

DOI: 10.2478/s12175-008-0064-5 Math. Slovaca **58** (2008), No. 2, 165–172

A NOTE ON NORMAL BASES OF IDEALS IN SEXTIC ALGEBRAIC NUMBER FIELD

Viktor Dubovský* — Juraj Kostra** — Vladimír Lazar***

(Communicated by Stanislav Jakubec)

ABSTRACT. Let K/Q be a cyclic tamely ramified extension of degree 6, then any ambiguous ideal of K has a normal basis.

©2008 Mathematical Institute Slovak Academy of Sciences

In the present paper we will prove that any ambiguous ideal of cyclic algebraic field with squarefree conductor m of degree 6 over the rationals \mathbb{Q} has a normal basis.

First we recall some general properties of ambiguous ideals according to Ullom [2]. Let K/F be a Galois extension of algebraic number field F with Galois group G, let \mathbb{Z}_K (resp. \mathbb{Z}_F) be the ring of integers of K (resp. F).

DEFINITION. An ideal U (possibly fractional) of K is G-ambiguous or simply ambiguous if U is invariant under the action of the Galois group G.

Let \mathfrak{P} be a prime ideal of F whose decomposition into prime ideals in K is

$$\mathfrak{P}\mathbb{Z}_K = (\mathfrak{p}_1 \cdot \mathfrak{p}_2 \cdots \mathfrak{p}_g)^e.$$

Let $\Psi(\mathfrak{P}) = \mathfrak{p}_1 \mathfrak{p}_2 \dots \mathfrak{p}_g$. It is known that

- $\Psi(\mathfrak{P})$ is ambiguous and the set of the all $\Psi(\mathfrak{P})$ with \mathfrak{P} prime in F, is a free basis for the group of ambiguous ideals of K
- An ambiguous ideal U of K may be written in the form $U_O T$, where T is an ideal of F and

$$U_O = \Psi(\mathfrak{P}_1)^{a_1} \dots \Psi(\mathfrak{P}_t)^{a_t}, \qquad 0 < a_i \le e_i,$$

2000 Mathematics Subject Classification: Primary 11R33. Keywords: normal basis, ambiguous ideal, circulant matrix. Supported by grants GAČR 201/07/0191, VEGA 2/4138/04, VEGA 1/0084/08.

VIKTOR DUBOVSKÝ — JURAJ KOSTRA — VLADIMÍR LAZAR

where $e_i > 1$ is the ramification index of a prime ideal of K dividing \mathfrak{P}_i . The ideal U determines U_O and T uniquely. The ambiguous ideal U_O is called a primitive ambiguous ideal. By [2, Remark 1.7] for K/\mathbb{Q} the problem of showing that an ambiguous ideal of K has a normal basis is reduced to the corresponding problem for primitive ambiguous ideals.

Ullom [2, Corollary 1.2] showed that $\operatorname{Tr}_{K/F}(U) = U \cap F$ for K/F is tamely ramified. Consequently, if F is a Galois extension of \mathbb{Q} and ideal U of K has a normal basis over the rational integers \mathbb{Z} then $U \cap F$ has a normal basis over \mathbb{Z} .

We will prove the following theorem:

Theorem 1. Let K/\mathbb{Q} be a cyclic tamely ramified extension of degree 6, then any ambiguous ideal of K has a normal basis.

First we will prove the following lemma:

Lemma 1. Let K be cyclic extension of rationals with $[K : \mathbb{Q}] = 6$ and $K \subseteq \mathbb{Q}(\zeta_p)$ with prime p, then any ambiguous ideal of \mathbb{Z}_K has a normal basis.

Proof. Let $\alpha \in \mathbb{Z}_{\mathbb{Q}(\zeta_3)}$ then it could be expressed as $\alpha = a_1 + a_2 \zeta_6 + a_3 \zeta_6^2 + a_4 \zeta_6^3 + a_5 \zeta_6^4 + a_6 \zeta_6^5$, with $a_i \in \mathbb{Z}$, i = 1, 2, ..., 6.

Since relations among ζ_6 and ζ_3 are

$$\zeta_6 = -\zeta_3^2, \quad \zeta_6^2 = \zeta_3, \quad \zeta_6^3 = -1,$$

 $\zeta_6^4 = \zeta_3^2, \quad \zeta_6^5 = -\zeta_3, \quad \zeta_6^6 = 1,$

one can rewrite α as

$$\alpha = a_1 - a_2 \zeta_3^2 + a_3 \zeta_3 - a_4 + a_5 \zeta_3^2 + a_6 \zeta_3$$

= $(a_1 - a_4) + (a_3 - a_6) \zeta_3 + (a_5 - a_2) \zeta_3^2$.

Denote by \mathbf{A}_{α} the circulant matrix of the element α coefficients, i.e.

$$\mathbf{A}_{\alpha} = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\ a_6 & a_1 & a_2 & a_3 & a_4 & a_5 \\ a_5 & a_6 & a_1 & a_2 & a_3 & a_4 \\ a_4 & a_5 & a_6 & a_1 & a_2 & a_3 \\ a_3 & a_4 & a_5 & a_6 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_5 & a_6 & a_1 \end{pmatrix}.$$

Also denote by **X** following unimodular matrix

$$\mathbf{X} = \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{array}\right).$$

A NOTE ON NORMAL BASES OF IDEALS

The matrix \mathbf{A}_{α} is similar to the block matrix

$$\mathbf{A}_{\alpha, \, \text{block}} = \mathbf{X} \, \mathbf{A}_{\alpha} \, \mathbf{X}^{-1}$$

$$= \begin{pmatrix} a_{1} - a_{4} & a_{3} - a_{6} & a_{5} - a_{2} & a_{4} & a_{6} & a_{2} \\ a_{5} - a_{2} & a_{1} - a_{4} & a_{3} - a_{6} & a_{2} & a_{4} & a_{6} \\ a_{3} - a_{6} & a_{5} - a_{2} & a_{1} - a_{4} & a_{6} & a_{2} & a_{4} \\ \hline 0 & 0 & 0 & a_{1} + a_{4} & a_{3} + a_{6} & a_{5} + a_{2} \\ 0 & 0 & 0 & a_{5} + a_{2} & a_{1} + a_{4} & a_{3} + a_{6} \\ 0 & 0 & 0 & a_{3} + a_{6} & a_{5} + a_{2} & a_{1} + a_{4} \end{pmatrix}$$

$$\mathbf{A}_{\alpha, \, \text{block}} = \begin{pmatrix} \mathbf{A}_{\alpha}^{-} & \mathbf{B}_{\alpha} \\ \mathbf{0} & \mathbf{A}_{\alpha}^{+} \end{pmatrix}. \tag{1}$$

Note that each of blocks is circulant and, because of the zero matrix block, the determinant of \mathbf{A}_{α} depends only on blocks \mathbf{A}_{α}^{+} and \mathbf{A}_{α}^{-} . Particularly is

$$|\mathbf{A}_{\alpha}| = |\mathbf{A}_{\alpha, \text{ block}}| = |\mathbf{A}_{\alpha}^{+}| |\mathbf{A}_{\alpha}^{-}|.$$

Let $\gamma \in \mathbb{Q}(\zeta_3)$, be of the form $\gamma = c_1 + c_2 \zeta_3 + c_3 \zeta_3^2$, with $c_1 + c_2 + c_3 = \pm 1$, then such element γ is representable by circulant matrix $\mathbf{A}_{\gamma} = \mathrm{circ}_3(c_1, c_2, c_3)$, and its determinant is

$$|\mathbf{A}_{\gamma}| = (c_1 + c_2 + c_3) (c_1 + c_2 \zeta_3 + c_3 \zeta_3^2) (c_1 + c_2 \zeta_3^2 + c_3 \zeta_3)$$

= $\pm N_{\mathbb{Q}(\zeta_3)/\mathbb{Q}}(\gamma)$.

Consider now element γ with norm equal to p, such element exists in $\mathbb{Q}(\zeta_3)$ for all p. It is easy to see that if we replace \mathbf{A}_{α}^+ by \mathbf{A}_{γ} and \mathbf{A}_{α}^- by the identity matrix, then the resulting matrix will have determinant p as we demanded.

This together with form of blocks in (1) yields the following system of linear equations

$$a_1 - a_4 = c_1,$$
 $a_1 + a_4 = 1,$
 $a_3 - a_6 = c_2,$ $a_3 + a_6 = 0,$
 $a_5 - a_2 = c_3,$ $a_5 + a_2 = 0,$

with solutions

$$a_1 = \frac{1+c_1}{2},$$
 $a_2 = \frac{-c_3}{2},$ $a_3 = \frac{c_2}{2},$ $a_4 = \frac{1-c_1}{2},$ $a_5 = \frac{c_3}{2},$ $a_6 = \frac{-c_2}{2}.$ (2)

From this it follows directly that in order to get solutions from \mathbb{Z} the coefficient c_1 has to be odd and c_2 , c_3 even. Because we demanded $\sum_{i=1}^{3} c_i = \pm 1$ we are forced to have odd number of odd coefficients in expression of γ , but determinant of $\operatorname{circ}_3(2k+1,2l+1,2m+1)$ equals to 4z with $z \in \mathbb{Z}$ and hence could not be prime, so exactly one of c_i is odd. We may always assume c_1 to be odd one,

since in case of c_2 resp. c_3 one could multiply such $\tilde{\gamma}$ by ζ_3 resp. ζ_3^2 and get γ with c_1 odd.

This way we obtained element $\alpha_1 \in \mathbb{Q}(\zeta_6)$

$$\alpha_{1} = a_{1} + a_{2} \zeta_{6} + a_{3} \zeta_{6}^{2} + a_{4} \zeta_{6}^{3} + a_{5} \zeta_{6}^{4} + a_{6} \zeta_{6}^{5}$$

$$= \frac{1+c_{1}}{2} + \frac{-c_{3}}{2} \zeta_{6} + \frac{c_{2}}{2} \zeta_{6}^{2} + \frac{1-c_{1}}{2} \zeta_{6}^{3} + \frac{c_{3}}{2} \zeta_{6}^{4} + \frac{-c_{2}}{2} \zeta_{6}^{5}$$

$$= \left(\frac{1+c_{1}}{2} - \frac{1-c_{1}}{2}\right) + \left(\frac{c_{2}}{2} - \frac{-c_{2}}{2}\right) \zeta_{3} + \left(\frac{c_{3}}{2} - \frac{-c_{3}}{2}\right) \zeta_{3}^{2}$$

$$= c_{1} + c_{2} \zeta_{3} + c_{3} \zeta_{3}^{2} = \gamma$$

The element α_1 matrix $\mathbf{A}_{\alpha_1} = \operatorname{circ}_6(a_1, a_2, \dots, a_6)$ could be also obtained from the matrix identity

$$\mathbf{A}_{\alpha_1} = \mathbf{X}^{-1} \, \mathbf{S}_1 \, \mathbf{X},$$

where

$$\mathbf{S}_1 = \left(\begin{array}{c|c} \mathbf{A}_{\gamma} & \mathbf{C}_1 \\ \hline \mathbf{0} & \mathbf{E} \end{array} \right),$$

with blocks \mathbf{A}_{γ} is the circulant matrix representing γ , $\mathbf{0}$ is the zero matrix, \mathbf{E} is the unit matrix and $\mathbf{C}_1 = \text{circ}_3((1-c_1)/2, -c_3/2, -c_2/2) = \frac{1}{2}(\mathbf{E} - \mathbf{A}_{\gamma})$.

Interchanging the roles of \mathbf{A}_{γ} and \mathbf{E} we obtain

$$\mathbf{S}_2 = \left(egin{array}{c|c} \mathbf{E} & \mathbf{C}_2 \\ \hline \mathbf{0} & \mathbf{A}_{\gamma} \end{array}
ight)$$

with block $\mathbf{C}_2 = \frac{1}{2}(\mathbf{A}_{\gamma} - \mathbf{E})$, which is yielding matrix

$$\mathbf{A}_{\alpha_2} = \mathbf{X}^{-1} \, \mathbf{S}_2 \, \mathbf{X},$$

and henceforth element $\alpha_2 \in \mathbb{Q}(\zeta_6)$

$$\alpha_2 = \frac{1+c_1}{2} + \frac{c_3}{2} \zeta_6 + \frac{c_2}{2} \zeta_6^2 + \frac{-1+c_1}{2} \zeta_6^3 + \frac{c_3}{2} \zeta_6^4 + \frac{c_2}{2} \zeta_6^5$$

$$= \left(\frac{1+c_1}{2} - \frac{-1+c_1}{2}\right) + \left(\frac{c_2}{2} - \frac{c_2}{2}\right) \zeta_3 + \left(\frac{c_3}{2} - \frac{c_3}{2}\right) \zeta_3^2 = 1.$$

Note that we get elements γ and 1 from $\mathbb{Q}(\zeta_3)$, but this time via α_1 resp. α_2 as elements $\mathbb{Q}(\zeta_6)$, so obviously for both α_1 , α_2 the sum $\sum_{i=1}^6 a_i = \pm 1$ and furthermore determinants of \mathbf{A}_{α_1} , \mathbf{A}_{α_2} are equal to p.

Let us now recall some facts proven in the article of Ullom [2], namely that if K is subfield of $\mathbb{Q}(\zeta_p)$ with degree $[K:\mathbb{Q}]=l$, and (Π) is ideal with normal basis generated by element $1-\zeta_p$, then ideal $(\pi)=(\Pi)\cap K$ has normal basis generated by $\mathrm{Tr}_{\mathbb{Q}(\zeta_p)/K}(1-\zeta_p)$.

A NOTE ON NORMAL BASES OF IDEALS

By [1], normal basis of the ideal (π^t) could be transformed to the normal basis of (π^{t+1}) , for t = 1, 2, ..., l, by circulant matrix $\operatorname{circ}_l(c_1, c_2, ..., c_{l-1})$, where c_i are such that $\sum_{i=1}^{l} c_i = \pm 1$ and

$$|N_{K/\mathbb{Q}}(c_1 + c_2 \zeta_l + \dots + c_l \zeta_l^{l-1})| = p,$$
 (3)

$$c_1 + c_2 g^t + \dots + c_l(g^t)^{l-1} \equiv 0 \pmod{p}$$
 (4)

with $g = a^{\frac{p-1}{l}}$, where a is such a positive integer that the automorphism

$$\sigma: \zeta_p \longmapsto \zeta_p^a,$$

restricted to the field K is nontrivial.

Let $\gamma = c_1 + c_2 \zeta_3 + c_3 \zeta_3^2$ be such that it satisfies these conditions for $g = a^{\frac{p-1}{3}}$ with suitable a, especially that the congruence (4) holds. We shall prove that for elements α_1 , α_2 the same is true.

Let us consider $\tilde{g} = a^{\frac{p-1}{6}}$ with a as above. It is easy to see, that

$$g^3 \equiv 1 \pmod{p},$$
 $\tilde{g}^3 \equiv -1 \pmod{p},$ $g \equiv \tilde{g}^2 \pmod{p},$ $\tilde{g}^6 \equiv 1 \pmod{p},$

and as an easy consequence of that $-\tilde{g} \equiv g^2 \pmod{p}$.

Now we are in position to solve congruences

$$a_1 + a_2 \tilde{g}^k + a_3 (\tilde{g}^k)^2 + a_4 (\tilde{g}^k)^3 + a_5 (\tilde{g}^k)^4 + a_6 (\tilde{g}^k)^5 \equiv 0 \pmod{p}.$$
 (5)

But using the relations among g and \tilde{g} , together with fact that a_i depend on c_j as a solutions of equations above, we get tables with dependence of k solving congruences (5) and solution t of congruence (4).

k = 1	$c_1 + c_2 \tilde{g}^2 - c_3 \tilde{g}$	=	$c_1 + c_2 g + c_3 g^2 \pmod{p}$	t = 1
k = 2	1	=	$1 \pmod{p}$	
k = 3	$c_1 + c_2 + c_3$	=	$1 \pmod{p}$	
k = 4	1	=	$1 \pmod{p}$	
k = 5	$c_1 - c_2\tilde{g} + c_3\tilde{g}^2$	=	$c_1 + c_2 g^2 + c_3 g \pmod{p}$	t = 2

k = 1	1	=	$1 \pmod{p}$	
k = 2	$c_1 - c_2\tilde{g} + c_3\tilde{g}^2$	=	$c_1 + c_2 g^2 + c_3 g \pmod{p}$	t = 2
k = 3	1	=	$1 \pmod{p}$	
k = 4	$c_1 + c_2 \tilde{g}^2 - c_3 \tilde{g}$	=	$c_1 + c_2 g + c_3 g^2 \pmod{p}$	t = 1
k = 5	1	=	$1 \pmod{p}$	

This way we obtained solutions of (5) for k = 1, 2, 4, 5, i.e. two for each solution of (4). Particularly from this tables it is easy to see that if congruence corresponding to γ is solved by t, then the congruence corresponding to α has solutions $k \equiv t \pmod{3}$.

Since one could get only two solutions from each γ and γ' , it is impossible to obtain the solution with k=3 same way as those for k=1,2,4,5.

To get such solution construct now following circulant matrix

$$\mathbf{A}_3 = \operatorname{circ}_6\left(\frac{p-1}{6} + 1, -\frac{p-1}{6}, \frac{p-1}{6}, -\frac{p-1}{6}, \frac{p-1}{6}, -\frac{p-1}{6}\right).$$

The determinant of A_3 is equal to p and

$$\frac{p-1}{6} + 1 - \frac{(p-1)\tilde{g}^3}{6} + \frac{(p-1)(\tilde{g}^3)^2}{6} - \frac{(p-1)(\tilde{g}^3)^3}{6} + \frac{(p-1)(\tilde{g}^3)^4}{6} - \frac{(p-1)(\tilde{g}^3)^5}{6} = \frac{p-1}{6} + 1 + \frac{p-1}{6} + \frac{p-1}{6} + \frac{p-1}{6} + \frac{p-1}{6} + \frac{p-1}{6} = 0 \pmod{p}$$

Thus we have five circulant matrices A_1 , A_2 , A_3 , A_4 , A_5 which transform normal basis of ambiguous ideals, i.e.

$$(\pi) \xrightarrow{\mathbf{A}_1} (\pi^2) \xrightarrow{\mathbf{A}_2} (\pi^3) \xrightarrow{\mathbf{A}_3} (\pi^4) \xrightarrow{\mathbf{A}_4} (\pi^5) \xrightarrow{\mathbf{A}_5} (\pi^6).$$

and the lemma is proved.

LEMMA 2. Let K be as in Theorem 1 with squarefree conductor $m = p_1 p_2 \cdots p_s$, where p_i is a prime for i = 1, 2, ..., s. Let $\mathbb{Q} \subset L_{p_i} \subset \mathbb{Q}(\zeta_{p_i})$, $[L_{p_i} : \mathbb{Q}] = 6$. Then

$$K \subset \bigvee_{i=1}^{s} L_{p_i}.$$

Proof. The proof is by the same way as the proof of [1, Lemma 2] for field extension of prime degree l.

$$G(\mathbb{Q}(\zeta_m)/\bigvee_{i=1}^s L_{p_i}) \cong H_1 \times H_2 \times \cdots \times H_s = H$$

with

$$H_i \subset (\mathbb{Z}/p_i\mathbb{Z})^*$$
 for $i = 1, 2 \dots, s$

and the index

$$[(\mathbb{Z}/p_i\mathbb{Z})^*:H_i]=6.$$

Clearly $H = [(\mathbb{Z}/m\mathbb{Z})^*]^6$. Let $G = G(\mathbb{Q}(\zeta_m)/K)$. It is sufficient to show that $H \subset G$. Let $x \in (\mathbb{Z}/m\mathbb{Z})^*$. The order of the group $(\mathbb{Z}/m\mathbb{Z})^*/G$ equals 6 and so $x^6 \in G$. Thus we have $H \subset G$.

A NOTE ON NORMAL BASES OF IDEALS

Proof of the Theorem 1. By Lemma 1, any ambiguous ideal of L_{p_i} , i= $1, 2, \ldots, s$, has a normal basis. By [2, Proposition 1.8], any ambiguous ideal of $\bigvee L_{p_i}$ has a normal basis and so by [2, Corollary 1.2], any ideal of K has a normal basis. This proves Theorem 1.

Example. We shall illustrate the above results in field $K \subset \mathbb{Q}(\zeta_{13})$ with $[K:\mathbb{Q}]$ = 6. By Ullom [2, Corollary 1.2], a normal basis of ideal $\Pi \subset \mathbb{Z}[\zeta_{13}]$ is generated by element $1-\zeta_{13}$ and hence the normal basis of ideal $\pi\subset\mathbb{Z}_K$ is generated by $\operatorname{Tr}_{\mathbb{Q}(\zeta_{13})/K}(1-\zeta_{13})=2-\zeta_{13}-\zeta_{13}^{12}$. Since a=2 is primitive root modulo p=13, we have got

$$g = a^{\frac{p-1}{3}} = 2^{\frac{12}{3}} = 16, \qquad \tilde{g} = a^{\frac{p-1}{6}} = 2^{\frac{12}{6}} = 4.$$

Element $\gamma = 1 - 2\zeta_3 + 2\zeta_3^2 \in \mathbb{Q}(\zeta_3)$ is represented by circulant matrix $\mathbf{A}_{\gamma} =$ $\operatorname{circ}_3(1, -2, 2)$ and has norm equal to 13 and sum of its coefficients 1, henceforth it satisfies condition of [1].

It is easy to find that solutions of (4) are

$$1 - 2g + 2g^{2} = 1 - 2 \cdot 16 + 2 \cdot 256$$

$$= 481 \equiv 0 \pmod{13},$$

$$1 + 2g^{2} - 2(g^{2})^{2} = 1 + 2 \cdot 256 - 2 \cdot 65536$$

$$= -130559 \equiv 0 \pmod{13},$$

where the second equalities are obtained from element $\gamma'=1+2\,\zeta_3-2\,\zeta_3^2$ i.e. conjugate of γ . From this we see that matrix $\mathrm{circ}_3(1,-2,2)$ transforms basis of ideal Π to the basis of Π^2 and $\operatorname{circ}_3(1,2,-2)$ transforms basis of Π^2 to the basis

Using the methods described above one could obtain this five elements of $\mathbb{Q}(\zeta_6)$ and henceforth transformating circulant matrices. They are written in following tables, with indices such that α_i resp. \mathbf{A}_i transforms normal basis of π^i to the normal basis of ideal π^{i+1} .

$\alpha_1 = 1 - 1\zeta_6 - 1\zeta_6^2 + 1\zeta_6^4 + 1\zeta_6^5$	$\mathbf{A}_1 = \operatorname{circ}_6(1, -1, -1, 0, 1, 1)$
$\alpha_2 = 1 - 1\zeta_6 + 1\zeta_6^2 - 1\zeta_6^4 + 1\zeta_6^5$	$\mathbf{A}_2 = \operatorname{circ}_6(1, -1, 1, 0, -1, 1)$
$\alpha_3 = 3 - 2\zeta_6 + 2\zeta_6^2 - 2\zeta_6^3 + 2\zeta_6^4 - 2\zeta_6^5$	$\mathbf{A}_3 = \operatorname{circ}_6(3, -2, 2, -2, 2, -2)$
$\alpha_4 = 1 + 1\zeta_6 - 1\zeta_6^2 + 1\zeta_6^4 - 1\zeta_6^5$	$\mathbf{A}_4 = \operatorname{circ}_6(1, 1, -1, 0, 1, -1)$
$\alpha_5 = 1 + 1\zeta_6 + 1\zeta_6^2 - 1\zeta_6^4 - 1\zeta_6^5$	$\mathbf{A}_5 = \operatorname{circ}_6(1, 1, 1, 0, -1, -1)$

Table 1. Elements α_i and transformation matrices

Thus we get following table of ideals together with generators of their normal bases

VIKTOR DUBOVSKÝ — JURAJ KOSTRA — VLADIMÍR LAZAR

Ideal	Normal basis generator
(π)	$2 - \zeta_{13} - \zeta_{13}^{12}$
(π^2)	$2 - \zeta_{13} + \zeta_{13}^2 - \zeta_{13}^3 + \zeta_{13}^4 - \zeta_{13}^6$
	$-\zeta_{13}^{12} + \zeta_{13}^{11} - \zeta_{13}^{10} + \zeta_{13}^{9} - \zeta_{13}^{7}$
(π^3)	$2 - \zeta_{13} + 2\zeta_{13}^2 - 2\zeta_{13}^6$
	$-\zeta_{13}^{12} + 2\zeta_{13}^{11} - 2\zeta_{13}^{7}$
(π^4)	$2 - 3\zeta_{13} + 4\zeta_{13}^2 - 2\zeta_{13}^3 - 2\zeta_{13}^4 + 2\zeta_{13}^5$
	$-3\zeta_{13}^{12}+4\zeta_{13}^{11}-2\zeta_{13}^{10}-2\zeta_{13}^{9}+2\zeta_{13}^{8}$
(π^5)	$2 - 7\zeta_{13} + 5\zeta_{13}^2 - \zeta_{13}^3 + \zeta_{13}^4 - 2\zeta_{13}^5 + 3\zeta_{13}^6$
	$-7\zeta_{13}^{12} + 5\zeta_{13}^{11} - \zeta_{13}^{10} + \zeta_{13}^{9} - 2\zeta_{13}^{8} + 3\zeta_{13}^{7}$
(π^6)	$2 - 11\zeta_{13} + 2\zeta_{13}^2 + 2\zeta_{13}^3 + 2\zeta_{13}^4 + 2\zeta_{13}^5 + 2\zeta_{13}^6$
	$-11\zeta_{13}^{12}+2\zeta_{13}^{11}+2\zeta_{13}^{10}+2\zeta_{13}^{9}+2\zeta_{13}^{8}+2\zeta_{13}^{7}$

REFERENCES

- JAKUBEC, S.—KOSTRA, J.: A note on normal bases of ideals, Math. Slovaca, 42 (1992), 677–684.
- [2] ULLOM, S.: Normal bases in Galois extensions of number fields, Nagoya Math. J. 34 (1969), 153–167.

Received 21. 5. 2006

*Department of Mathematics and Geometry Technical University of Ostrava 17. listopadu 15 CZ-708 33 Ostrava CZECH REPUBLIC E-mail: viktor.dubovsky@vsb.cz

** Department of Mathematics
Padagogical faculty
University of Ostrava
Mlýnská 5
CZ-701 03 Ostrava
CZECH REPUBLIC
E-mail: juraj.kostra@osu.cz

** *** Department of Mathematics
Faculty of Wood sciences and Technology
Technical University of Zvolen
T. G. Masaryka 24
SK-960 53 Zvolen
SLOVAK REPUBLIC

E-mail: kostra@vsld.tuzvo.sk lazar@vsld.tuzvo.sk