

DOI: 10.2478/s12175-008-0065-4 Math. Slovaca **58** (2008), No. 2, 173–176

A NOTE ON THE MULTIPLICITY IN FACTOR RING

Eduard Boďa

(Communicated by Pavol Zlatoš)

ABSTRACT. Let $(R,m)=k[x_1,\ldots,x_n]_{(x_1,\ldots,x_n)}$ be a local polynomial ring (k being an algebraically closed field), and $Q:=(F_1,\ldots,F_r)R$ be a primary ideal in R with respect to a maximal ideal $m \in R$. In this short note we give a formula for the multiplicity $e_0\left(QR/(F_1)R,R/(F_1)R\right)$.

©2008 Mathematical Institute Slovak Academy of Sciences

Let F_1, \ldots, F_r be a system of polynomials in the polynomial ring $k[x_1, \ldots, x_n]$ over an algebraically closed field k, such that the variety $V(F_1, \ldots, F_r)$ contains the null point $\underline{0} = (0, \ldots, 0) \in E_k^n$. Let R denote the localization of $k[x_1, \ldots, x_n]$ with respect to (x_1, \ldots, x_n) and m be the maximal ideal of R. Suppose that $Q := (F_1, \ldots, F_r)R$ is an m-primary ideal in R.

The aim of this note is to describe a method of calculation of the S a m u e l multiplicity of the ideal $QR/(F_1)R$ in the factor ring $R/(F_1)R$. Let us remark that the Samuel multiplicity of an ideal Q in a ring R, denoted by $e_0(Q,R)$, is the leading coefficient in the Hilbert-Samuel polynomial $P(n) = l(R/Q^n)$, where $l(R/Q^n)$ is the length of the R-module R/Q^n . In the particular case r = n, i.e., if Q is generated by a system of parameters in R, this method describes a way for finding the Samuel multiplicity $e_0(Q,R)$ of Q in R.

Let $W \subset E_k^n$ be the hypersurface defined by the equation $F_1 = 0$. Suppose that W is parametrized by the family of polynomials $u_i(s_1, \ldots, s_{n-1}) \in k[s_1, \ldots, s_{n-1}]$. Then the parametrization of W is given by

$$x_{1} = u_{1}(s_{1}, \dots, s_{n-1}),$$

$$x_{2} = u_{2}(s_{1}, \dots, s_{n-1}),$$

$$\vdots$$

$$x_{n} = u_{n}(s_{1}, \dots, s_{n-1}).$$
(1)

2000 Mathematics Subject Classification: Primary 13H15; Secondary 13B02. Keywords: multiplicity, rational parametrization, field extension.

The author was supported by the grant No. 1/0262/03) of the Slovak Ministry of Education.

EDUARD BOĎA

Moreover assume that the ring $k[s_1,\ldots,s_{n-1}]$ is a finite $k[W]=k[u_1,\ldots,u_n]$ module. Recall that the ring k[W] is the coordinate ring of the variety W, hence $k[W]=k[x_1,\ldots,x_n]/(F_1)k[x_1,\ldots,x_n]$. For the polynomials F_i we denote by $f_i=F_i(u_1(s_1,\ldots,s_{n-1}),\ldots,u_n(s_1,\ldots,s_{n-1}))$ the polynomials in $k[s_1,\ldots,s_{n-1}]$ for $i=2,\ldots,n$. Let us put, finally, $S:=k[s_1,\ldots,s_{n-1}]_{(s_1,\ldots,s_{n-1})}$ and denote by d the dimension of the field $k(s_1,\ldots,s_{n-1})$ as the vector space over the field $k(u_1,\ldots,u_n)$.

Theorem 1. With the previous notation and hypothesis we have:

(a)
$$e_0(QR/(F_1)R, R/(F_1)R)d = e_0((f_2, \dots, f_n)S, S);$$

(b) if Q is generated by the system of parameters then

$$e_0(QR, R)d = e_0((f_2, \dots, f_n)S, S);$$

(c) if Q is generated by the system of parameters and W is birationally equivalent to the hyperplane then

$$e_0(QR, R) = e_0((f_2, \dots, f_n)S, S).$$

Proof.

(a) Let us construct the following homomorphism

$$\phi: k[x_1, \dots, x_n] \to k[s_1, \dots, s_{n-1}]$$

 $x_i \mapsto u_i(s_1, \dots, s_{n-1}).$

The kernel of ϕ is the ideal $\operatorname{Ker}(\phi) = (F_1)k[x_1, \dots, x_n]$, so there is a monomorphism

$$k[x_1,\ldots,x_n]/(F_1)k[x_1,\ldots,x_n] \cong k[u_1,\ldots,u_n] \hookrightarrow k[s_1,\ldots,s_{n-1}],$$

and within the local monomorphism

$$R/(F_1)R \cong k[u_1, \dots, u_n]_{(u_1, \dots, u_n)} \hookrightarrow k[s_1, \dots, s_{n-1}]_{(s_1, \dots, s_{n-1})}.$$

By the assumption $k[s_1, \ldots, s_{n-1}]_{(s_1, \ldots, s_{n-1})}$ is a finite module over the local ring $k[u_1, \ldots, u_n]_{(u_1, \ldots, u_n)}$. Now the additivity formula (cf. [2, Theorem 14.7]) applied to the $e_0(QR/(F_1)R, R/(F_1)R)$ provides

$$e_0(QR/(F_1)R, R/(F_1)R)$$
 length _{$(R/(F_1))(n)$} $S_{(0)} = e_0((f_2, \dots, f_n)S, S)$.

The equality $d = \operatorname{length}_{(R/(F_1))_{(0)}} S_{(0)}$ completes the proof of (a).

(b) Suppose that the number of generators of QR in R equals the dimension of R, i.e., $QR = (F_1, \ldots, F_n)R$. The associativity formula for the multiplicity $e_0(QR, R)$ ([3, Chap. 7, Theorem 18]) yields the equality

$$e_0((F_1, \dots, F_n)R, R) = e_0((F_1, \dots, F_n)R/(F_1)R, R/(F_1)R) e_0((F_1)R_{(F_1)}, R_{(F_1)})$$

= $e_0((F_1, \dots, F_n)R/(F_1)R, R/(F_1)R),$

since F_1 is irreducible by the hypothesis.

A NOTE ON THE MULTIPLICITY IN FACTOR RING

(c) Let W be birationally equivalent to the hyperplane. Then $k(u_1, \ldots, u_n) \cong k(s_1, \ldots, s_{n-1})$ and, consequently,

$$e_0(QR, R) = e_0((f_2, \dots, f_n)S, S).$$

This completes the proof of (c).

As an application we give the formula for the multiplicity of the polynomial ideal $(x^m-y^az^b,\ y^n-x^cz^d,\ z^l-x^ey^f)$. Let P=k[x,y,z] be the polynomial ring over an algebraically closed field k and $Q=(x^m-y^az^b,\ y^n-x^cz^d,\ z^l-x^ey^f)P$ be an (x,y,z)-primary ideal in P. We prove the formula for the multiplicity of QR in $R=k[x,y,z]_{(x,y,z)}$. To this end we will need the following lemma. In what follows (a,m) denotes the greatest common divisor of a and m.

Lemma 2. Let W be an irreducible surface in E_k^3 defined by $x^m - y^a z^b = 0$. Let $\overline{a} = (a, m)$, $\overline{b} = (b, m)$, $a = \alpha \overline{a}$, $m = \mu \overline{a}$, $b = \beta \overline{b}$, $n = \nu \overline{b}$. Then the equations

$$x = s^{\alpha} t^{\beta}, \qquad y = s^{\mu}, \qquad z = t^{\nu}$$

form the rational parametrization of W, the polynomial ring k[s,t] is a finite module over the coordinate ring $k(W) = k[s^{\alpha}t^{\beta}, s^{\mu}, t^{\nu}]$, and the dimension of k(s,t) as a vector space over the field $k(s^{\alpha}t^{\beta}, s^{\mu}, t^{\nu})$ equals (μ, ν) .

Proof. The parametrization of W is easy. Now, both s and t are integral over $k[s^{\alpha}t^{\beta}, s^{\mu}, t^{\nu}]$, hence k[s, t] is a finite module over $k[s^{\alpha}t^{\beta}, s^{\mu}, t^{\nu}]$. By the hypothesis $(\alpha, \mu) = (\beta, \nu) = 1$. Let $(\mu, \nu) = \xi$. Then $(\mu\beta, \nu) = \xi$ and there are integers p and q with $p\mu\beta + q\nu = \xi$. Therefore $(s^{\alpha}t^{\beta})^{p\mu}(s^{\mu})^{-p\alpha}(t^{\nu})^{q} = t^{\pm\xi}$ is an element of $k(s^{\alpha}t^{\beta}, s^{\mu}, t^{\nu})$. With the same argument one can prove $s^{\pm\xi} \in k(s^{\alpha}t^{\beta}, s^{\mu}, t^{\nu})$. Now we have

$$\begin{split} k(s^{\alpha}t^{\beta},s^{\mu},t^{\nu}) &= k(s^{\alpha}t^{\beta},s^{\xi},t^{\xi}),\\ k(s,t) &= k(s^{\alpha}t^{\beta},s^{\xi},t^{\xi})(t) &= k(s^{\alpha}t^{\beta},s^{\xi},t^{\xi})[t], \end{split}$$

and the dimension of $k(s,t) = k(s^{\alpha}t^{\beta}, s^{\xi}, t^{\xi})[t]$ over $k(s^{\alpha}t^{\beta}, s^{\xi}, t^{\xi})$ is equal to the degree of the minimal polynomial $T^{\xi} - t^{\xi}$ of t over $k(s^{\alpha}t^{\beta}, s^{\xi}, t^{\xi})$ (cf. [4]). \square

Now we can give the formula for the multiplicity $e_0(QR,R)$.

THEOREM 3. Let m, n, l, a, b, c, d, e, f be positive integers. Let us denote $\overline{a} = (a, m), \overline{b} = (b, m), a = \alpha \overline{a}, m = \mu \overline{a}, m = \nu \overline{b} b = \beta \overline{b}, and (\mu, \nu) = \xi$. Let further $Q = (x^m - y^a z^b, y^n - x^c z^d, z^l - x^e y^f) P$. Then

$$e_0(QR, R)\xi = \min\{\mu\nu nl, \, \mu\beta(ne + cf) + \nu\alpha(lc + de) + \mu\nu df\}.$$

Proof. Let W be the irreducible surface in E_k^3 defined by $x^m - y^a z^b = 0$. Then the equations

$$x = s^{\alpha} t^{\beta}, \qquad y = s^{\mu}, \qquad z = t^{\nu}$$

form a rational parametrization of W. By Lemma 2, the polynomial ring k[s,t] is a finitely generated module over the coordinate ring $k(W) = k[s^{\alpha}t^{\beta}, s^{\mu}, t^{\nu}]$, and

EDUARD BOĎA

its dimension as a vector space over the field $k(s^{\alpha}t^{\beta}, s^{\mu}, t^{\nu})$ equals $(\mu, \nu) = \xi$. Thus by Theorem 1 we have

$$e_0(QR,R)\xi = e_0((s^{n\mu} - s^{c\alpha}t^{c\beta+d\nu}, t^{l\nu} - s^{e\alpha+f\mu}t^{e\beta}), k[s,t]_{(s,t)}).$$

If mn < ac (equivalently, $n\mu < \alpha c$), then the multiplicity is equal to

$$e_0((s^{n\mu}(1-s^{c\alpha-n\mu}t^{c\beta+d\nu}), t^{l\nu}-s^{e\alpha+f\mu}t^{e\beta}), k[s,t]_{(s,t)})$$

= $e_0((s^{n\mu}, t^{l\nu}-s^{e\alpha+f\mu}t^{e\beta}), k[s,t]_{(s,t)}) = \mu\nu nl.$

We obtain the same result if ml < be (equivalently, $l\nu < e\beta$).

Let now $mn \ge ca$ and $ml \ge be$, (i.e., $n\mu \ge c\alpha$ and $l\nu \ge e\beta$). Then we have

$$\begin{split} e_0(QR,R)\xi &= e_0 \big(s^{c\alpha} (s^{n\mu-c\alpha} - t^{c\beta+d\nu}), \, t^{e\beta} (t^{l\nu-e\beta} - s^{e\alpha+f\mu}), \, k[s,t]_{(s,t)} \big) \\ &= c\alpha e\beta + c\alpha (l\nu - e\beta) + e\beta (n\mu - c\alpha) \\ &\quad + e_0 \big((s^{n\mu-c\alpha} - t^{c\beta+d\nu}, \, t^{l\nu-e\beta} - s^{e\alpha+f\mu}), \, k[s,t]_{(s,t)} \big) \\ &= c\alpha l\nu + e\beta n\mu - e\beta c\alpha \\ &\quad + \min\{ (n\mu - c\alpha)(l\nu - e\beta), \, (c\beta + d\nu)(e\alpha + f\mu) \} \end{split}$$

by ([1]). Therefore

$$e_0(QR, R)\xi = \min\{\mu\nu nl, \, \mu\beta(ne + cf) + \nu\alpha(lc + de) + \mu\nu df\}.$$

COROLLARY 4. Let $Q = (x^m - y^a z^b, y^n - x^c z^d, z^l - x^e y^f) k[x, y, z]$ be an (x, y, z)-primary ideal with (a, m) = (b, m) = 1. Let $R = k[x, y, z]_{(x, y, z)}$. Then for the multiplicity $e_0(QR, R)$ we have

$$e_0(QR, R) = \min\{mnl, mdf + nbe + lac + ade + bcf\}.$$

REFERENCES

- [1] BOĎA, E.—FARNBAUER, R.: On the standard basis and multiplicity of (Xa Yb, Xc Yd), Acta Math. Univ. Comenian. (N.S.) **72** (2003), 15–22.
- [2] MATSUMURA, H.: Commutative Ring Theory. Cambridge Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, 1986.
- [3] NORTHCOTT, D. G.: Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press, Cambridge, 1968.
- [4] ZARISKI, O.—SAMUEL, P.: Commutative Algebra, D. Van Nostrand company, Toronto-London-New York, 1958.

Received 13. 2. 2006 Revised 11. 10. 2006 Department of Algebra, Geometry and Didactic of Mathematics Faculty of Mathematics Physics and Informatics Comenius University SK-842 48 Bratislava SLOVAKIA

E-mail: bodae@fmph.uniba.sk