

DOI: 10.2478/s12175-007-0027-2 Math. Slovaca **57** (2007), No. 4, 333–338

RELATIVE PURITY OVER NOETHERIAN RINGS

Ladislav Bican

(Communicated by Tibor Katriňák)

ABSTRACT. In this note we are going to show that if M is a left module over a left noetherian ring R of the infinite cardinality $\lambda \geq |R|$, then its injective hull E(M) is of the same size. Further, if M is an injective module with $|M| \geq (2^{\lambda})^+$ and $K \leq M$ is its submodule such that $|M/K| \leq \lambda$, then K contains an injective submodule L with $|M/L| \leq 2^{\lambda}$. These results are applied to modules which are torsionfree with respect to a given hereditary torsion theory and generalize the results obtained by different methods in author's previous papers: $[A \ note \ on \ pure \ subgroups$, Contributions to General Algebra 12. Proceedings of the Vienna Conference, June 3–6, 1999, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 105–107], $[Pure \ subgroups$, Math. Bohem. 126 (2001), 649–652].

©2007 Mathematical Institute Slovak Academy of Sciences

In this paper R denotes an associative ring with identity, which is usually left noetherian, and R-mod stands for the category of all unitary left R-modules. As usual, for a submodule K of the module M and for any element $x \in M$ the annihilator (left) ideal (K:x) of R consists of all elements $r \in R$ with $rx \in K$. Dualizing the notion of the injective envelope of a module ([7]) H. Bass [1] investigated the projective cover of a module and he characterized the class of so called perfect rings over which every module has a projective cover. By a projective cover of a module M it is meant an epimorphism $\varphi \colon F \to M$ with F projective and such that the kernel K of φ is superfluous in F in the sense that the equality K + L = F implies L = F whenever L is a submodule of F.

²⁰⁰⁰ Mathematics Subject Classification: Primary 16P40, 16D50, 16D90, 18E40. Keywords: left noetherian ring, injective module, injective hull, hereditary torsion theory, relative purity.

This research has been partially supported by the Grant Agency of the Charles University, grant #GAUK 301-10/203115/B-MAT/MFF and also by the institutional grant MSM 113 200 007.

LADISLAV BICAN

Recently, the general theory of covers has been studied intensively. If \mathcal{G} is an abstract class of modules (i.e. \mathcal{G} is closed under isomorphic copies) then a homomorphism $\varphi \colon G \to M$ with $G \in \mathcal{G}$ is called a \mathcal{G} -precover of the module M if for each homomorphism $f \colon F \to M$ with $F \in \mathcal{G}$ there is $g \colon F \to G$ such that $\varphi g = f$. A \mathcal{G} -precover of M is said to be a \mathcal{G} -cover if every endomorphism f of G with $\varphi f = \varphi$ is the automorphism of G. It is well-known (see e.g. [11]) that an epimorphism $\varphi \colon F \to M$, F projective, is a projective cover of the module M if and only if it is a \mathcal{P} -cover of M, where \mathcal{P} denotes the class of all projective modules. Denoting by \mathcal{F} the class of all flat modules, the Enochs' conjecture ([8]), whether every module over any associative ring with identity has an \mathcal{F} -cover, has been recently solved in affirmative independently by $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ are $E \colon E \cap c \cap s$ and $E \colon E \cap c \cap s$ and $E \colon E \cap s$

In the general theory of precovers several types of purities are used. In some cases (see e.g. [5], [6], [10], [11]) the existence of pure submodules in the kernels of some homomorphisms plays an important role. Using the general theory of covers, in [6] the main result of this note appears as a corollary. However, the direct proof presented here is of some interest because the existence of non-zero pure submodules of "large" flat modules contained in submodules with "small" factors is sufficient for the existence of flat covers (see [6] and [4]).

In my previous paper [2] I proved that if λ is an infinite cardinal, then for any torsionfree abelian group F of the size $|F| \geq (2^{\lambda})^+$ and any its subgroup K such that F/K is p-primary and $|F/K| \leq \lambda$, the subgroup K contains a non-zero subgroup L pure in F. This result was extended in [3] to the case when F/K is an arbitrary torsion group of the size at most λ , but the lower bound for the size of F is $(\nu^{\aleph_0})^+$, where ν is the first cardinal with $\lambda_i < \nu$, and λ_i are given by $\lambda_0 = \lambda$ and $\lambda_{i+1} = 2^{\lambda_i}$ for every $i = 0, 1, \ldots$

The purpose of this note is to solve this problem for modules over left noetherian rings, which are torsionfree with respect to a given hereditary torsion theory for the category R-mod. As a consequence we obtain that in the abelian groups category the estimation $(2^{\lambda})^+$ valid for the p-primary case is good enough for the general case. Moreover, we shall see that the submodule L of K can be found "large" in the sense that $|F/L| \leq 2^{\lambda}$. As a by-product we shall also prove that for any module M over a left noetherian ring R of the size $|M| \geq \max(|R|, \aleph_0)$ the injective envelope E(M) of M is of the same size as M.

THEOREM 1. Let R be a left noetherian ring, $\mu = \max(|R|, \aleph_0)$. If M is an arbitrary module then

- (i) |E(M)| = |M| whenever $|M| \ge \mu$;
- (ii) $|E(M)| \le \mu$ whenever $|M| < \mu$.

RELATIVE PURITY OVER NOETHERIAN RINGS

Proof.

(i) Proving indirectly, let us suppose that |E(M)| > |M| for some $M \in R$ -mod with $|M| \ge \mu$. For each finite subset $L = \{a_1, \ldots, a_m\}$ we fix an order on L and consequently we shall consider L as a finite sequence. Now for each left ideal I of R we fix a finite set G_I of generators of I and to each element $x \in M_0 =$ $E(M) \setminus M$ we associate the finite sequence $S_x = \{a_1 x, \dots, a_m x\} \subseteq M$ in such a way that $I_x = (M:x)$ and $G_{I_x} = \{a_1, \ldots, a_m\}$ (as a sequence). Further, we define the equivalence relation \sim_0 on the set \overline{M}_0 by setting $x \sim_0 y$ if and only if $(M:x)=I_x=I_y=(M:y)$ and $S_x=S_y$ (as sequences, again). Obviously, there is at most |M| different sequences of the form S_x and consequently there exists an equivalence class M_0 under \sim_0 having |E(M)| elements. Finally, we put $x_0 = 0$, we select an element $x_1 \in M_0$ arbitrarily and we shall continue by the induction. Assume that for some $n < \omega$ we have constructed the subsets M_0, M_1, \ldots, M_n of E(M) and the elements $x_0, x_1, \ldots, x_{n+1}$ in such a way that $M_0 \supseteq M_1 \supseteq \cdots \supseteq M_n, x_0 = 0, x_{i+1} \in M_i, |M_i| = |E(M)| \text{ for each } i = 0, 1, \dots, n$ and $I_{x-x_i} = I_{y-x_i}$, $S_{x-x_i} = S_{y-x_i}$ for all $x, y \in M_i$ and all i = 0, 1, ..., n. Setting $M_{n+1} = \{x \in M_n : x - x_{n+1} \notin M\}$ we obviously get the set of the size |E(M)| and we define the equivalence relation \sim_{n+1} on the set M_{n+1} by setting $x \sim_{n+1} y$ if and only if $I_{x-x_{n+1}} = I_{y-x_{n+1}}$ and $S_{x-x_{n+1}} = S_{y-x_{n+1}}$. By the same argument as in the case n = 0 we obtain the existence of an equivalence class M_{n+1} under \sim_{n+1} having |E(M)| elements and we finally select an element $x_{n+2} \in M_{n+1}$ arbitrarily. To finish the proof, let $n \in \{1, 2, ...\}$ and $x \in M_n \subseteq M_{n-1}$ be arbitrary. Then $x \sim_n x_{n+1}$ yields $I_{x-x_n} = I_{x_{n+1}-x_n} = I$ and for $G_I = \{a_1, \dots, a_m\}$ it is $a_i(x - x_n) = a_i(x_{n+1} - x_n), i = 1, \dots, m$. Thus, for each $r \in I$, $r = \sum_{i=1}^{m} r_i a_i$, we have $r(x - x_{n+1}) = r(x - x_n) - r(x_{n+1} - x_n) = r(x_n) - r(x_{n+1} - x_n) = r(x_n) - r(x_n) - r(x_n) - r(x_n) = r(x_n) - r(x_n) - r(x_n) - r(x_n) = r(x_n) - r(x_n)$ $\sum_{i=1}^{m} r_i a_i(x - x_n) - \sum_{i=1}^{m} r_i a_i(x_{n+1} - x_n) = 0.$ On the other hand, $x - x_{n+1} \notin M$ and so there is an element $s \in I_{x-x_{n+1}} = (M:(x-x_{n+1}))$ with $0 \neq s(x-x_{n+1}) \in M$, M being essential in E(M). We have thus proved that $I_{x-x_n} \subseteq I_{x-x_{n+1}}$ for each $n=1,2,\ldots$, which contradicts the hypothesis that the ring R is left noetherian.

(ii) If the ring R is infinite, then $E(R) \oplus E(M) \cong E(R \oplus M)$ is of the size μ by (i), while for R finite $E(R^{(\omega)} \oplus M)$ is of the size μ again, and the assertion follows easily.

LADISLAV BICAN

For the sake of completeness we sketch the proof of the following technical lemma, the proof of which can be found in [5]. Recall, that two homomorphisms $f \colon F \to M$ and $g \colon G \to M$ are called M-equivalent, if there is an isomorphism $\pi \colon F \to G$ such that $g\pi = f$.

Lemma 2. Let $F = \bigoplus_{\delta \in D} F_{\delta}$ be a direct sum of modules and let $f : F \to M$ be an arbitrary homomorphism. Then there is a subset $D' \subseteq D$ such that $F = U \oplus V$, where $U = \bigoplus_{\delta \in D'} F_{\delta}$, $V \subseteq \operatorname{Ker} f$ and for $\delta, \varepsilon \in D'$, $\delta \neq \varepsilon$, the restrictions $f|_{F_{\delta}}$ and $f|_{F_{\varepsilon}}$ are not M-equivalent.

Proof. Denoting $f_{\delta} = f|_{F_{\delta}}$ for each $\delta \in D$, we can define the equivalence relation \sim on the set D in such a way that we put $\delta \sim \varepsilon$ if and only if f_{δ} and f_{ε} are M-equivalent. Let D' be any representative set of equivalence classes under \sim . If $\delta \sim \varepsilon$, then there is an isomorphism $\pi_{\varepsilon\delta} \colon F_{\delta} \to F_{\varepsilon}$ such that $f_{\varepsilon}\pi_{\varepsilon\delta} = f_{\delta}$. Setting $G_{\varepsilon\delta} = \{x - \pi_{\varepsilon\delta}(x) : x \in F_{\delta}\}$ and $D'_{\delta} = \{\varepsilon \in D : \varepsilon \sim \delta, \varepsilon \neq \delta\}$, it is a routine to check that $F = \bigoplus_{\delta \in D'} \left(F_{\delta} \oplus \left(\bigoplus_{\varepsilon \in D'_{\delta}} G_{\varepsilon\delta}\right)\right)$, the inclusion $V = \int_{\delta} \left(F_{\delta} \oplus \left(\bigoplus_{\varepsilon \in D'_{\delta}} G_{\varepsilon\delta}\right)\right)$

$$\bigoplus_{\delta \in D'} \left(\bigoplus_{\varepsilon \in D'_{\delta}} G_{\varepsilon \delta} \right) \subseteq \operatorname{Ker} f \text{ is obvious and the proof is complete.} \qquad \Box$$

THEOREM 3. Let R be a left noetherian ring and let $\lambda \ge \mu = \max(|R|, \aleph_0)$ be an arbitrary cardinal number. If M is an injective module with $|M| \ge (2^{\lambda})^+$ and if K is its submodule such that $|M/K| \le \lambda$, then there exists a submodule $L \subseteq K$ of M such that L is injective and $|M/L| \le 2^{\lambda}$.

Proof. Since R is left noetherian, we can decompose the module M into a direct sum $M = \bigoplus_{\delta \in D} M_{\delta}$ of injective hulls of cyclic modules. By Lemma 2 there is a subset $D' \subseteq D$ such that $M = U \oplus V$, where $V \subseteq \operatorname{Ker} \pi$, $\pi \colon M \to M/K$ being the canonical projection, and $U = \bigoplus_{\delta \in D'} M_{\delta}$, where $\pi|_{M_{\delta}}$ and $\pi|_{M_{\varepsilon}}$ are not M/K-equivalent whenever $\delta, \varepsilon \in D'$, $\delta \neq \varepsilon$. There is at most μ left ideals of R, the ring R being left noetherian, hence at most μ different cyclic modules and consequently, by Theorem 1, at most $(\lambda^{\mu})^{\mu} \leq \lambda^{\lambda} = 2^{\lambda}$ homomorphisms from injective hulls of cyclic modules into M/K. So, it suffices to put L = V, since in this case we have $L \subseteq K$ and $|M/L| = |U| \leq 2^{\lambda}$.

Recall, that a hereditary torsion theory $\sigma = (\mathcal{T}, \mathcal{F})$ for the category R-mod consists of two abstract classes \mathcal{T} and \mathcal{F} , the σ -torsion class and the σ -torsionfree class, respectively, such that Hom(T, F) = 0 whenever $T \in \mathcal{T}$ and $F \in \mathcal{F}$, the class \mathcal{T} is closed under submodules, factor-modules, extensions and arbitrary

RELATIVE PURITY OVER NOETHERIAN RINGS

direct sums, the class \mathcal{F} is closed under submodules, extensions and arbitrary direct products and for each module M there exists an exact sequence $0 \to T \to M \to F \to 0$ such that $T \in \mathcal{T}$ and $F \in \mathcal{F}$.

THEOREM 4. Let $\sigma = (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory for the category R-mod over a left noetherian ring R. If $\lambda \geq \mu = \max(|R|, \aleph_0)$ is an arbitrary cardinal number and $F \in \mathcal{F}$ is an arbitrary module such that $|F| \geq (2^{\lambda})^+$, then every submodule $K \leq F$ such that $|F/K| \leq \lambda$ contains a submodule L with $F/L \in \mathcal{F}$ and $|F/L| \leq 2^{\lambda}$.

Proof. Consider the following commutative diagram

$$F \xrightarrow{j} E(F)$$

$$\downarrow g$$

$$F/K \xrightarrow{\iota} E(F/K)$$

where j, ι are inclusions, π is the canonical projection and the existence of a homomorphism g making the square commutative follows from the injectivity of E(F/K). Since $|E(F)| \geq (2^{\lambda})^+$ and $|E(F/K)| \leq \lambda$ by Theorem 1, it follows from Theorem 3 that there exists an injective submodule $V \subseteq \text{Ker } g$ such that $|E(F)/V| \leq 2^{\lambda}$. Setting $L = V \cap F$, we obviously have $L \subseteq K$, $F/L \cong (F+V)/V \subseteq E(F)/V$ yields $|F/L| \leq 2^{\lambda}$ and $F/L \in \mathcal{F}$, V being a direct summand of E(F).

As a special case we obtain the following generalization of our previous results proved in [2] and [3].

COROLLARY 5. Let λ be an infinite cardinal and let F be a torsionfree abelian group such that $|F| \geq (2^{\lambda})^+$. If $K \leq F$ is any subgroup with $|F/K| \leq \lambda$, then there exists a pure subgroup L of F contained in K and such that $|F/L| \leq 2^{\lambda}$.

$$Proof.$$
 Obvious.

REFERENCES

- [1] BASS, H.: Finitistic dimension and a homological characterization of semi-primary rings, Trans. Amer. Math. Soc. **95** (1960), 466–488.
- [2] BICAN, L.: A note on pure subgroups, Contributions to General Algebra 12, Proceedings of the Vienna Conference, June 3–6, 1999, Verlag Johannes Heyn, Klagenfurt 2000, pp. 105–107.
- [3] BICAN, L.: Pure subgroups, Math. Bohem. 126 (2001), 649–652.
- [4] BICAN, L.—EL BASHIR, R.—ENOCHS, E.: All modules have flat covers, Proc. London Math. Soc. 33 (2001), 649–652.

LADISLAV BICAN

- [5] BICAN, L.—TORRECILLAS, B.: Precovers, Czechoslovak Math. J. 53(128) (2003), 191–203.
- [6] BICAN, L.—TORRECILLAS, B.: On covers, J. Algebra 236 (2001), 645–650.
- [7] ECKMANN, B.—SCHOPF, A.: Über injektive Moduln, Arch. Math. (Basel) 4(2) (1953), 75–78.
- [8] ENOCHS, E.: Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189–209.
- [9] FUCHS, L.: Infinite Abelian Groups, Vol. I; II, Academic Press, New York, 1973; 1977.
- [10] TEPLY, M. L.: Torsion-free covers II, Israel J. Math. 23 (1976), 132–136.
- [11] XU, J.: Flat Covers of Modules. Lecture Notes in Math. 1634, Springer Verlag, Berlin-Heidelberg-New York, 1996.

Received 11. 11. 2004

KA MFF UK Sokolovská 83 CZ–186 00 Praha 8 – Karlín CZECH REPUBLIK E-mail: bican@karlin.mff.cuni.cz