

DOI: 10.2478/s12175-008-0067-2 Math. Slovaca **58** (2008), No. 2, 185–200

ON THE ALEXANDROFF DECOMPOSITION THEOREM

Anna Avallone* — Giuseppina Barbieri** — Paolo Vitolo*

(Communicated by Anatolij Dvurečenskij)

ABSTRACT. We prove an Alexandroff decomposition type theorem, which extends a decomposition theorem proved in [de LUCIA, P.—MORALES, P.: *Decomposition of group-valued measures in orthoalgebras*, Fund. Math. **158** (1998), 109–124].

©2008 Mathematical Institute Slovak Academy of Sciences

Introduction

In [D-M1, p. 119] the authors proved an Alexandroff decomposition type theorem (see [A]) for an order bounded inner regular measure μ on a Boolean algebra L with values in a Hausdorff topological lattice group with a strong assumption, i.e. G has a base of neighbourhoods of 0 consisting of sublattices (see also [G-J-M]).

In the present paper we prove that this decomposition theorem is a particular case of a general decomposition theorem (see Theorem 3.9) which holds with a weaker assumption on G, i.e. the positive cone of G is closed, and also holds if L is replaced by a weaker structure, i.e. if L is a D-lattice (= lattice ordered effect algebra) and μ is an exhaustive modular measure on L.

We also prove a Hewitt-Yosida type decomposition theorem (see **3.10**) which extends another result of [D-M1] (see also [H-Y] and [D-N]).

We recall that effect algebras have been introduced by D. J. Foulis and M. K. Bennett in 1994 (see [B-F]) for modelling unsharp measurement in a quantum mechanical system. They are a generalization of many structures which arise in quantum physics (see [B-C], [B-G-L], [D]) and in Mathematical Economics (see [E-Z], [G-M], [B-K]), in particular of orthomodular posets and

2000 Mathematics Subject Classification: Primary 28B05, 06C15. Keywords: Alexandroff decomposition theorem, effect algebra, measure.

MV-algebras. Therefore the study of measures on effect algebras allows to extend and unify two independent theories: non-commutative measure theory (study of measures on orthomodular lattices) and fuzzy measure theory (study of measures on MV-algebras).

The paper is organized as follows: in Section 2 we prove some preliminary results which we need in what follows and in Section 3 we prove the main decomposition theorem and we compare it with the decomposition theorems of [D-M1].

1. Preliminaries

An effect algebra $(L, \oplus, 0, 1)$ is a structure consisting of a set L, two special elements 0 and 1, and a partially defined binary operation \oplus on $L \times L$ satisfying the following conditions for every $a, b, c \in L$:

- (1) If $a \oplus b$ is defined, then $b \oplus a$ is defined and $a \oplus b = b \oplus a$.
- (2) If $b \oplus c$ is defined and $a \oplus (b \oplus c)$ are defined, then $a \oplus b$ and $(a \oplus b) \oplus c$ are defined and $a \oplus (b \oplus c) = (a \oplus b) \oplus c$.
- (3) For every $a \in L$, there exists a unique $a^{\perp} \in L$ such that $a \oplus a^{\perp}$ is defined and $a \oplus a^{\perp} = 1$.
- (4) If $a \oplus 1$ is defined, then a = 0.

In every effect algebra a dual operation \ominus to \oplus can be defined as follows: $a \ominus c$ exists and equals b if and only if $b \oplus c$ exists and equals a.

Moreover we can define a binary relation on L by $a \leq b$ if and only if there exists $c \in L$ such that $c \oplus a = b$ and \leq is a partial ordering in L, with 0 as the smallest element. We say that two elements $a, b \in L$ are *orthogonal*, and we write $a \perp b$, if $a \oplus b$ exists. Then $a \perp b$ if and only if $a \leq b^{\perp}$. Moreover, for every $a \in L$, we have $a^{\perp} = 1 \ominus a$.

Effect algebras are a common generalization of orthomodular posets and MV-algebras. For a study, we refer to [D-P].

If $a_1, \ldots, a_n \in L$, we inductively define $a_1 \oplus \cdots \oplus a_n = (a_1 \oplus \cdots \oplus a_{n-1}) \oplus a_n$ provided that the right hand side exists. The definition is independent on permutations of the elements. We say that a finite subset $\{a_1, \ldots, a_n\}$ of L is orthogonal if $a_1 \oplus \cdots \oplus a_n$ exists.

We say that a subset A of L is orthogonal if every finite subset of A is orthogonal. If $A = \{a_{\alpha} : \alpha \in I\}$ is an orthogonal set in L, we set

$$\bigoplus_{\alpha \in I} a_{\alpha} = \sup \left\{ \bigoplus_{\alpha \in F} a_{\alpha} : F \subseteq I \text{ finite} \right\}$$

provided that the right hand side exists.

If (L, \leq) is a lattice, we say that the effect algebra is a lattice ordered effect algebra or a *D*-lattice. In this case, we set $a \triangle b = (a \lor b) \ominus (a \land b)$ for $a, b \in L$.

If G is a group, a function $\mu: L \to G$ is said to be a measure if $a \perp b$ implies $\mu(a \oplus b) = \mu(a) + \mu(b)$. It is easy to see that μ is a measure if and only if $a \leq b$ implies $\mu(b \ominus a) = \mu(b) - \mu(a)$.

A function $\mu: L \to G$ is said to be *modular* if, for every $a, b \in L$, $\mu(a \lor b) + \mu(a \land b) = \mu(a) + \mu(b)$.

If G is a topological group, a measure $\mu: L \to G$ is said to be *exhaustive* if, for every orthogonal sequence $\{a_n\}$ in L, $\mu(a_n) \to 0$. Moreover μ is said to be σ -additive if, for every orthogonal sequence $\{a_n\}$ such that $a = \bigoplus_{n = 0}^{\infty} a_n$ exists,

 $\mu(a) = \sum_{n=1}^{\infty} \mu(a_n)$ and μ is said to be σ -order continuous (σ -o.c.) if, for every decreasing sequence $\{a_n\}$ in L such that $\inf_n a_n = 0$, $\lim_n \mu(a_n) = 0$.

By [A-B1, 2.4], a measure $\mu: L \to G$ is σ -additive if and only if it is σ -o.c.

By [A-B1, 4.2], if G is a topological Abelian group, every modular measure μ generates on L a D-uniformity $\mathscr{U}(\mu)$, i.e. a uniformity which makes the lattice operations, as well as \ominus and \oplus , uniformly continuous. A base of $\mathscr{U}(\mu)$ is the family consisting of the sets

$$\{(a,b) \in L \times L : (\forall c \le a \triangle b)(\mu(c) \in W)\},\$$

where W is a neighbourhood of 0 in G. We write $\mathscr{U}(\mu) = 0$ if $\mathscr{U}(\mu)$ is the trivial uniformity. By [A-V2, 2.7], the set of all D-uniformities on L is a distributive lattice with respect to the usual order between uniformities.

A group G is said to be an *ordered group* if there is an order relation \leq on G with the following property: If $x,y\in G$ and $x\leq y$, then $x+z\leq y+z$ and $z+x\leq z+y$ for every $z\in G$. If (G,\leq) is a lattice, we say that G is a *lattice group* or an ℓ -group. If G is a topological group and an ℓ -group and \vee , \wedge are continuous, we say that G is a *topological* ℓ -group.

If G is an ℓ -group, we set, for every $x \in G$,

$$x^{+} = x \lor 0,$$
 $x^{-} = (-x) \lor 0,$ $|x| = x^{+} + x^{-}.$

It is known (see e.g. [B, Chap. XIII]) that, for every $x \in G$, we have

$$x = x^{+} - x^{-}$$
 and $|x| = x \lor (-x)$.

In an ordered group G, a subset A of G is said to be *order convex* if, for every $x, y \in A$ with x < y, the *interval* $[x, y] = \{z \in G : x \le z \le y\}$ is contained in A and *order bounded* if A is contained in an interval of G.

We say that G is order complete if, for every non-empty majorized subset D of G, sup D exists in G and quasi-order complete if, for every majorized upward directed subset D of G, sup D exists in G.

ANNA AVALLONE — GIUSEPPINA BARBIERI — PAOLO VITOLO

It is known (see I w as a w a theorem in [B]) that every order complete ℓ -group is Abelian.

If $(G, \tau, +)$ is an ordered topological group, we say that G is *locally order* convex if the set of all order convex neighborhoods of 0 in G forms a base for τ and that G is compatible if $G^+ = \{x \in G : x \geq 0\}$ is closed in τ .

If G is an ℓ -group, a subset A of G is said to be *solid* if, for every $x \in G$ and $y \in A$ with $|x| \leq |y|$, we have $x \in A$. We say that a topological ℓ -group G is *locally solid* if there exists a base of neighbourhoods of 0 consisting of solid sets.

We need the following result ([W, 1.1.8]).

PROPOSITION 1.1. Let G be a topological ℓ -group. Then G is locally solid if and only if G is a locally order convex topological lattice.

Following [D-M1], we say that an ordered group G has the property (oc) if:

(oc) for every directed upward subset D of G such that $x = \sup D$ exists in G, we have $x \in \overline{D}$,

and a topological ℓ -group G satisfies the condition (M) if:

(M) there exists a base of neighbourhoods of 0 consisting of sublattices of G. We need the following results ([D-M1, 3.1] and [D-M2, 2.2]).

PROPOSITION 1.2. Let G be a Hausdorff order complete ℓ -group with the property (oc). If V is a sublattice of G and D is a non-empty majorized subset of V, then $x = \sup D$ belongs to \overline{V} .

PROPOSITION 1.3. Let G be an ordered topological group which is locally order convex. Then the following conditions are equivalent:

- (1) G has the property (oc).
- (2) For every increasing net $(x_i)_{i \in I}$ in G such that $x = \sup_{i \in I} x_i$ exists in G, we have $x = \lim_{i \in I} x_i$.

In what follows L is a D-lattice and G is a Hausdorff topological Abelian group.

2. The space of all order bounded modular measures

In this Section we suppose that G is ordered.

A measure $\mu: L \to G$ is said to be *order bounded* if $\mu(L)$ is order bounded in G. If $\mu \geq 0$, we say that μ is a *positive measure*.

Denote by B(L,G) the set of all order bounded G-valued modular measures on L. It is clear that B(L,G) contains all positive G-valued modular measures on

L and it is an ordered group with respect to the natural order between G-valued functions.

The aim of this Section is to prove that, if G is order complete, then B(L, G) is an ℓ -group (see **2.4**). We need this result in the next Section.

Lemma 2.1. Let $\mu: L \to G$ be a function. Then μ is a modular measure if and only if, for every $a, b \in L$, the following equality holds:

$$\mu(a) = \mu((a \lor b) \ominus b) + \mu(a \land b). \tag{*}$$

Proof. If μ is a modular measure, then for every $a, b \in L$, we have $\mu((a \lor b) \ominus b) = \mu(a \lor b) - \mu(b) = \mu(a \land b)$, whence the assertion.

Conversely, if c and d are orthogonal elements in L, applying (*) with $a = c \oplus d$ and b = d, we obtain $\mu(c \oplus d) = \mu(c) + \mu((c \oplus d) \land d) = \mu(c) + \mu(d)$. Hence μ is a measure and therefore, by (*), we also obtain that μ is modular.

LEMMA 2.2. Let $\mu: L \to G$ be a modular measure and $a, b \in L$. Then, for every $c, d \in L$ with $c \leq (a \vee b) \ominus b$ and $d \leq a \wedge b$, there exists $e \in L$ such that $e \leq a$ and $\mu(e) = \mu(c) + \mu(d)$.

Proof. Set $s = (a \lor b) \ominus c$.

(i) First we prove that $c = (a \lor s) \ominus s$.

Since $c \le (a \lor b) \ominus b$, we have $s \ge b$. Since $s \le a \lor b$, we obtain $a \lor s = a \lor b$. Then we have $s = (a \lor s) \ominus c$ and $(a \lor s) \ominus s = (a \lor s) \ominus ((a \lor s) \ominus c) = c$.

(ii) Now observe that $a \ominus (a \land s) \perp d$ since, by $s \geq b$, we have $a \ominus (a \land s) \leq a \ominus (a \land b)$, whence $a \ominus (a \land s) \leq (a \land b)^{\perp} \leq d^{\perp}$. Hence set $e = (a \ominus (a \land s)) \oplus d$. We have $e \leq (a \ominus (a \land b)) \oplus (a \land b) = a$ and, since μ is a modular measure, by (i) we obtain $\mu(e) = \mu(a \ominus (a \land s)) + \mu(d) = \mu((a \lor s) \ominus s) + \mu(d) = \mu(c) + \mu(d)$. \square

Proposition 2.3. Let $\mu: L \to G$ be a modular measure. Set

$$\mu^+(a) = \sup\{\mu(b): b \in L, b \le a\}$$

for $a \in L$. Then μ^+ is a positive modular measure.

Proof. By **2.1**, we have to prove that, for every $a, b \in L$,

$$\mu^{+}(a) = \mu^{+}((a \lor b) \ominus b) + \mu^{+}(a \land b).$$
 (*)

Let $p \le a$. Since μ is a modular measure, we have $\mu(p) = \mu((p \lor b) \ominus b) + \mu(p \land b) \le \mu^+((a \lor b) \ominus b) + \mu^+(a \land b)$, whence $\mu^+(a) \le \mu^+((a \lor b) \ominus b) + \mu^+(a \land b)$.

Now let $c \leq (a \vee b) \ominus b$ and $d \leq a \wedge b$. By **2.2**, we can find $p \leq a$ such that $\mu(p) = \mu(c) + \mu(d)$. Then $\mu(c) + \mu(d) \leq \mu^+(a)$, whence $\mu^+((a \vee b) \ominus b) + \mu^+(a \wedge b) \leq \mu^+(a)$.

COROLLARY 1. Suppose that G is order complete. Then the set B(L,G) is an ℓ -group and, for every $\mu \in B(L,G)$, $\mu \vee 0$ and $(-\mu) \vee 0$ are given, respectively, by the formulae:

$$\mu^+(a) = \sup\{\mu(b): b \in L, b \le a\}$$

and

$$\mu^{-}(a) = -\inf\{\mu(b) : b \in L, b \le a\}.$$

Proof. By [B, Chap. XIII], it is sufficient to prove that, for every $\mu \in B(L,G)$, $\mu \vee 0$ exists in B(L,G) and equals μ^+ . By **2.3**, μ^+ is a modular measure and therefore it is order bounded since it is positive. Trivially μ^+ is an upper bound of μ and 0. Moreover, let $\lambda \in B(L,G)$ be an upper bound of μ and 0. If $a \in L$ and $b \leq a$, since λ is positive, we have $\lambda(a) \geq \lambda(b) \geq \mu(b)$, whence $\lambda(a) \geq \mu^+(a)$. Hence $\mu^+ = \mu \vee 0$ in B(L,G). The equality $\mu^- = (-\mu) \vee 0$ follows from [B, Chap. XIII].

3. Decomposition theorems

The aim of this Section is to prove that Alexandroff and Hewitt-Yosida decomposition theorems proved in [D-M1] for measures on Boolean algebras with a stronger assumption on G (see [D-M1, pp. 119, 123]) are particular cases of a general decomposition theorem which holds in general for modular measures on D-lattices and with a weaker assumption on G.

If $\mu \colon L \to G$ is a modular measure and \mathscr{U} is a D-uniformity, we write:

- $\mu \ll \mathcal{U}$ if μ is \mathcal{U} -continuous,
- $\mu \perp \mathscr{U}$ if, for every neighbourhood W of 0 in G and every neighbourhood U of 0 in \mathscr{U} , there exists $a \in L$ such that $\mu(b) \in W$ for every $b \leq a$ and $a^{\perp} \in U$.

If $\lambda: L \to G$ is another modular measure, $\mu \ll \lambda$ means $\mu \ll \mathcal{U}(\lambda)$ and $\mu \perp \lambda$ means $\mu \perp \mathcal{U}(\lambda)$.

In [A-V1, 3.5], the following decomposition theorem has been proved.

THEOREM 3.1. Let $\mu \colon L \to G$ be an exhaustive modular measure and $\mathscr U$ a D-uniformity on L. Then there exist unique modular measures $\lambda, \nu \colon L \to G$ such that $\mu = \underline{\lambda} + \nu$, $\lambda \ll \mathscr U$ and $\nu \perp \mathscr U$. Moreover λ and ν are exhaustive, $\lambda(L) \cup \nu(L) \subseteq \overline{\mu(L)}$ and $\mathscr U(\mu) = \mathscr U(\lambda) \vee \mathscr U(\nu)$.

We want to derive from 3.1 two particular decomposition theorems. We need some definitions.

DEFINITION 3.2. A modular measure $\mu: L \to G$ is said to be *purely non* σ -additive if, for every σ -additive modular measure $\lambda: L \to G$ such that $\lambda \ll \mu$, we have $\lambda = 0$.

DEFINITION 3.3. Let $\mu: L \to G$ be a function such that $\mu(0) = 0$ and $K \subseteq L$. We say that μ is K-inner regular if, for every $c \in L$ and every neighbourhood W of 0 in G, there exist $b \in K$ such that $b \leq c$ and $\mu(d) \in W$ whenever $d \in L$ and $d \leq c \ominus b$.

Recall that, for a modular measure $\mu \colon L \to G$, a base of neighbourhoods of 0 in $\mathscr{U}(\mu)$ is the family consisting of the sets $\{a \in L : (\forall b \leq a)(\mu(b) \in W)\}$, where W is a neighbourhood of 0 in G. Therefore it is clear that, if μ is a K-inner regular modular measure and λ is a modular measure such that $\lambda \ll \mu$, then λ is K-inner regular, too.

DEFINITION 3.4. Let $K \subseteq L$ and $\mu: L \to G$ be a modular measure. We say that μ is K-smooth if, for every decreasing net $(a_i)_{i \in I}$ in K such that $\inf_{i \in I} a_i = 0$ in L, we have that a_i converges to 0 in $\mathscr{U}(\mu)$.

We say that a *D-uniformity* \mathscr{U} is *K-smooth* if, for every decreasing net $(a_i)_{i\in I}$ in K such that $\inf_{i\in I}a_i=0$ in L, $(a_i)_{i\in I}$ converges to 0 in \mathscr{U} .

Then a modular measure $\mu \colon L \to G$ is K-smooth if and only if $\mathscr{U}(\mu)$ is K-smooth.

DEFINITION 3.5. Let K be a subset of L and $\mu: L \to G$ be a modular measure. We say that μ is K-singular if, for every K-smooth modular measure $\lambda: L \to G$ such that $\lambda \ll \mu$, we have that $\lambda = 0$.

It is clear that, if μ is a K-singular (K-smooth, respectively) modular measure and λ is a modular measure such that $\lambda \ll \mu$, then λ is K-singular (K-smooth, respectively), too.

By [A-V1, 3.3, 3.4, 3.8], the following result holds.

PROPOSITION 3.6. Let μ be a G-valued modular measure on L and \mathscr{U} a D-uniformity on L. Then:

- (1) $\mu \ll \mathcal{U}$ if and only if $\mathcal{U}(\mu) \leq \mathcal{U}$.
- (2) $\mu \perp \mathcal{U}$ if and only if $\mathcal{U}(\mu) \wedge \mathcal{U} = 0$.
- (3) μ is purely non σ -additive if and only if, for every σ -additive modular measure $\lambda \colon L \to G$, we have $\mu \perp \lambda$.

LEMMA 3.7. Let $\mu: L \to G$ be an exhaustive modular measure and \mathscr{U} a D-uniformity such that $\mathscr{U} \leq \mathscr{U}(\mu)$. Then there exists a modular measure $\nu: L \to G$ such that $\nu \ll \mu$ and $\mathscr{U} = \mathscr{U}(\nu)$. Moreover, if G is a compatible ordered group and μ is positive, we can choose ν such that $0 \leq \nu \leq \mu$.

Proof. By **3.1**, we can find two modular measures $\lambda, \nu \colon L \to G$ such that $\mu = \lambda + \nu, \nu \ll \mathscr{U}$ and $\lambda(L) \cup \nu(L) \subseteq \overline{\mu(L)}$. Hence, by **3.6**, $\nu \ll \mu$ and, as proved in [A-V1, 3.7], $\mathscr{U} = \mathscr{U}(\nu)$.

Now suppose that μ is positive and G is compatible. In this case, from $\lambda(L) \cup \nu(L) \subseteq \overline{\mu(L)}$, we obtain that λ and ν are positive, too, and therefore $\nu \leq \mu$.

PROPOSITION 3.8. Let $\mu \colon L \to G$ be an exhaustive modular measure and $K \subseteq L$. Denote by \mathscr{U} the supremum of all K-smooth D-uniformities on L. Then the following conditions are equivalent:

- (1) μ is K-singular.
- (2) $\mu \perp \mathscr{U}$.
- (3) For every K-smooth modular measure $\lambda: L \to G$, $\mu \perp \lambda$.

Proof.

- (1) \Longrightarrow (2). By **3.7**, we can find a modular measure $\nu: L \to G$ such that $\nu \ll \mu$ and $\mathscr{U}(\nu) = \mathscr{U}(\mu) \wedge \mathscr{U}$. Then ν is K-smooth, since $\mathscr{U}(\nu) \leq \mathscr{U}$. By (1), we obtain $\nu = 0$. Hence $\mathscr{U}(\mu) \wedge \mathscr{U} = 0$. By **3.6**, we have that $\mu \perp \mathscr{U}$.
- (2) \Longrightarrow (3). Let $\lambda \colon L \to G$ be a K-smooth modular measure. Then $\mathscr{U}(\lambda) \leq \mathscr{U}$. Hence we have $\mathscr{U}(\mu) \wedge \mathscr{U}(\lambda) = \mathscr{U}(\mu) \wedge \mathscr{U}(\lambda) \wedge \mathscr{U} = 0$ by (2) and **3.6**. Again by **3.6** we obtain that $\mu \perp \lambda$.
- (3) \Longrightarrow (1). If $\lambda: L \to G$ is a K-smooth modular measure such that $\lambda \ll \mu$, by **3.6** and (3) we have $\mathscr{U}(\lambda) = \mathscr{U}(\lambda) \wedge \mathscr{U}(\mu) = 0$, from which $\lambda = 0$.

THEOREM 3.9 (Alexandroff decomposition theorem). Let $K \subseteq L$ and $\mu: L \to G$ be an exhaustive modular measure. Then there exist unique exhaustive modular measures $\lambda, \nu: L \to G$ such that:

- (1) $\mu = \lambda + \nu$.
- (2) λ is K-smooth.
- (3) ν is K-singular.

Moreover:

- (4) If $H \subseteq L$ and μ is H-inner regular, then λ and ν are H-inner regular, too.
- (5) If G is a compatible ordered group and μ is positive (resp. order bounded), then λ and ν are positive (resp. order bounded), too.

Proof. Denote by \mathcal{U} the supremum of all K-smooth D-uniformities on L.

By **3.1**, there exist unique modular measures $\lambda, \nu \colon L \to G$ such that $\underline{\mu} = \lambda + \nu$, $\lambda \ll \mathscr{U}$ and $\nu \perp \mathscr{U}$. Moreover λ and ν are exhaustive, $\lambda(L) \cup \nu(L) \subseteq \overline{\mu(L)}$ and $\mathscr{U}(\mu) = \mathscr{U}(\lambda) \vee \mathscr{U}(\nu)$. Therefore λ is K-smooth since, by **3.6**, $\mathscr{U}(\lambda) \leq \mathscr{U}$ and ν is K-singular by **3.8**. Conversely, let $\lambda', \nu' \colon L \to G$ be modular measures with

properties (1), (2) and (3). Then, by **3.8**, $\nu' \perp \mathcal{U}$. Moreover we have $\mathcal{U}(\lambda') \leq \mathcal{U}$ and therefore by **3.6**, $\lambda' \ll \mathcal{U}$. Hence the uniqueness follows from **3.1**.

- (4) is trivial since $\lambda \ll \mu$ and $\nu \ll \mu$.
- (5) follows from $\lambda(L) \cup \nu(L) \subseteq \mu(L)$, since G is compatible and therefore both the positive cone and the order intervals of G are closed.

THEOREM 3.10 (Hewitt-Yosida decomposition theorem). Let $\mu \colon L \to G$ be an exhaustive modular measure. Then there exist unique modular measures $\lambda \colon L \to G$ and $\nu \colon L \to G$ such that

- (1) $\mu = \lambda + \nu$.
- (2) λ is σ -additive.
- (3) ν is purely non σ -additive.

Moreover:

- (4) If $H \subseteq L$ and μ is H-inner regular, then λ and ν are H-inner regular, too.
- (5) If G is a compatible ordered group and μ is positive (resp. order bounded), then λ and ν are positive (resp. order bounded), too.

Proof.

- (1), (2) and (3) have been proved in [A-V1, 3.9] as a consequence of **3.1**.
- (4) and (5) can be proved as in **3.9**.

Following [D-M1], we give the following definitions:

- A subset K of L is a paving if $0 \in K$ and K is closed with respect to finite suprema.
- A subset K of L is said to be a δ -paving if K is a paving and every countable subset of K has an infimum in L which belongs to K.
- A Lindelof space is a pair (X, \mathscr{F}) , where X is a non-empty set, \mathscr{F} is a δ -paving containing X in the Boolean algebra of all subsets of X and every covering of X consisting of complements of elements of \mathscr{F} contains a countable subcovering.

If G is an ordered group, $\mu \colon L \to G$ is a positive modular measure and K is a paving,

- μ is said to be purely finitely additive (purely f.a.) if, for every σ -additive positive modular measure $\lambda \leq \mu$, we have $\lambda = 0$.
- μ is said to be K-smooth in the sense of de Lucia-Morales if, for every decreasing net $(a_i)_{i\in I}$ in K such that $\inf_{i\in I} a_i = 0$ in L, we have $\lim_i \mu(a_i) = 0$ in G.

• μ is said to be K-singular in the sense of de Lucia-Morales if μ is K-inner regular and, for every positive K-smooth and K-inner regular modular measure λ such that $\lambda \leq \mu$, we have $\lambda = 0$.

If $\mu \colon L \to G$ is an order bounded measure, μ is said to be K-singular (resp. K-smooth) in the sense of de Lucia-Morales if μ^+ and μ^- are K-singular (resp. K-smooth). In a similar way, μ is said to be purely f.a. if μ^+ and μ^- are purely f.a.

In [D-M1, pp. 119, 123] the following decomposition theorems have been proved.

Theorem 3.11. Let G' be a Hausdorff Abelian ℓ -group which is order complete, locally order convex, has the property (oc) and satisfies the condition (M), $\mathscr A$ a Boolean algebra and $K \subseteq \mathscr A$ a δ -paving. Then, for every order bounded K-inner regular measure $\mu \colon \mathscr A \to G'$, there exist unique order bounded K-inner regular measures $\lambda, \mu \colon \mathscr A \to G'$ such that:

- (1) $\mu = \lambda + \nu$.
- (2) λ is K-smooth in the sense of de Lucia-Morales.
- (3) ν is K-singular in the sense of de Lucia-Morales.

THEOREM 3.12. Let (X, \mathscr{F}) be a Lindelof space, \mathscr{A} an algebra of subsets of X which contains \mathscr{F} and G' a Hausdorff Abelian ℓ -group which is order complete, locally order convex, has the property (oc) and satisfies the condition (M). Then, for every \mathscr{F} -inner regular and order bounded measure $\mu \colon \mathscr{A} \to G'$, there exist unique \mathscr{F} -inner regular and order bounded measures $\lambda, \nu \colon \mathscr{A} \to G'$ such that $\mu = \lambda + \nu$, λ is σ -additive and ν is purely finitely additive.

We want to prove that the decomposition Theorems 3.11 and 3.12 proved in [D-M1] are particular cases of **3.9** and **3.10**.

PROPOSITION 3.13. Suppose that G is a locally order convex ℓ -group with the property (M). Then G is locally solid (and therefore it is compatible).

Proof. Let V be a convex neighbourhood of 0 in G. To prove that G is locally solid, it is sufficient to prove that V contains a solid neighbourhood of 0 in G. Set

$$W = \{ x \in G : [-|x|, |x|] \subseteq V \}.$$

It is clear that $W \subseteq V$. Moreover W is solid since, if $x \in W$ and y is an element of G such that $|y| \leq |x|$, then $[-|y|, |y|] \subseteq [-|x|, |x|]$ and therefore $y \in W$.

It remains to prove that W is a neighbourhood of 0 in G.

Since G satisfies the condition (M), we can find a neighbourhood V' of 0 in G such that $V' \subseteq V$ and V' is a sublattice of G.

We prove that $V' \cap (-V') \subseteq W$, from which we obtain the assertion.

If $x \in V' \cap (-V')$, since V' is a sublattice, we have that $|x| = x \vee (-x)$ and $-|x| = x \wedge (-x)$ belongs to V' and therefore to V. Since V is convex, we obtain that $[-|x|, |x|] \subseteq V$ and therefore $x \in W$.

By 1.1, we obtain that G is compatible.

PROPOSITION 3.14. Suppose that G is an order complete group with the property (oc). Then every order bounded modular measure $\mu: L \to G$ is exhaustive.

Proof. By **2.4** we have $\mu = \mu^+ - \mu^-$, where μ^+ and μ^- are positive. Then it is sufficient to prove the assertion in the case that μ is positive.

Let $\{a_n\}$ be an orthogonal sequence. For each $n \in \mathbb{N}$, set

$$x_n = \sum_{i=0}^n \mu(a_i).$$

Since $\mu \geq 0$, $\{x_n\}$ is an increasing sequence in G and $x_n = \mu(\bigoplus_{i=0}^n a_i) \leq \mu(1)$. Since G is order complete, there exists $x = \sup_n x_n$ in G. Since G has the property (oc), by **1.3** we have $x = \lim_n x_n$. Since $\mu(a_n) = x_n - x_{n-1}$ (with $x_{-1} = 0$), we obtain $\lim_n \mu(a_n) = 0$.

In what follows, we use the notations of Section 2. In particular, for $\mu \in B(L,G)$, we set $|\mu| = \mu^+ + \mu^-$.

PROPOSITION 3.15. Suppose that G is an order complete locally order convex group. Then, if $\mu \in B(L,G)$, $\mathscr{U}(|\mu|) = \mathscr{U}(\mu^+) \vee \mathscr{U}(\mu^-)$.

Proof. Recall that, for a positive modular measure λ , a base of $\mathscr{U}(\lambda)$ is the family consisting of the sets $\{(a,b)\in L\times L:\ \lambda(a\triangle b)\in W\}$, where W is a neighbourhood of 0 in G. Moreover, by **2.4**, μ^+ and μ^- are modular measures and therefore $|\mu|$ is a modular measure, too.

Let W be a neighbourhood of 0 in G.

- (i) Since G is locally order convex, we can choose a convex neighbourhood V of 0 in G such that $V \subseteq W$ and therefore, since $0 \le \mu^+ \le |\mu|$ and $0 \le \mu^- \le |\mu|$, we have that $\mu^+(a\triangle b) \in W$ and $\mu^-(a\triangle b) \in W$ whenever $|\mu|(a\triangle b) \in V$.
- (ii) Since G is a topological group, we can choose a neighbourhood V' of 0 in G such that $V'+V'\subseteq W$. Then we have $|\mu|(a\triangle b)\in W$ whenever $\mu^+(a\triangle b)\in V'$ and $\mu^-(a\triangle b)\in V'$.

From (i) and (ii), we obtain the assertion. \Box

PROPOSITION 3.16. Suppose that G is an order complete locally order convex ℓ -group with the properties (oc) and (M). Then, for any $\mu \in B(L,G)$, $\mathscr{U}(\mu) = \mathscr{U}(|\mu|)$.

Proof. Let W, V be neighbourhoods of 0 in G such that V is convex and $V - V \subseteq W$. Since, by **3.15**, $\mathscr{U}(|\mu|) = \mathscr{U}(\mu^+) \vee \mathscr{U}(\mu^-)$, we can find a neighbourhood V_0 of 0 in G such that, for every $a, b \in L$, $\mu^+(a\triangle b) \in V$ and $\mu^-(a\triangle b) \in V$ whenever $|\mu|(a\triangle b) \in V_0$. Since $\mu = \mu^+ - \mu^-$, where μ^+ and μ^- are monotone and V is convex, we have that, for every $a, b \in L$ and $c \leq a\triangle b, \ \mu(c) \in W$ whenever $|\mu|(a\triangle b) \in V_0$. Therefore $\mathscr{U}(\mu) \leq \mathscr{U}(|\mu|)$.

Moreover, since G satisfies the condition (M), we can find a neighbourhood W_0 of 0 in G such that W_0 is a sublattice of G and $\overline{W_0} \subseteq W$. Therefore, by **1.2**, the condition $\mu(c) \in W_0$ for every $c \leq a \triangle b$ implies $\mu^+(a \triangle b) = \sup\{\mu(c) : c \leq a \triangle b\} \in \overline{W_0} \subseteq W$. Hence $\mathscr{U}(\mu^+) \leq \mathscr{U}(\mu)$. Since $\mu^-(a) = \sup\{-\mu(b) : b \leq a\}$ and G has a base of symmetric neighbourhoods of 0, we obtain in a similar way that $\mathscr{U}(\mu^-) \leq \mathscr{U}(\mu)$. Hence $\mathscr{U}(|\mu|) \leq \mathscr{U}(\mu)$.

In the next result we use the fact that, by [A-V2, 2.9], the exhaustive D-uniformities on L form a Boolean algebra.

PROPOSITION 3.17. Let $K \subseteq L$. If λ and μ are G-valued exhaustive K-singular (resp. purely non σ -additive) modular measures on L, then $-\mu$ and $\lambda + \mu$ are K-singular (resp. purely non σ -additive).

Proof. It is clear that $\mathscr{U}(\mu) = \mathscr{U}(-\mu)$ Then, if μ is K-singular (resp. purely non σ -additive), $-\mu$ has the same property.

Moreover, since $\mathscr{U}(\lambda + \mu) \leq \mathscr{U}(\mu) \vee \mathscr{U}(\lambda)$, if ν is a modular measure, by [A-V2, 2.9] we have

$$\mathscr{U}(\lambda+\mu)\wedge\mathscr{U}(\nu)\leq (\mathscr{U}(\lambda)\vee\mathscr{U}(\mu))\wedge\mathscr{U}(\nu)=(\mathscr{U}(\lambda)\wedge\mathscr{U}(\nu))\vee(\mathscr{U}(\mu)\wedge\mathscr{U}(\nu)).$$

By **3.7**, we can find modular measures $\nu_1, \nu_2 \colon L \to G$ such that $\nu_1 \ll \lambda, \nu_2 \ll \mu$, $\mathscr{U}(\nu_1) = \mathscr{U}(\lambda) \wedge \mathscr{U}(\nu)$ and $\mathscr{U}(\nu_2) = \mathscr{U}(\mu) \wedge \mathscr{U}(\nu)$. Therefore

$$\mathscr{U}(\lambda + \mu) \wedge \mathscr{U}(\nu) \leq \mathscr{U}(\nu_1) \vee \mathscr{U}(\nu_2).$$

- (i) Suppose that λ and μ are K-singular and ν is K-smooth. Then we have that ν_1 and ν_2 are K-smooth since $\mathscr{U}(\nu_1) \leq \mathscr{U}(\nu)$ and $\mathscr{U}(\nu_2) \leq \mathscr{U}(\nu)$ and therefore $\nu_1 = \nu_2 = 0$. Hence we obtain $\mathscr{U}(\lambda + \mu) \wedge \mathscr{U}(\nu) = 0$. By **3.8**, we obtain that $\lambda + \mu$ is K-singular.
- (ii) Now suppose that λ and μ are purely non σ -additive and ν is σ -additive. Then, since $\mathscr{U}(\nu_1) \leq \mathscr{U}(\nu)$ and $\mathscr{U}(\nu_2) \leq \mathscr{U}(\nu)$, we have, by [A-B1, 2.4], that ν_1 and ν_2 are σ -additive, too. Therefore we have $\nu_1 = \nu_2 = 0$ and then, as before, $\mathscr{U}(\lambda + \mu) \wedge \mathscr{U}(\nu) = 0$. By **3.6**, we obtain that $\lambda + \mu$ is purely non σ -additive. \square

PROPOSITION 3.18. Suppose that G is locally order convex. Let $\mu: L \to G$ be a positive modular measure and $K \subseteq L$. Then:

- (1) If μ is K-inner regular, then μ is K-singular in the sense of de Lucia-Morales if and only if μ is K-singular.
- (2) μ is K-smooth in the sense of de Lucia-Morales if and only if μ is K-smooth.
- (3) μ is purely non σ -additive if and only if μ is purely f.a..

Moreover, if G is an order-complete ℓ -group with the properties (oc) and (M), then the previous equivalences hold for any order bounded modular measure $\mu: L \to G$.

Proof.

(i) First suppose that μ is positive.

In this case, a base of neighbourhoods of 0 in $\mathscr{U}(\mu)$ is the family consisting of the sets $\{a \in L : \mu(a) \in W\}$, where W is a neighbourhood of 0 in G. Then, if $(a_i)_{i \in I}$ is a net in L, we have that $a_i \to 0$ in $\mathscr{U}(\mu)$ if and only if $\mu(a_i) \to 0$ in G. Therefore it is clear that the equivalence in (2) holds.

Moreover, since G is locally order convex, we have that, if $\lambda \colon L \to G$ is a modular measure such that $\lambda \le \mu$, then $\lambda \ll \mu$. Therefore we obtain that:

- (a) If μ is K-inner regular and K-singular, then μ is also K-singular in the sense of de Lucia-Morales.
- (b) If μ is purely non σ -additive, then μ is purely f.a..

Conversely, if $\lambda: L \to G$ is a modular measure such that $\lambda \ll \mu$, by **3.7** we can find a modular measure $\nu: L \to G$ such that $0 \le \nu \le \mu$ and $\mathscr{U}(\nu) = \mathscr{U}(\lambda)$. Hence, if λ is K-smooth (resp. σ -additive), ν is K-smooth (resp. σ -additive), too. Therefore in (1) and in (3) the equivalence holds.

(ii) Now suppose that G is an order-complete ℓ -group with the properties (oc) and (M), and remove the assumption that μ is positive.

Recall that, by **3.14**, μ is exhaustive. Moreover, by **3.16**, we have $\mathscr{U}(\mu) = \mathscr{U}(|\mu|)$. Therefore $|\mu|$ is exhaustive, too, and then μ^+ and μ^- are exhaustive since $\mu^+ \leq |\mu|$ and $\mu^- \leq |\mu|$. In a similar way, if μ is K-inner regular, we can obtain that μ^+ and μ^- are K-inner regular, too.

(1) and (3): Since $\mu^+ \leq |\mu|$ and $\mu^- \leq |\mu|$, we have that, if μ is K-singular (resp. purely non σ -additive), then $|\mu|$, μ^+ and μ^- are K-singular (resp. purely non σ -additive), too, and therefore by (i) K-singular in the sense of de Lucia-Morales (resp. purely f.a.). Conversely, if μ is K-singular in the sense of de Lucia-Morales (resp. purely f.a.), we have by (i) that μ^+ and μ^- are K-singular (resp. purely non σ -additive). By **3.17**, $|\mu| = \mu^+ - \mu^-$ is K-singular (resp. purely non σ -additive), too.

ANNA AVALLONE — GIUSEPPINA BARBIERI — PAOLO VITOLO

(2): It is clear that, if μ is K-smooth, then μ is also K-smooth in the sense of de Lucia-Morales since μ is continuous with respect to $\mathscr{U}(\mu)$. Conversely, suppose that μ is K-smooth in the sense of de Lucia-Morales. Since $|\mu| = \mu^+ + \mu^-$, we have that $|\mu|$ is K-smooth in the sense of de Lucia-Morales and therefore K-smooth by (i). By **3.16**, we have that μ is K-smooth.

Now we can see that **3.11** and **3.12** are particular cases of **3.9** and **3.10**.

Proof of Theorems 3.11 and 3.12.

By **3.13** G' is compatible.

By 3.14 every order bounded modular measure $\mu \colon \mathscr{A} \to G'$ is exhaustive.

Then, recalling 3.18, we have that 3.11 follows from 3.9 and 3.12 from 3.10.

Remark. In [D-M3, 5.11, 5.14] the following decomposition theorem has been proved:

Suppose that G' is a quasi order-complete locally order convex group with the property (oc), L' is an effect algebra and K, H are pavings in L'. Then, for every positive H-inner regular measure $\mu \colon L' \to G'$, there exist two positive H-inner regular measures $\lambda, \nu \colon L' \to G'$ such that

- (1) $\mu = \lambda + \nu$.
- (2) λ is K-smooth.
- (3) ν is K-singular.

Moreover, if G' is order-complete and L' is a Boolean algebra, the decomposition is unique.

If L' is a D-lattice and μ is modular, this decomposition of μ is not a consequence of **3.9**, since the assumptions of [D-M3] do not imply that G is compatible, as the next example shows. Nevertheless, with a similar proof as in [D-M3] and using the results of the Section 2, it is possible to prove that in this case λ and ν are modular, too, and, if G' is order-complete, the decomposition is unique as in the Boolean case.

The next example has been suggested by Hans Weber.

Example 1. Denote by τ the usual topology in \mathbb{R} and by \leq the usual order in \mathbb{R} . Set $C = \{x \in \mathbb{Q} : x \geq 1\}$. For $a, b \in \mathbb{R}$, define $a \leq b$ if and only if $b - a \in C$. We see that (\mathbb{R}, \leq, τ) is a quasi order-complete locally order-convex group with the property (oc), but it is not compatible.

It is clear that (\mathbb{R}, \leq, τ) is not compatible and, since $a \leq b$ implies $a \leq b$, it is locally order convex.

Now observe that, if $D \subseteq \mathbb{R}$ is a majorized set with respect to \preceq , then D has a maximal element with respect to \preceq , otherwise we can construct a sequence $\{d_n\}$ in D such that, for each $n \in \mathbb{N}$, $d_n \geq d_0 + n$, a contradiction with the assumption that D is majorized.

Therefore, if D is a majorized directed upward subset of \mathbb{R} and m is a maximal element of D with respect to \preceq , then we have that $m = \max D$ with respect to \preceq .

Now it is clear that (\mathbb{R}, \leq, τ) is quasi order-complete and has the property (oc).

REFERENCES

- [A] ALEKSANDROV, A. D.: Additive set-functions in abstract spaces, Rec. Math. (Mat. Sbornik) N.S. 9(51) (1941), 563-628.
- [A-B1] AVALLONE, A.—BASILE, A.: On a Marinacci uniqueness theorem for measures, J. Math. Anal. Appl. 286 (2003), 378–390.
- [A-V1] AVALLONE, A.—VITOLO, P. Decomposition and control theorems in effect algebras, Sci. Math. Jpn. 58 (2003), 1–14.
- [A-V2] AVALLONE, A.—VITOLO, P.: Lattice uniformities on effect algebras, Internat. J. Theoret. Phys. 44 (2005), 793–806.
- [B] BIRKHOFF, G.: Lattice Theory. Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1967.
- [B-C] BELTRAMETTI, E. G.—CASSINELLI, G.: The Logic of Quantum Mechanics, Addison-Wesley Publishing Co., Reading, Mass., 1981.
- [B-F] BENNETT, M. K.—FOULIS, D. J.: Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.
- [B-K-W] BIGARD, A.—KEIMEL, K.—WOLFENSTEIN, S.: Groupes et anneaux réticulés. Lecture Notes in Math. 608, Springer, New York, 1977.
- [B-G-L] BUSCH, P.—GRABOWSKI, M.—LAHTI, P. J.: Operational Quantum Physics. Lecture Notes in Phys. 31, Springer-Verlag, New York, 1995.
- [B-K] BUTNARIU, D.—KLEMENT, P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Acad. Publ., Dordrecht, 1993.
- [D] DAVIES, E. B.: Quantum theory and Open Systems. Academic Press, London, 1976.
- [D-M1] de LUCIA, P.—MORALES, P.: Decomposition of group-valued measures in orthoalgebras, Fund. Math. 158 (1998), 109–124.
- [D-M2] de LUCIA, P.—MORALES, P.: A non-commutative version of the first Alexandroff decomposition theorem in ordered topological groups, Rend. Circ. Mat. Palermo (2) 49 (2000), 229–258.
- [D-M3] de LUCIA. P.—MORALES, P.: Measures on effect algebras, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 273–293.
- [D-N] De SIMONE, A.—NAVARA, M.: Yosida-Hewitt and Lebesgue decompositions of states on orthomodular posets, J. Math. Anal. Appl. 255 (2001), 74–104.
- [D-P] DVUREČENSKIJ, A.—PULMANNOVÁ, S.: New trends in quantum structures, Kluwer Acad. Publ., Dordrecht, 2000.
- [E-Z] EPSTEIN, L. G.—ZHANG, J.: Subjective probabilities on subjectively unambiguous events, Econometrica 69 (2001), 265–306.

ANNA AVALLONE — GIUSEPPINA BARBIERI — PAOLO VITOLO

- [G-M] GHIRARDATO, P.—MARINACCI, M.: Ambiguity made precise: a comparative foundation, J. Econom. Theory 102 (2002), 251–289.
- [H-Y] HEWITT, E.—YOSIDA, K.: Finitely additive measures, Trans. Amer. Math. Soc. **72** (1952), 46–66.
- [J] JAMESON, G.: Ordered Linear Spaces. Lecture Notes in Math. 141, Springer-Verlag, New York, 1970.
- [G-J-M] JIMÉNEZ GUERRA, P.—GARCIA MAZARÍO, F.—MORALES, P.: First Alexandroff decomposition theorem for topological lattice group valued measures, Order 17 (2000), 43–60.
- [W] WEBER, H.: Uniform lattices I; Uniform lattices II, Ann. Mat. Pura Appl. (4) 160; 165 (1991); (1993) 347–370; 133–158.

Received 4. 5. 2006 Revised 13. 11. 2006 * Dipartimento di Matematica e Informatica Universitá della Basilicata Contrada Macchia Romana I-85100 Potenza ITALY

 $\begin{array}{c} \textit{E-mail} : \text{ anna.avallone@unibas.it} \\ \text{ paolo.vitolo@unibas.it} \end{array}$

** Dipartimento di Matematica e Informatica Università di Udine Via delle Scienze, 206 I-33100 Udine ITALY

E-mail: giuseppina.barbieri@dimi.uniud.it