEOREM 7. Let 0 < pr < tx < oo for each k € N. Then £y (A™,p,q) C
EM(Am7t7Q)

Proof. Let z € £3;(A™,p,q). Then there exists some p > 0 such that

[ (o(552))] <

This implies that M (q (%)) < 1 for sufficiently large values of k, say k > kg
for some fixed kg € N. Since p; <t for each k € N, we get

(o (352)) < (o(352))"

for all k > ky and therefore

ShGEETD g T <

Hence x € {p(A™,t,q). O

The following result is a consequence of Theorem 7.

COROLLARY 8.
(i) If 0 < px <1 for each k € N, then {pr(A™,p,q) C Ly (A™,q).
(ii) If p > 1 for all k € N, then Ly (A™,q) C €y (A™,p,q).
PROPOSITION 9. For any two sequences p = (px) and t = (tx) of strictly posi-

tive real numbers and any two seminorms q1 and gz we have £y (A™, p, q1,7) N
Uy (A" t,q0,8) # O for allm,n € N and r >0, s > 0.

Remark 4. In general it becomes difficult to predict about the intersection
relation in the above result. For this consider the following examples.

Ezample 5. Let X = C, M(z) = aP for p > 1, ¢1 (z) = |z| = ¢2(x), n = 0,
m>0,r>2 s=0 Letp, =1andt, =2+ k™! forall kK € N. Then

the sequence () = (k™) belongs to £y (A™,p, q1,7), but does not belong to
KM - EM(Anyt) QQaS)'

Example 6. Let X =cg, m=n=0,p, =ty =1forallk e N,r=s5=0
and M (z) = z. Let the sequence z = () where 2(®) € ¢, for all k € N
be defined by z(") = z(® = (1,1,0,0,...) and for k > 2, let z(F) = (ng)) =

(1,1,0,...,0,k72,0,0,...) where the k=2 appears at the kth place. Consider
the seminorms

a1 ((2)) =swplal™  and g ((af”)) = o} = 2|+ supa”)
€N e
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Then ¢; ((x(k))) =1 for all £k € N and ¢ ((x(k))) = k=2 for all k € N. Thus
(x(k)) € Ly (q1), but (x(k)) ¢l (q2).

THEOREM 10. The sequence space £p;(p, q, s) is solid.

Proof. Let (xx) € Ly (p,q,s), ie.

o o (o)) <

Let () be sequence of scalars such that |ag| < 1 for all £k € N. Then the result
follows from the following inequality

Sl (2] < o ()]

Remark 5. In general itis difficult to predict about the solidity of £3;(A™, p, q, s)
when m > 0. For this consider the following example.

O

Ezample 7. Let m =1 and pp, = 1 for all k e N, M (z) = = and ¢ (z) = |z| for
all z € C and s = 0. Then (zx) = (k7') € £p(A) but (apar) ¢ ar(A) when
o = (fl)k for all k£ € N. Hence £;(A) is not solid.

We have the following result in view of Remark 2 and Theorem 10.
COROLLARY 11. The sequence space £pr(p, q,s) is monotone.
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