

DOI: 10.2478/s12175-007-0056-x Math. Slovaca **58** (2008), No. 1, 77–94

OSCILLATION OF SOLUTIONS OF NEUTRAL PARABOLIC DIFFERENTIAL EQUATIONS WITH OSCILLATING COEFFICIENTS

N. Parhi* — Sunita Chand**

(Communicated by Michal Fečkan)

ABSTRACT. Sufficient conditions are obtained for oscillation of solutions of a class of neutral parabolic differential equations with oscillating coefficients.

©2008 Mathematical Institute Slovak Academy of Sciences

1. Introduction

In recent years, several authors (see [1]–[4], [6]–[12]) have studied oscillatory behaviour of solutions of parabolic differential equations. In [6], [7], [8], [12] parabolic equations of neutral type are considered with nonnegative coefficients. In [3], K u s a n o and Y o s h i d a have studied oscillatory behaviour of solutions of delay parabolic differential equations of the form

$$u_{t}(x,t) - \left(a(t)\Delta u(x,t) + \sum_{i=1}^{k} b_{i}(t)\Delta u(x,t-\sigma_{i})\right) + c(x,t,u(x,t),u(x,\tau_{1}(t)),\dots,u(x,\tau_{m}(t))) = f(x,t)$$

with oscillating coefficients $b_i(t)$.

It seems that no work is done for neutral parabolic differential equations with oscillating coefficients.

2000 Mathematics Subject Classification: Primary 35K55, 35R10, 34K11. Keywords: parabolic differential equation, neutral type, oscillation of a solution, Dirichlet boundary condition, Neumann boundary condition.

In this paper we consider nonlinear, nonhomogeneous parabolic differential equations of neutral type of the form

$$\frac{\partial}{\partial t} \left[u(x,t) + \sum_{i=1}^{\ell} a_i(t)u(x,t-\tau_i) \right] - \left[b(t)\Delta u(x,t) + \sum_{j=1}^{m} b_j(t)\Delta u(x,t-\sigma_j) \right] + c(x,t,u(x,t),u(x,t-\rho_1),\dots,u(x,t-\rho_r)) = f(x,t),$$
(1)

 $(x,t) \in Q$, where $Q := \Omega \times (0,\infty)$, Ω is a bounded domain in \mathbb{R}^n with piecewise smooth boundary Γ and Δ is the Laplacian in \mathbb{R}^n , along with following boundary conditions

(DBC)
$$u = \psi$$
 on $\Gamma \times (0, \infty)$,

(NBC)
$$\frac{\partial u}{\partial \nu} = \tilde{\psi}$$
 on $\Gamma \times (0, \infty)$,

where ψ , $\tilde{\psi}$ are real-valued continuous functions on $\Gamma \times (0, \infty)$.

Following assumptions are made for our use in the sequel:

- (C₁) Let $\tau_i \geq 0$, $1 \leq i \leq l$, $\sigma_j > 0$, $1 \leq j \leq m$ and $\rho_k \geq 0$, $1 \leq k \leq r$, be constants. Let $T_0 = \max\{\tau_i, \sigma_j, \rho_k : 1 \leq i \leq l, 1 \leq j \leq m, 1 \leq k \leq r\}$.
- (C₂) f(x,t) is a real valued continuous function on \overline{Q} and $a_i,b_j,b\in C([0,\infty),\mathbb{R}),$ $1\leq i\leq l,\ 1\leq j\leq m$ with b(t)>0.
- (C_3) $c: Q \times \mathbb{R}^{r+1} \to \mathbb{R}$ be continuous such that

$$c(x, t, \xi_0, \xi_1, \dots, \xi_r) \ge 0$$
 for $\xi_k > 0, \ 0 \le k \le r$

and

$$c(x, t, \xi_0, \xi_1, \dots, \xi_r) \le 0$$
 for $\xi_k < 0, \ 0 \le k \le r$.

By a solution of the problem (1), (DBC) (or (NBC)) we mean a real valued continuous function u(x,t) on $Q_{-T_0} := \Omega \times (-T_0, \infty)$ such that

$$\frac{\partial}{\partial t} \left[u(x,t) + \sum_{i=1}^{l} a_i(t)u(x,t-\tau_i) \right]$$

exists, (1) is satisfied identically in Q and (DBC) (or(NBC)) holds.

A solution u(x,t) of the problem (1), (DBC) (or(NBC)) is said to be oscillatory if u(x,t) has a zero in $Q_{t_0} = \Omega \times (t_0, \infty)$ for every $t_0 \ge 0$.

It is well-known that the first eigenvalue λ_1 of the eigenvalue problem

$$-\Delta w = \lambda w \qquad \text{in} \quad \Omega$$
$$w = 0 \qquad \text{on} \quad \Gamma$$

is positive and the corresponding eigenfunction $\phi(x)$ is of one sign in Ω . We assume that $\phi(x) > 0$ in Ω .

For a solution u of the problem (1), (DBC), we denote

$$U(t) = \int_{\Omega} u(x, t)\phi(x) dx, \qquad t > 0$$

$$\Psi(t) = \int_{\Gamma} \psi(x, t) \frac{\partial \phi(x)}{\partial \nu} ds, \qquad t > 0$$

$$F(t) = \int_{\Omega} f(x, t)\phi(x) dx, \qquad t > 0$$

and for a solution u of the problem (1), (NBC), we denote

$$\tilde{U}(t) = \int_{\Omega} u(x,t) dx, \qquad t > 0$$

$$\tilde{\Psi}(t) = \int_{\Gamma} \tilde{\psi}(x,t) ds, \qquad t > 0$$

$$\tilde{F}(t) = \int_{\Omega} f(x,t) dx, \qquad t > 0.$$

In Section 2, we consider a first-order neutral differential inequality of the form

$$\left[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i) \right]' + \sum_{j=1}^{m} b_j(t)y(t - \sigma_j) \le g(t), \qquad t \ge t_0 > 0, \quad (2)$$

where $b_i(t)$ is allowed to change sign. We assume that

 $(C_4) \ a_i, g \in C([t_0, \infty), \mathbb{R}), 1 \le i \le l,$

(C₅)
$$\tau_i \ge 0, \, \sigma_j > 0, \, 1 \le i \le l, \, 1 \le j \le m$$

(C₆)
$$b_j \in C([t_0, \infty), \mathbb{R}), j = 1, ..., m \text{ and } b_j(t) \ge 0 \text{ on } U_{n=1}^{\infty} I_{n,j},$$

where $I_{n,j} = (t_n - 2\sigma_j, t_n)$ and the sequence $\{t_n\}_{n=1}^{\infty}$ is chosen so that $\{I_{n,j}\}_{n=1}^{\infty}$ are disjoint intervals for each $j = 1, \ldots, m$ and $t_n \to \infty$ as $n \to \infty$.

In Section 3, we study the oscillation results of the problem (1), (DBC) and (1), (NBC).

2. Oscillation results for the neutral differential inequality

Lemma 1. Let (C_4) - (C_6) hold. Further, let

 (C_7) $-a_i \le a_i(t) \le 0$, where a_i is a positive constant, $1 \le i \le l$.

Let us assume that there is a subsequence $\{t_{n_k}\}_{k=1}^{\infty} \subset \{t_n\}_{n=1}^{\infty}$ with the properties that

N. PARHI — SUNITA CHAND

- (C₈) $\lim_{k\to\infty} n_k = \infty$ and $1 \leq \int_{t_{n_k}-\sigma_{j^*}}^{t_{n_k}} b_{j_*}(t) dt \leq c$, where $\sigma_{j^*} = \min_{1\leq j\leq m} \{\sigma_j\}$ and c is a positive constant,
- (C₉) $\lim_{k\to\infty} n_k = \infty$ and $\lim_{k\to\infty} G(t_{n_k}) = -\infty$ where

$$G(t) = \int_{t-\sigma_{j}*}^{t} g(s) ds + \int_{t-\sigma_{j}*}^{t} b_{j*}(s) \left(\int_{s-\sigma_{j*}}^{t-\sigma_{j*}} g(\theta) d\theta \right) ds.$$

Then (2) has no eventually positive bounded solution.

Proof. If possible, let y(t) be an eventually positive bounded solution of (2) on $[t_1, \infty)$ for some $t_1 \geq t_0 > 0$. Then $y(t - \tau_i) > 0$, $y(t - \sigma_j) > 0$, $1 \leq i \leq l$, $1 \leq j \leq m$ on $[t_2, \infty)$ for some $t_2 > t_1$. We may note that $\lim_{n \to \infty} (t_n - 2\sigma_j) = \infty$ for every j and hence there is an integer N > 0 such that $t_n - 2\sigma_j > t_2$ for $n \geq N$ and for every j. Letting $\xi_n = t_n - 2\sigma_{j*}$, we find that $(\xi_n, t_n) \subset (t_n - 2\sigma_j, t_n)$, $j = 1, \ldots m$. So $b_j(t) \geq 0$ in (ξ_n, t_n) and $y(t - \tau_i) > 0$, $y(t - \sigma_j) > 0$, $1 \leq i \leq l$, $1 \leq j \leq m$, for $t \in (\xi_n, t_n)$ and $n \geq N$. So it follows from (2) that

$$\left[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i)\right]' \le g(t)$$

in (ξ_n, t_n) . By continuity

$$\left[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i) \right]' \le g(t)$$

in $[\xi_n, t_n]$. For any $t \in [t_n - \sigma_{j*}, t_n]$, $[t - \sigma_{j*}, t_n - \sigma_{j*}] \subset [\xi_n, t_n]$ and hence integrating the above inequality we obtain

$$y(t_{n} - \sigma_{j*}) + \sum_{i=1}^{\ell} a_{i}(t_{n} - \sigma_{j*})y(t_{n} - \sigma_{j*} - \tau_{i})$$

$$-y(t - \sigma_{j*}) - \sum_{i=1}^{\ell} a_{i}(t - \sigma_{j*})y(t - \sigma_{j*} - \tau_{i}) \leq \int_{t - \sigma_{j*}}^{t_{n} - \sigma_{j*}} g(s) \, ds, \qquad (3)$$

that is

$$y(t - \sigma_{j*}) \ge y(t_n - \sigma_{j*}) + \sum_{i=1}^{\ell} a_i(t_n - \sigma_{j*})y(t_n - \sigma_{j*} - \tau_i) - \int_{t - \sigma_{j*}}^{t_n - \sigma_{j*}} g(s) \, \mathrm{d}s,$$

for $t \in [t_n - \sigma_{j*}, t_n]$. From (2) it follows that

$$\left[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i) \right]' + b_{j^*}(t)y(t - \sigma_{j^*}) \le g(t),$$

for $t \in [t_n - \sigma_{j*}, t_n]$. Hence

$$\[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i) \]' + b_{j*}(t)y(t_n - \sigma_{j*})$$

$$+b_{j*}(t) \sum_{i=1}^{\ell} a_i(t_n - \sigma_{j*})y(t_n - \sigma_{j*} - \tau_i) \le g(t) + b_{j*}(t) \int_{t - \sigma_{j*}}^{t_n - \sigma_{j*}} g(s) \, \mathrm{d}s.$$

Integrating the above inequality from $t_n - \sigma_{j*}$ to t_n , we get

$$y(t_n) + \sum_{i=1}^{\ell} a_i(t_n)y(t_n - \tau_i) - \sum_{i=1}^{\ell} a_i(t_n - \sigma_{j*})y(t_n - \sigma_{j*} - \tau_i)$$

$$+ y(t_n - \sigma_{j*}) \left(\int_{t_n - \sigma_{j*}}^{t_n} b_{j*}(t) dt - 1 \right)$$

$$+ \left(\sum_{i=1}^{\ell} a_i(t_n - \sigma_{j*})y(t_n - \sigma_{j*} - \tau_i) \right) \int_{t_n - \sigma_{j*}}^{t_n} b_{j*}(t) dt$$

$$\leq \int_{t_n - \sigma_{j*}}^{t_n} \left[g(t) + b_{j*}(t) \int_{t - \sigma_{j*}}^{t_n - \sigma_{j*}} g(s) ds \right] dt.$$

In particular.

$$y(t_{n_k}) + \sum_{i=1}^{\ell} a_i(t_{n_k}) y(t_{n_k} - \tau_i)$$

$$+ \left(\sum_{i=1}^{\ell} a_i(t_{n_k} - \sigma_{j*}) y(t_{n_k} - \sigma_{j*} - \tau_i) \right) \int_{t_{n_k} - \sigma_{j*}}^{t_{n_k}} b_{j*}(t) dt \le G(t_{n_k}),$$

that is

$$y(t_{n_k}) \le \sum_{i=1}^{\ell} a_i \left[y(t_{n_k} - \tau_i) + y(t_{n_k} - \sigma_{j*} - \tau_i) \int_{t_{n_k} - \sigma_{j*}}^{t_{n_k}} b_{j*}(t) dt \right] + G(t_{n_k})$$

$$\le L \left(\sum_{i=1}^{\ell} a_i \right) \left(1 + \int_{t_{n_k} - \sigma_{j*}}^{t_{n_k}} b_{j*}(s) ds \right) + G(t_{n_k})$$

$$\le L \left(\sum_{i=1}^{\ell} a_i \right) (1 + c)G(t_{n_k}),$$

where L is the bound of y(t). Taking the limit infimum on both sides we get the contradiction $0 \le \underline{\lim}_{k \to \infty} y(t_{n_k}) < 0$ due to (C_9) . Thus the proof is complete. \square

Lemma 2. Suppose that all the conditions of Lemma 1 are satisfied except (C_7) which is replaced by

 (C_{10}) $0 \le a_i(t) \le a_i$, where a_i is a positive constant, $1 \le i \le l$.

Then (2) has no eventually positive bounded solution.

Proof. Suppose that y(t) is an eventually positive bounded solution of (2) on $[t_1, \infty)$ for some $t_1 \geq t_0 > 0$. Then $y(t - \tau_i) > 0$, $y(t - \sigma_j) > 0$, $1 \leq i \leq l$, $1 \leq j \leq m$ on $[t_2, \infty)$ for some $t_2 > t_1$. Proceeding as in Lemma 1 we get (3),

for
$$t \in [t_n - \sigma_{j^*}, t_n]$$
, and hence $y(t - \sigma_{j^*}) \ge y(t_n - \sigma_{j^*}) - \sum_{i=1}^{\ell} a_i(t - \sigma_{j^*})y(t - \sigma_{j^*})$

$$\sigma_{j*} - \tau_i$$
) - $\int_{t-\sigma_{j*}}^{t_n-\sigma_{j*}} g(s) ds$.

From (2) it follows that

$$\left[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i) \right]' + b_{j*}(t)y(t - \sigma_{j*}) \le g(t)$$

for $t \in [t_n - \sigma_{j*}, t_n]$ and hence

$$\left[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i) \right]' + b_{j*}(t)y(t_n - \sigma_{j*})
- b_{j*}(t) \sum_{i=1}^{\ell} a_i(t - \sigma_{j*})y(t - \sigma_{j*} - \tau_i) \le g(t) + b_{j*}(t) \int_{t - \sigma_{j*}}^{t_n - \sigma_{j*}} g(s) \, ds.$$

Integrating the above inequality from $t_n - \sigma_{j*}$ to t_n ,

$$y(t_{n}) - \sum_{i=1}^{\ell} a_{i}(t_{n} - \sigma_{j*})y(t_{n} - \sigma_{j*} - \tau_{i}) + y(t_{n} - \sigma_{j*}) \left[\int_{t_{n} - \sigma_{j*}}^{t_{n}} b_{j*}(t) dt - 1 \right]$$
$$- \int_{t_{n} - \sigma_{j*}}^{t_{n}} b_{j*}(t) \sum_{i=1}^{\ell} a_{i}(t - \sigma_{j*})y(t - \sigma_{j*} - \tau_{i}) dt$$
$$\leq \int_{t_{n} - \sigma_{j*}}^{t_{n}} \left[g(t) + b_{j*}(t) \int_{t - \sigma_{j*}}^{t_{n} - \sigma_{j*}} g(s) ds \right] dt.$$

Thus, in particular,

$$y(t_{n_k}) - \sum_{i=1}^{\ell} a_i (t_{n_k} - \sigma_{j*}) y(t_{n_k} - \sigma_{j*} - \tau_i)$$
$$- \int_{t_{n_k} - \sigma_{j*}}^{t_n} b_{j*}(t) \sum_{i=1}^{\ell} a_i (t - \sigma_{j*}) y(t - \sigma_{j*} - \tau_i) dt \le G(t_{n_k}),$$

in view of the condition (C_8) , that is,

$$y(t_{n_k}) - \sum_{i=1}^{\ell} a_i y(t_{n_k} - \sigma_{j*} - \tau_i) - \sum_{i=1}^{\ell} a_i \int_{t_{n_k} - \sigma_{j*}}^{t_{n_k}} b_{j*}(s) y(s - \sigma_{j*} - \tau_i) \, \mathrm{d}s \leq G(t_{n_k}),$$

that is,

$$y(t_{n_k}) \le G(t_{n_k}) + \left(\sum_{i=1}^{\ell} a_i\right) L\left(1 + \int_{t_{n_k} - \sigma_{j*}}^{t_{n_k}} b_{j*}(s) \, \mathrm{d}s\right)$$

$$\le G(t_{n_k}) + L\left(\sum_{i=1}^{\ell} a_i\right) (1+c),$$

where L is the bound of y(t). Taking the limit infimum we get, $0 \le \underline{\lim}_{k \to \infty} y(t_{n_k})$ < 0, a contradiction. Hence the Lemma is proved.

3. Oscillation results

THEOREM 1. Let (C_1) – (C_3) , (C_6) and (C_7) hold. Then every bounded solution of (1), (DBC) oscillates provided that there is a subsequence $\{t_{n_k}\}_{k=1}^{\infty} \subset \{t_n\}_{n=1}^{\infty}$ with the properties that

$$(C_{11}) \quad (i) \lim_{k \to \infty} n_k = \infty,$$

(C₁₁) (i)
$$\lim_{k\to\infty} n_k = \infty$$
,
(ii) $1 \le \lambda_1 \int_{t_{n_k} - \sigma_{j*}}^{t_{n_k}} b_{j*}(s) \, \mathrm{d}s \le c$,
 $where \ \sigma_{j*} = \min_{1 \le j \le m} \{\sigma_j\} \ and \ c \ is \ a \ constant$,
(iii) $\lim_{k\to\infty} G(t_{n_k}) = -\infty \ and \ \overline{\lim}_{k\to\infty} G(t_{n_k}) = \infty$,

(iii)
$$\lim_{k \to \infty} G(t_{n_k}) = -\infty \text{ and } \overline{\lim}_{k \to \infty} G(t_{n_k}) = \infty,$$

$$\text{where } G(t) = \int_{t-\sigma_{j_*}}^t g(s) \, \mathrm{d}s + \int_{t-\sigma_{j_*}}^t b_{j_*}(s) \left(\int_{s-\sigma_{j_*}}^{t-\sigma_{j_*}} g(\theta) \, \mathrm{d}\theta \right) \, \mathrm{d}s$$

$$\text{and}$$

$$g(t) = F(t) - b(t)\Psi(t) - \sum_{j=1}^m b_j(t)\Psi(t-\sigma_j). \tag{4}$$

Proof. If possible, let u(x,t) be a bounded nonoscillatory solution of (1), (DBC). Then there exists $at_0 \ge 0$ such that $u(x,t) \ne 0$ in Q_{t_0} . Let u(x,t) > 0 in Q_{t_0} . Then multiplying (1) through by $\phi(x)$ and integrating the resulting identity with respect to x over the domain Ω , we get

$$\left[U(t) + \sum_{i=1}^{\ell} a_i(t)U(t - \tau_i) \right]' - \left[b(t) \int_{\Omega} \Delta u(x, t)\phi(x) \, \mathrm{d}x + \sum_{j=1}^{m} b_j(t) \int_{\Omega} \Delta u(x, t - \sigma_j)\phi(x) \, \mathrm{d}x \right] \le F(t)$$

for $t \geq t_1 > t_0$. By Green's formula,

$$\int_{\Omega} \Delta u(x,t)\phi(x) dx$$

$$= \int_{\Gamma} \frac{\partial u(x,t)}{\partial \nu} \phi(x) ds - \int_{\Gamma} \frac{\partial \phi(x)}{\partial \nu} u(x,t) ds + \int_{\Omega} u(x,t)\Delta \phi(x) dx$$

$$= -\int_{\Gamma} \psi(x,t) \frac{\partial \phi(x)}{\partial \nu} ds - \lambda_1 \int_{\Omega} u(x,t)\phi(x) dx = -\Psi(t) - \lambda_1 U(t).$$

Thus we have

$$\left[U(t) + \sum_{i=1}^{\ell} a_i(t)U(t - \tau_i) \right]' + \lambda_1 \left[b(t)U(t) + \sum_{j=1}^{m} b_j(t)U(t - \sigma_j) \right] \\
\leq F(t) - b(t)\Psi(t) - \sum_{j=1}^{m} b_j(t)\Psi(t - \sigma_j),$$

that is,

$$\left[U(t) + \sum_{i=1}^{\ell} a_i(t)U(t - \tau_i) \right]' + \lambda_1 \sum_{j=1}^{m} b_j(t)U(t - \sigma_j)
\leq F(t) - b(t)\Psi(t) - \sum_{j=1}^{m} b_j(t)\Psi(t - \sigma_j),$$

that is, U(t) is an eventually positive bounded solution of

$$\left[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i) \right]' + \lambda_1 \sum_{j=1}^{m} b_j(t)y(t - \sigma_j) \le g(t),$$

a contradiction to Lemma 1. If u(x,t) < 0 in Q_{t_0} , then setting v(x,t) = -u(x,t), we get, v(x,t) > 0 in Q_{t_0} and

$$\frac{\partial}{\partial t} \left[v(x,t) + \sum_{i=1}^{\ell} a_i(t)v(x,t-\tau_i) \right] - \left[b(t)\Delta v(x,t) + \sum_{j=1}^{m} b_j(t)\Delta v(x,t-\sigma_j) \right] - c(x,t,-v(x,t),-v(x,t-\rho_1),\ldots,-v(x,t-\rho_r)) = -f(x,t).$$

Proceeding as above we get the required contradiction. Hence the theorem is proved. $\hfill\Box$

Example 1. Consider the problem

$$\frac{\partial}{\partial t} \left[u(x,t) - u(x,t-2\pi) \right] - \left[u_{xx}(x,t) - 2\sin 2t u_{xx} \left(x, t - \frac{\pi}{4} \right) \right]
+ u(x,t-\pi) + t u(x,t-2\pi) = t \cos t \sin x - 2\sin 2t \cos(t - \frac{\pi}{4}) \sin x, \quad (5)$$

 $(x,t) \in (0,\pi) \times (0,\infty)$ with boundary conditions

$$u(0,t) = 0 = u(\pi, t). \tag{6}$$

As $a_1(t) = -1$, b(t) = 1, $b_1(t) = -2\sin 2t$, $\sigma_1 = \frac{\pi}{4}$, $\phi(x) = \sin x$ and $\lambda_1 = 1$, then

$$F(t) = \int_{0}^{\pi} \left[t \cos t \sin x - 2 \sin 2t \cos(t - \frac{\pi}{4}) \sin x \right] \sin x \, dx$$
$$= \frac{\pi}{2} \left(t \cos t - 2 \sin 2t \cos(t - \frac{\pi}{4}) \right)$$

and hence $g(t) = F(t) - 0 = \frac{\pi}{2}t\cos t - \pi\sin 2t\cos(t - \frac{\pi}{4})$

We notice that $b_j(t) = b_1(t) = -2\sin 2t$ changes sign and > 0 for $t \in (t_n - \frac{\pi}{2}, t_n) = (n\pi - \pi/2, n\pi)$ and

$$\int_{n-\sigma_{j*}}^{t_n} b_{j*}(t) dt = \int_{n\pi-\frac{\pi}{4}}^{n\pi} (-2\sin 2t) dt = \cos 2t \Big|_{n\pi-\frac{\pi}{4}}^{n\pi} = 1, \qquad n = 1, 2, \dots$$

Here

$$I_{n,1} = \left(t_n - \frac{\pi}{2}, t_n\right) = \left(n\pi - \frac{\pi}{4}, n\pi\right).$$

Moreover,

$$G(t_n) = \int_{t_n - \sigma_{j*}}^{t_n} g(s) \, ds + \int_{t_n - \sigma_{j*}}^{t_n} b_{j*}(s) \left(\int_{s - \sigma_{j*}}^{t_n - \sigma_{*}} g(\theta) \, d\theta \right) \, ds$$

$$= \frac{\pi}{2} \left[\int_{n\pi - \frac{\pi}{4}}^{n\pi} s \cos s \, ds + \int_{n\pi - \frac{\pi}{4}}^{n\pi} (-2\sin 2s) \left(\int_{s - \frac{\pi}{4}}^{n\pi - \frac{\pi}{4}} \theta \cos \theta \, d\theta \right) \, ds \right]$$

$$- \pi \left[\int_{n\pi - \frac{\pi}{4}}^{n\pi} \sin 2s \cos \left(s - \frac{\pi}{4} \right) \, ds$$

$$+ \int_{n\pi - \frac{\pi}{4}}^{n\pi} (-2\sin 2s) \left(\int_{s - \frac{\pi}{4}}^{n\pi - \frac{\pi}{4}} (\sin 2\theta) \cos \left(\theta - \frac{\pi}{4} \right) \, d\theta \right) \, ds \right]$$

$$= \frac{\pi}{2} \left[\cos n\pi + 2 \int_{n\pi - \frac{\pi}{4}}^{n\pi} s \sin 2s \sin \left(s - \frac{\pi}{4} \right) \, ds - \frac{\pi}{2} \int_{n\pi - \frac{\pi}{4}}^{n\pi} \sin 2s \sin \left(s - \frac{\pi}{4} \right) \, ds \right]$$

$$+2\int_{n\pi-\frac{\pi}{4}}^{n\pi} \sin 2s \cos(s-\frac{\pi}{4}) ds - \pi \left[\int_{n\pi-\frac{\pi}{4}}^{n\pi} \sin 2s \cos(s-\frac{\pi}{4}) ds + \frac{\sqrt{2}}{3} \left(\sin^3(n\pi-\frac{\pi}{4}) - \cos^3(n\pi-\frac{\pi}{4})\right) - \frac{2\sqrt{2}}{3}\int_{n\pi-\frac{\pi}{4}}^{n\pi} (\sin 2s) \left(\cos^3(s-\frac{\pi}{4}) - \sin^3(s-\frac{\pi}{4})\right) ds \right].$$

In the above identity all the terms are bounded except

$$\int_{n\pi - \frac{\pi}{4}}^{n\pi} s \sin 2s \sin \left(s - \frac{\pi}{4}\right) ds = \frac{\sqrt{2}}{3} \left[n\pi \cos^3 n\pi - \int_{n\pi - \frac{\pi}{4}}^{n\pi} \sin^3 s \, ds - \int_{n\pi - \frac{\pi}{4}}^{n\pi} \cos^3 s \, ds \right].$$

Then $\lim_{n\to\infty} G(t_n) = -\infty$ and $\overline{\lim}_{n\to\infty} G(t_n) = \infty$. So by Theorem 1 all the bounded solutions of (5), (6) oscillate in $(0,\pi)\times(0,\infty)$. In particular, $u(x,t)=\sin x\cos t$ is a bounded oscillatory solution of the problem.

THEOREM 2. Let (C_1) – (C_3) , (C_6) , (C_{10}) and (C_{11}) hold. Then every bounded solution of the problem (1), (DBC) oscillates.

The proof is similar to that of Theorem 1 and hence is omitted. In this case Lemma 2 is used.

Example 2. Consider the problem

$$\frac{\partial}{\partial t}[u(x,t) + 2u(x,t-\pi)] - \left[u_{xx}(x,t) - 2\sin 2t u_{xx}\left(x,t-\frac{\pi}{4}\right)\right] + (1+t)u(x,t-\pi) + u\left(x,t-\frac{3\pi}{2}\right) = -t\sin t\sin x - 2\sin 2t\sin\left(t-\frac{\pi}{4}\right)\sin x,
(x,t) \in (0,\pi) \times (0,\infty) \text{ with boundary conditions}$$
(7)

$$u(0,t) = 0 = u(\pi,t). \tag{8}$$

In this case, $\phi(x) = \sin x$, $\lambda_1 = 1$, $g(t) = -(\frac{\pi}{2})t\sin t - \pi\sin 2t\sin(t - \frac{\pi}{4})$, $b_{j*}(t) = -2\sin 2t$ and $\sigma_{j*} = \frac{\pi}{4}$. Thus, $\int_{t_n - \sigma_{j*}}^{t_n} b_{j*}(s) ds = \int_{t_n - \frac{\pi}{4}}^{t_n} (-2\sin 2s) ds = 1$, where

 $t_n = n\pi, n = 1, 2, ..., \text{ and } I_{n,j^*} = (t_n - \pi/2, t_n) \text{ and }$

$$\begin{split} G(t_n) &= \int\limits_{t_n - \sigma_{j*}}^{t_n} g(s) \, \mathrm{d}s + \int\limits_{t_n - \sigma_{j*}}^{t_n} b_{j*}(s) \left(\int\limits_{s - \sigma_{j*}}^{t_n - \sigma_{j*}} g(\theta) \, \mathrm{d}\theta \right) \, \mathrm{d}s \\ &= \frac{\pi}{2} \left[\int\limits_{t_n - \frac{\pi}{4}}^{t_n} (-s \sin s) \, \mathrm{d}s + \int\limits_{t_{n - \frac{\pi}{4}}}^{t_n} (-2 \sin 2s) \left(\int\limits_{s - \frac{\pi}{4}}^{t_{n - \frac{\pi}{4}}} (-\theta \sin \theta) \, \mathrm{d}\theta \right) \, \mathrm{d}s \right] \\ &- \pi \left[\int\limits_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \sin \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \right] \\ &+ \int\limits_{t_{n - \frac{\pi}{4}}}^{t_n} (-2 \sin 2s) \left(\int\limits_{s - \frac{\pi}{4}}^{t_n - \frac{\pi}{4}} (\sin 2\theta) \sin \left(\theta - \frac{\pi}{4} \right) \, \mathrm{d}\theta \right) \, \mathrm{d}s \right] \\ &= \frac{\pi}{2} \left[t_n \cos t_n + 2 \int\limits_{t_{n - \frac{\pi}{4}}}^{t_n} \left(s - \frac{\pi}{4} \right) \left(\sin 2s \right) \cos \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \right. \\ &- 2 \int\limits_{t_{n - \frac{\pi}{4}}}^{t_n} (\sin 2s) \sin \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \right] - \pi \left[\int\limits_{t_{n - \frac{\pi}{4}}}^{t_n} (\sin 2s) \sin \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \right. \\ &+ \frac{2}{3} \left(\sin^3 \left(t_n - \frac{\pi}{4} \right) + \cos^3 \left(t_n - \frac{\pi}{4} \right) \right) \\ &+ \frac{4}{3} \int\limits_{t_{n - \frac{\pi}{4}}}^{t_n} (\sin 2s) \left(\sin^3 \left(s - \frac{\pi}{4} \right) + \cos^3 \left(s - \frac{\pi}{4} \right) \right) \, \mathrm{d}s \right] \\ &= \frac{\pi}{2} \left[t_n \cos t_n - \frac{2\sqrt{2}}{3} t_n \cos t_n + \frac{2}{3} t_n \cos^3 t_n - \frac{\pi}{6} \cos^3 t_n \\ &- \frac{1}{3\sqrt{2}} \sin^3 \left(t_n - \frac{\pi}{4} \right) - \frac{3}{3\sqrt{2}} \sin \left(t_n - \frac{\pi}{4} \right) + \frac{3}{\sqrt{2}} \cos t_n \right. \\ &- \frac{3}{\sqrt{2}} \cos \left(t_n - \frac{\pi}{4} \right) - \frac{1}{3\sqrt{2}} \cos 3t_n + \frac{1}{3\sqrt{2}} \cos^3 \left(t_n - \frac{\pi}{4} \right) \\ &+ \left(\frac{\pi}{\sqrt{2}} - 2\sqrt{2} \right) \frac{\cos^3 t_n}{3} - \left(\frac{\pi}{\sqrt{2}} - 2\sqrt{2} \right) \frac{\cos^3 \left(t_n - \frac{\pi}{4} \right)}{3} \right. \end{split}$$

$$+ \left(\frac{\pi}{\sqrt{2}} + 2\sqrt{2}\right) \frac{\sin^{3}(t_{n} - \frac{\pi}{4})}{3}$$

$$- \pi \left[\int_{t_{n} - \frac{\pi}{4}}^{t_{n}} (\sin 2s) \sin\left(s - \frac{\pi}{4}\right) ds + \frac{2}{3} \left(\sin^{3}\left(t_{n} - \frac{\pi}{4}\right) + \cos^{3}\left(t_{n} - \frac{\pi}{4}\right)\right) + \frac{4}{3} \int_{t_{n} - \frac{\pi}{4}}^{t_{n}} (\sin 2s) \left(\sin^{3}\left(s - \frac{\pi}{4}\right) + \cos^{3}\left(s - \frac{\pi}{4}\right)\right) ds \right].$$

Hence

$$\underline{\lim}_{n\to\infty} G(t_n) = -\infty$$
 and $\overline{\lim}_{n\to\infty} G(t_n) = \infty$.

Thus all bounded solutions of the problem (7), (8) oscillate in $(0,\pi)\times(0,\infty)$. In particular, $u(x,t) = \sin x \sin t$ is a bounded oscillatory solution of the problem.

THEOREM 3. Let (C_1) , (C_2) , (C_7) be satisfied. Let

 (C_{12}) $c: Q \times \mathbb{R}^{r+1} \to \mathbb{R}$ be continuous such that

$$c(x, t, \xi_0, \xi_1, \dots, \xi_r) \ge p(t)\xi_{k^*}, \qquad \xi_k \ge 0,$$

 $\le p(t)\xi_{k^*}, \qquad \xi_k \le 0$

for some $k^* \in \{1, \ldots, r\}$, where $0 \le k \le r$, $p(t) \ge 0$ in $U_{n=1}^{\infty} I_n$, where $I_n = (t_n - 2\rho_{k*}, t_n)$ and $\{t_n\}$ is a sequence such that I_n 's are disjoint intervals, and $t_n \to \infty$ as $n \to \infty$.

Then every bounded solution of the problem (1), (NBC) oscillates provided that there exists a subsequence

$$\{t_{n_{\alpha}}\}_{\alpha=1}^{\infty} \subset \{t_n\}_{n=1}^{\infty}$$

such that

(C₁₃) (i)
$$\lim_{\alpha \to \infty} n_{\alpha} = \infty$$

(ii)
$$1 \le \int_{t_{n_{\alpha}} - \rho_{k*}}^{t_{n_{\alpha}}} p(t) dt \le c$$

(iii)
$$\lim_{\alpha \to \infty} \frac{\lim_{\alpha \to \infty} \tilde{G}(t_{n_{\alpha}}) = -\infty}{\tilde{G}(t_{n_{\alpha}})} = -\infty \text{ and } \lim_{\alpha \to \infty} \tilde{G}(t_{n_{\alpha}}) = \infty$$
where c is a constant,

$$\tilde{G}(t) = \int_{t-\rho_{k*}}^{t} \tilde{g}(s) \, \mathrm{d}s + \int_{t-\rho_{k*}}^{t} p(s) \left(\int_{s-\rho_{k*}}^{t-\rho_{k*}} \tilde{g}(\theta) \, \mathrm{d}\theta \right) \, \mathrm{d}s$$

and

$$\tilde{g}(t) = \tilde{F}(t) + b(t)\tilde{\Psi}(t) + \sum_{j=1}^{m} b_j(t)\tilde{\Psi}(t - \sigma_j)$$
(9)

Proof. If possible, let u(x,t) be a bounded nonoscillatory solution of (1), (NBC). Hence $u(x,t) \neq 0$ in Q_{t_0} for some $t_0 \geq 0$. Let u(x,t) > 0 in Q_{t_0} .

Integrating (1) with respect to x and using Green's formula and (C_{12}) , we get,

$$\left[\tilde{U}(t) + \sum_{i=1}^{\ell} a_i(t)\tilde{U}(t-\tau_i)\right]' + p(t)\tilde{U}(t-\rho_{k*}) \le \tilde{g}(t)$$

for $t > t_0 + T_0$, that is, $\tilde{U}(t)$ is an eventually positive bounded solution of

$$\left[y(t) + \sum_{i=1}^{\ell} a_i(t)y(t - \tau_i) \right]' + p(t)y(t - \rho_{k*}) \le \tilde{g}(t),$$

a contradiction, due to Lemma 1. If u(x,t) < 0, then putting v(x,t) = -u(x,t) and proceeding as above we get the required contradiction. Hence the proof of the theorem is complete.

Example 3. Consider the problem

$$\frac{\partial}{\partial t}[u(x,t) - u(x,t-2\pi)] - [u_{xx}(x,t) + u_{xx}(x,t-\pi)]
+ tu(x,t-2\pi) - 2\sin 2tu(x,t-\frac{\pi}{4})$$

$$= -2\sin 2t\sin x\cos(t-\frac{\pi}{4}) + t\sin x\cos t,$$
(10)

 $(x,t) \in (0,\pi) \times (0,\infty)$ with boundary conditions

$$-u_x(0,t) = -\cos t = u_x(\pi,t).$$
 (11)

Thus,

$$\begin{split} \tilde{\Psi}(t) &= \tilde{\psi}(\pi,t) - \tilde{\psi}(0,t) = -2\cos t \quad \text{and} \quad \tilde{\Psi}(t-\pi) = 2\cos t, \\ \tilde{g}(t) &= -4\sin 2t\cos \left(t - \frac{\pi}{4}\right) + 2t\cos t, \\ p(t) &= -2\sin 2t, \quad \rho_{k*} = \frac{\pi}{4}, \\ \int_{t_n - \rho_{k*}}^{t_n} p(s) \, \mathrm{d}s &= \int_{t_n - \frac{\pi}{4}}^{t_n} -2\sin 2s \, \mathrm{d}s = 1, \end{split}$$

where $t_n = n\pi$, $n = 1, 2, \ldots, I_n = (t_n - \frac{\pi}{2}, t_n)$. Furthermore,

$$\begin{split} \tilde{G}(t_n) &= \int\limits_{t_n - \rho_{k*}}^{t_n} \tilde{g}(s) \, \mathrm{d}s + \int\limits_{t_n - \rho_{k*}}^{t_n} p(s) \bigg(\int\limits_{s - \rho_{k*}}^{t_n - \rho_{k*}} \tilde{g}(\theta) \, \mathrm{d}\theta \bigg) \, \mathrm{d}s \\ &= 2 \Bigg[\int\limits_{t_n - \frac{\pi}{4}}^{t_n} s \cos s \, \mathrm{d}s + \int\limits_{t_n - \frac{\pi}{4}}^{t_n} \bigg(-2 \sin 2s \bigg(\int\limits_{s - \frac{\pi}{4}}^{t_n - \frac{\pi}{4}} \theta \cos \theta \, \mathrm{d}\theta \bigg) \bigg) \, \mathrm{d}s \bigg] \\ &- 4 \Bigg[\int\limits_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \cos \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \\ &+ \int\limits_{t_n - \frac{\pi}{4}}^{t_n} (-2 \sin 2s) \bigg(\int\limits_{s - \frac{\pi}{4}}^{t_n - \frac{\pi}{4}} \sin 2\theta \cos (\theta - \frac{\pi}{4}) \, \mathrm{d}\theta \bigg) \, \mathrm{d}s \bigg] \\ &= 2 \Bigg[\cos t_n + 2 \int\limits_{t_n - \frac{\pi}{4}}^{t_n} \theta \sin 2\theta \sin (\theta - \frac{\pi}{4}) \, \mathrm{d}\theta - \frac{\pi}{2} \int\limits_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \sin (s - \frac{\pi}{4}) \, \mathrm{d}s \\ &+ 2 \int\limits_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \cos (s - \frac{\pi}{4}) \, \mathrm{d}s \bigg] \\ &- 4 \Bigg[\int\limits_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \cos (s - \frac{\pi}{4}) \, \mathrm{d}s + \frac{\sqrt{2}}{3} \left(\sin^3 \left(t_n - \frac{\pi}{4} \right) - \cos^3 \left(t_n - \frac{\pi}{4} \right) \right) \\ &- \frac{2\sqrt{2}}{3} \Bigg(\int\limits_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \cos^3 \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s - \int\limits_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \sin^3 \left(s - \frac{\pi}{4} \right) \bigg) \, \mathrm{d}s \Bigg]. \end{split}$$

In the above identity all the terms are bounded except

$$\int_{t_n - \frac{\pi}{4}}^{t_n} \theta \sin 2\theta \sin \left(\theta - \frac{\pi}{4}\right) d\theta = \frac{\sqrt{2}}{3} \left[t_n \cos^3 t_n - \int_{t_n - \frac{\pi}{4}}^{t_n} \sin^3 s ds - \int_{t_n - \frac{\pi}{4}}^{t_n} \cos^3 s ds \right].$$

Hence

$$\underline{\lim}_{n\to\infty} \tilde{G}(t_n) = -\infty$$
 and $\overline{\lim}_{n\to\infty} \tilde{G}(t_n) = \infty$.

Thus by Theorem 3, bounded solutions of the problem (10), (11) oscillate in Q. In particular, $u(x,t) = \sin x \cos t$ is a bounded oscillatory solution of the problem.

N. PARHI — SUNITA CHAND

Remark 1. Theorem 3 holds if the condition (C_{12}) is replaced by the following one:

$$c(x, t, \xi_0, \xi_1, \dots, \xi_r) \begin{cases} \geq \sum_{k=0}^r p_k(t)\xi_k, & \text{if } \xi_k > 0 \\ \leq \sum_{k=0}^r p_k(t)\xi_k, & \text{if } \xi_k < 0, \end{cases}$$

where $0 \le k \le r$, $p_0(t) \ge 0$ for $t \ge 0$, $p_k(t) \ge 0$ on $\bigcup_{n=1}^{\infty} I_{n,k}$, $I_{n,k} = (t_n - 2\rho_k, t_n)$ for $1 \le k \le r$ with a sequence $\{t_n\}$ such that $t_n \to \infty$ as $n \to \infty$ and $I_{n,k}$ are disjoint intervals.

THEOREM 4. Suppose that all the conditions of Theorem 3 are satisfied except (C_7) which is replaced by (C_{10}) . Then every bounded solution of (1), (NBC) oscillates.

The proof proceeds in the lines of that of Theorem 3 and makes use of Lemma 2.

Example 4. Consider the problem

$$\frac{\partial}{\partial t} [u(x,t) + 2u(x,t-\pi)] - [u_{xx}(x,t) + u_{xx}(x,t-\pi)]
+ tu(x,t-\pi) + u(x,t-\frac{3\pi}{2}) - 2\sin 2tu\left(x,t-\frac{\pi}{4}\right)
= -2\sin 2t\sin x\sin(t-\frac{\pi}{4}) - t\sin x\sin t,$$
(12)

 $(x,t) \in (0,\pi) \times (0,\infty)$ with boundary conditions

$$-u_x(0,t) = -\sin t = u_x(\pi,t). \tag{13}$$

In this case, $\tilde{\Psi}(t) = -2\sin t$, $\tilde{\Psi}(t-\pi) = 2\sin t$, $p(t) = -2t\sin 2t$, $\rho_{k*} = \frac{\pi}{4}$ and $\tilde{g}(t) = -4\sin 2t\sin(t-\frac{\pi}{4}) - 2t\sin t$,

$$\int_{t_n - \rho_{k*}}^{t_n} p(s) ds = \int_{t_n - \frac{\pi}{4}}^{t_n} -2\sin 2s ds = 1.$$

Furthermore,

$$\begin{split} \tilde{G}(t_n) &= \int_{t_n - \rho_{k*}}^{t_n} \tilde{g}(s) \, \mathrm{d}s + \int_{t_n - \rho_{k*}}^{t_n} p(s) \left(\int_{s - \rho_{k*}}^{t_n - \rho_{k*}} \tilde{g}(\theta) \, \mathrm{d}\theta \right) \, \mathrm{d}s \\ &= 2 \left[\int_{t_n - \frac{\pi}{4}}^{t_n} -s \sin s \, \mathrm{d}s + \int_{t_n - \frac{\pi}{4}}^{t_n} \left(-2 \sin 2s \right) \left(\int_{s - \frac{\pi}{4}}^{t_n - \frac{\pi}{4}} -\theta \sin \theta \, \mathrm{d}\theta \right) \, \mathrm{d}s \right] \\ &- 4 \left[\int_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \sin \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \right. \\ &+ \int_{t_n - \frac{\pi}{4}}^{t_n} \left(-2 \sin 2s \right) \left(\int_{s - \frac{\pi}{4}}^{t_n - \frac{\pi}{4}} \sin 2\theta \sin \left(\theta - \frac{\pi}{4} \right) \, \mathrm{d}\theta \right) \, \mathrm{d}s \right] \\ &= 2 \left[t_n \cos t_n + 2 \int_{t_n - \frac{\pi}{4}}^{t_n} s \sin 2s \cos \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \right. \\ &- \frac{\pi}{2} \int_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \cos \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s - 2 \int_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \sin \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \right] \\ &- 4 \left[\int_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \sin \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s + \frac{\sqrt{2}}{3} \left(\sin^3 \left(t_n - \frac{\pi}{4} \right) + \cos^3 \left(t_n - \frac{\pi}{4} \right) \right) \right. \\ &+ \frac{2\sqrt{2}}{3} \left\{ \int_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \sin^3 \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s + \int_{t_n - \frac{\pi}{4}}^{t_n} \sin 2s \cos^3 \left(s - \frac{\pi}{4} \right) \, \mathrm{d}s \right\} \right]. \end{split}$$

All the terms in the above identity are bounded except $t_n \cos t_n$ and

$$\int_{t_{n}-\frac{\pi}{4}}^{t_{n}} \theta \sin 2\theta \cos \left(\theta - \frac{\pi}{4}\right) d\theta$$

$$= \frac{\sqrt{2}}{3} \left[-t_{n} \cos^{3} t_{n} + \frac{1}{\sqrt{2}} t_{n} \cos^{3} t_{n} - \sqrt{2}\pi \cos^{3} t_{n} + \int_{t_{n}-\frac{\pi}{4}}^{t_{n}} \cos^{3} s ds - \int_{t_{n}-\frac{\pi}{4}}^{t_{n}} \sin^{3} s ds \right],$$

N. PARHI — SUNITA CHAND

which implies that $\lim_{n\to\infty} \tilde{G}(t_n) = -\infty$ and $\overline{\lim}_{n\to\infty} \tilde{G}(t_n) = \infty$. Hence, by Theorem 4, the bounded solutions of (12), (13) oscillate. In particular, $u(x,t) = \sin x \sin t$ is a bounded oscillatory solution of the problem.

REFERENCES

- [1] BAINOV, D.—MINCHEV, E.: Oscillations of solutions of impulsive nonlinear parabolic differential-difference equations, Internat. J. Theoret. Phys. 35 (1996), 207–215.
- [2] BAINOV, D.—MINCHEV, E.: Oscillation of the solutions of impulsive parabolic equations, J. Comput. Appl. Math. 69 (1996), 207–214.
- [3] KUSANO, T.—YOSHIDA, N.: Oscillation of parabolic equations with oscillating coeffcients, Hiroshima Math. J. 24 (1994), 123–133.
- [4] MINCHEV, E.—YOSHIDA, N.: Oscillations of solutions of vector differential equations of parabolic type with functional arguments, J. Comput. Appl. Math. 151 (2003), 107–117.
- [5] MINCHEV, E.: Forced oscillation of solutions of systems of hyperbolic equations of neutral type, Appl. Math. Comput. 155 (2004), 427–438.
- [6] MISHEV, D. P.—BAINOV, D. D.: Oscillation of the solutions of parabolic differential equations of neutral type, Appl. Math. Comput. 28 (1998), 97–111.
- [7] MISHEV, D. P.: Necessary and sufficient conditions for oscillation of neutral type of parabolic differential equations, C. R. Acad. Bulgare Sci. 44 (1991), 11–14.
- [8] PARHI, N.: Oscillatory behaviour of solutions of a class of parabolic equations of neutral type, J. Math. Phys. Sci. 30 (1996), 317–338.
- [9] SHOUKAKU, Y.—YOSHIDA, N.: Oscillatory properties of solutions of nonlinear parabolic equations with functional arguments, Indian J. Pure Appl. Math. 34 (2003), 1469–1478.
- [10] YOSHIDA, N.: , Oscillations of nonlinear parabolic equations with functional arguments, Hiroshima. Math. J. 16 (1986), 305–314.
- [11] YOSHIDA, N.: Forced oscillation of solutions of parabolic equations, Bull. Austral. Math. Soc. 36 (1987), 289–294.
- [12] YOSHIDA, N.: Forced Oscillation of parabolic equations with deviating arguments, Math. J. Toyama Univ. 15 (1992), 131–142.

Received 13. 12. 2005

* MIG-II, 249 Satya Sai Enclave Khandagiri Bhubaneswar-751030 INDIA

E-mail: parhi2002@rediffmail.com

** Department of Mathematics
Institute of Technical Education and Research
Jagmohannagar, Jagamara
Bhubaneswar-751030
Orissa
INDIA

E-mail: mamichand@yahoo.co.in