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ABSTRACT. Bounded commutative residuated lattice ordered monoids (R�-mo-
noids) are a common generalization of, e.g., Heyting algebras and BL-algebras,

i.e., algebras of intuitionistic logic and basic fuzzy logic, respectively. Modal op-
erators (special cases of closure operators) on Heyting algebras were studied in
[MacNAB, D. S.: Modal operators on Heyting algebras, Algebra Universalis 12

(1981), 5–29] and on MV -algebras in [HARLENDEROVÁ, M.—RACHŮNEK, J.:
Modal operators on MV -algebras, Math. Bohem. 131 (2006), 39–48]. In the pa-
per we generalize the notion of a modal operator for general bounded commutative

R�-monoids and investigate their properties also for certain derived algebras.
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Commutative residuated lattice ordered monoids (R�-monoids) are duals to
commutative DR�-monoids which were introduced by S w a m y [16] as a com-
mon generalization of Abelian lattice ordered groups and Brouwerian algebras.
By [11], [12], [13], also algebras of logics behind fuzzy reasoning can be consid-
ered as particular cases of bounded commutative R�-monoids. Namely from this
point of view, MV -algebras, an algebraic counterpart of the �Lukasiewicz infinite-
valued propositional logic, are precisely bounded commutative R�-monoids sat-
isfying the double negation law. Further, BL-algebras, an algebraic semantics
of the H á j e k basic fuzzy logic, are just bounded commutative R�-monoids
isomorphic to subdirect products of linearly ordered commutative R�-monoids.
Heyting algebras (duals to Brouwerian algebras), i.e. algebras of intuitionistic
logic, are characterized as bounded commutative R�-monoids with idempotent
multiplication.
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Modal operators (special cases of closure operators) on Heyting algebras were
introduced and studied by M a c n a b in [10]. Analogously, modal operators on
MV -algebras were introduced in [7] recently.

In this paper we define modal operators for arbitrary bounded commutative
R�-monoids and we study their properties in the class of normal R�-monoids in
particular.

For concepts and results relating to MV -algebras, BL-algebras and Heyting
algebras see for instance [3], [6], [1].

���������� 1� A bounded commutative R�-monoid is an algebraM = (M ; �,∨,
∧,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉 satisfying the following conditions.

(i) (M ; �, 1) is a commutative monoid.
(ii) (M ; ∨,∧, 0, 1) is a bounded lattice.
(iii) x� y ≤ z if and only if x ≤ y → z, for any x, y, z ∈M .
(iv) x� (x→ y) = x ∧ y, for any x, y ∈M .

Bounded commutative R�-monoids are special cases of residuated lattices,
more precisely (see for instance [4]), they are exactly commutative integral gen-
eralized BL-algebras in the sense of [2] and [8].

In what follows, by an R�-monoid we will mean a bounded commutative
R�-monoid.

Let us define on any R�-monoid M the unary operation of negation “−” by
x− := x → 0 for any x ∈ M . Further, we put x ⊕ y := (x− � y−)− for any
x, y ∈M .

Algebras of the above mentioned propositional logics can be characterized in
the class of all R�-monoids as follows: An R�-monoid M is

a) a BL-algebra ([13]) if and only if M satisfies the identity of pre-linearity
(x→ y) ∨ (y → x) = 1;

b) an MV -algebra ([11], [12]) if and only if M fulfills the double negation law
x−− = x;

c) a Heyting algebra ([16]) if and only if the operations “�” and “∧” coincide
on M .

��		
 1� ([16], [15]) In any bounded commutative R�-monoid M we have for
any x, y ∈M :

(1) x ≤ y ⇐⇒ x→ y = 1.
(2) x� y ≤ x ∧ y ≤ x, y.
(3) x ≤ y =⇒ x� z ≤ y � z.
(4) x ≤ y =⇒ z → x ≤ z → y, y → z ≤ x→ z.
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(5) (x� y) → z = x→ (y → z) = y → (x→ z).
(6) (x→ y) � (y → z) ≤ x→ z.
(7) 1−− = 1, 0−− = 0.
(8) x ≤ x−−, x− = x−−−.
(9) x ≤ y =⇒ y− ≤ x−.

(10) (x ∨ y)− = x− ∧ y−.
(11) (x ∧ y)−− = x−− ∧ y−−.
(12) (x� y)− = y → x− = y−− → x− = x→ y− = x−− → y−.
(13) (x� y)−− ≥ x−− � y−−.
(14) (x→ y)−− = x−− → y−−.

Remark 2� It is obvious that x⊕ z ≤ y⊕ z holds for any x, y, z ∈M such that
x ≤ y. Further by [14, Lemma 2.11], x−−⊕y−− = x⊕y for any x, y ∈M , hence
also x⊕ y = x−− ⊕ y = x⊕ y−− = x−− ⊕ y−−.

���������� 2� Let M be an R�-monoid. A mapping f : M −→ M is called a
modal operator on M if, for any x, y ∈M ,

1. x ≤ f(x);
2. f (f(x)) = f(x);
3. f(x� y) = f(x) � f(y).

If, moreover, for any x, y ∈M ,
4. f(x⊕ y) = f (x⊕ f(y)),

then f is called a strong modal operator on M .

���
������� 3� If f is a modal operator on an R�-monoid M and x, y ∈ M ,
then
(i) x ≤ y =⇒ f(x) ≤ f(y);

(ii) f(x→ y) ≤ f(x) → f(y) = f (f(x) → f(y)) = x→ f(y) = f (x→ f(y));
(iii) f(x) ≤ (x→ f(0)) → f(0);
(iv) f(x) � x− ≤ f(0);
(v) x⊕ f(0) ≥ f(x−−) ≥ f(x);
(vi) f(x ∨ y) = f(x ∨ f(y)) = f(f(x) ∨ f(y)).

P r o o f.
(i) x ≤ y =⇒ f(x ∧ y) = f(x) =⇒ f(y � (y → x)) = f(x) =⇒

f(y) � f(y → x) = f(x) =⇒ f(x) ≤ f(y).
(ii) By (i), f(x) � f(x→ y) = f(x� (x→ y)) = f(x ∧ y) ≤ f(y).
This implies

f(x→ y) ≤ f(x) → f(y).
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From this we get

f(f(x) → f(y)) ≤ f (f(x)) → f (f(y)) = f(x) → f(y) ≤ x→ f(y)
≤ f(x→ f(y)) ≤ f(x) → f(f(y))
= f(x) → f(y) ≤ f(f(x) → f(y)),

therefore

f(x) → f(y) = f (f(x) → f(y)) = x→ f(y) = f (x→ f(y)) .

(iii) By use of (ii) and (i), we have

f(x) � (f(x) → f(0)) = f(x) ∧ f(0) = f(0) =⇒ f(x) ≤ (f(x) → f(0)) → f(0)
=⇒ f(x) ≤ (x→ f(0)) → f(0).

(iv) By (ii), we obtain

0 ≤ f(0) =⇒ x− = x→ 0 ≤ x→ f(0) = f(x) → f(0),

thus
f(x) � x− ≤ f(x) � (f(x) → f(0)) = f(x) ∧ f(0) = f(0).

(v) According to Remark 2, Lemma 1(12), (8) and the part (ii) consecutively,

x⊕ f(0) = x−− ⊕ f(0) =
(
x−−− � f(0)−

)− = x−−− → f(0)−−

= x− → f(0)−− = f
(
x− → f(0)−−) ≥ f

(
x− → f(0)

) ≥ f(x− → 0)

= f(x−−) ≥ f(x).

Hence
x⊕ f(0) ≥ f(x−−) ≥ f(x).

(vi) f(x ∨ y) ≤ f (x ∨ f(y)) ≤ f (f(x) ∨ f(y)) = f (f(x ∨ y)) = f(x ∨ y). �

Remark 4� By the definition of a modal operator and Proposition 3(i) every
modal operator on anR�-monoidM is a closure operator on the lattice (M ;∨,∧).

Remark 5� M . G a l a t o s and C . T s i n a k i s introduced in [5] the notion
of a nucleus of a residuated lattice L as a closure operator γ on L satisfying
γ(a)γ(b) ≤ γ(ab), to represent generalizations of MV -algebras (dropping inte-
grality, commutativity and the existence of bounds) by means of �-groups and
nuclei of negative cones of �-groups. From this point of view, a modal operator
f on an R�-monoid M is a nucleus of M satisfying f(x) � f(y) ≥ f(x� y).

���
������� 6� If f is a strong modal operator on an R�-monoid M and
x, y ∈M , then

(vii) f(x⊕ y) = f (f(x) ⊕ f(y));
(viii) x⊕ f(0) = f(x−−).
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P r o o f. Let us suppose that f is a strong modal operator. Then
(vii) f(x⊕ y) = f(x⊕ f(y)) = f(f(x) ⊕ f(y));
(viii) By Proposition 3(v), f(x⊕f(0)) = f(x⊕0) = f(x−−) implies f(x−−) =

f(x⊕ f(0)) ≥ x⊕ f(0) ≥ f(x−−). �
������	 7� Let M be an R�-monoid and f : M −→M be a mapping. Then f
is a modal operator on M if and only if for any x, y ∈M it is satisfied:
(a) x→ f(y) = f(x) → f(y);
(b) f(x) � f(y) ≥ f(x� y).

P r o o f. Let a mapping f fulfil conditions (a) and (b).

1. For any x ∈M we have x→ f(x) = f(x) → f(x) = 1. Therefore x ≤ f(x).

2. For all x ∈ M it holds 1 = f(x) → f(x) = f(f(x)) → f(x). This implies
f(f(x)) ≤ f(x). Therefore, by 1, f(f(x)) = f(x).

3. For any x, y ∈M it is true
x�y ≤ f(x�y) =⇒ y ≤ x→ f(x�y) = f(x) → f(x�y) =⇒ y�f(x) ≤
f(x� y) =⇒ f(x) ≤ y → f(x� y) = f(y) → f(x� y) =⇒ f(x) � f(y) ≤
f(x� y) =⇒ f(x) � f(y) = f(x� y).

The converse implication is obvious. �
������
�� 8� If M is an R�-monoid and f : M −→ M is a mapping, then f
is a nucleus of M if and only if f satisfies (a) of Theorem 7 and it is isotone.

Remark 9� If M is a Heyting algebra and x, y ∈ M , then f(x) � f(y) =
f(x) ∧ f(y) ≥ f(x ∧ y) = f(x � y). Therefore, by Theorem 7, f is a modal
operator on M iff it satisfies condition (a) (see also [10]).

We say that an R�-monoid M is normal if M satisfies the identity

(x� y)−− = x−− � y−−.

Remark 10� By [15, Proposition 5], every BL-algebra and every Heyting alge-
bra is normal, hence the variety of normal R�-monoids is considerably wide.

Let M be an R�-monoid. For arbitrary element a ∈ M we denote by
ϕa : M −→M the mapping such that ϕa(x) = a⊕ x for every x ∈M .

Denote by
I(M ) = {a ∈M : a� a = a}

the set of all multiplicative idempotents in an R�-monoid M . It is obvious that
0, 1 ∈ I(M ). By [9, Lemma 2.8.3], a�x = a∧x holds for any a ∈ I(M ), x ∈M .
Further, if M is a normal R�-monoid and a ∈ I(M ), then also a−− ∈ I(M ).

������	 11� If M is a normal R�-monoid and a ∈ M , then ϕa is a strong
modal operator on M if and only if a−, a−− ∈ I(M ).
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P r o o f.
a) Let a, x, y ∈M , a−, a−− ∈ I(M ).

1. ϕa(x) = a⊕ x = (a− � x−)− ≥ x−− ≥ x.
2. ϕa(ϕa(x)) = a ⊕ (a ⊕ x) = a ⊕ (a− � x−)− = (a− � (a− � x−)−−)− =

(a− � (a− � x−))− = ((a− � a−) � x−)− = (a− � x−)− = a⊕ x = ϕa(x).

3. We first prove that a⊕ x = (a ∨ x)−−.
By Lemma 1(10), we obtain a ⊕ x = (a− � x−)− = (a− ∧ x−)− =

((a ∨ x)−)− = (a ∨ x)−−.
We will now prove condition 3 from the definition of a modal operator.
We have

ϕa(x) � ϕa(y) = (a⊕ x) � (a⊕ y) = (a−− ⊕ x) � (a−− ⊕ y)

= (a−− ∨ x)−− � (a−− ∨ y)−− = ((a−− ∨ x) � (a−− ∨ y))−−

= ((a−− � a−−) ∨ (x� a−−) ∨ (a−− � y) ∨ (x� y))−−

= (a−− ∨ (x� y))−− = a−− ⊕ (x� y) = a⊕ (x� y)

= ϕa(x� y).

4. According to [14, Proposition 2.10], (M ;⊕) is a commutative semigroup.
For this reason

ϕa(x⊕ y) = a⊕ (x⊕ y) = a−− ⊕ (x⊕ y) = (a⊕ a) ⊕ (x⊕ y)

= a⊕ (x⊕ (a⊕ y)) = ϕa(x⊕ ϕa(y)).

b) Let ϕa be a strong modal operator on M . Then on account of condition 3,
we have a⊕(x�y) = (a⊕x)�(a⊕y). Then for x = y = 0 we obtain a⊕(0�0) =
(a ⊕ 0) � (a⊕ 0), hence a ⊕ 0 = (a⊕ 0) � (a ⊕ 0). Since a ⊕ 0 = a−− (see [14,
Lemma 2.11]), we conclude that a−− = a−− � a−−, which yields a−− ∈ I(M ).

From condition 4 we have a⊕ (x⊕ y) = a⊕ (x⊕ (a⊕ y)). Then for x = y = 0
it follows that a−− = a⊕ 0 = a⊕ (0 ⊕ 0) = a⊕ (0 ⊕ (a⊕ 0)) = (a⊕ 0) ⊕ a−− =
a−− ⊕ a−−, thus a−− = a−− ⊕ a−−. From this a−− = (a− � a−)−, hence
a− = (a− � a−)−−. Since M is normal, we obtain a− = a− � a− and so
a− ∈ I(M ). �

Remark 12� If M is an MV -algebra and a ∈ M , then a ∈ I(M ) if and only
if a−, a−− ∈ I(M ). Concurrently, by [7], in any MV -algebra it is true that ϕa

is a modal operator on M if and only if ϕa is a strong modal operator on M
(namely if and only if a ∈ I(M )). The question, whether ϕa is a modal operator
on M if and only if it is a strong modal operator also for any normal R�-monoid
M , remains open.
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������
�� 13� Let M be a normal R�-monoid and f be a modal operator on
M such that f(x) = f(x−−) for all x ∈ M . Then f is strong if and only if
f = ϕf(0) and f(0)− ∈ I(M ).

P r o o f. Suppose that a modal operator f on M satisfies the condition f(x) =
f(x−−) for every x ∈M . Then by Proposition 6 and Theorem 11, f is strong if
and only if f = ϕa for some a ∈M such that a−, a−− ∈ I(M ).

If f is strong and x ∈ M , then f(x) = f(x−−) = f(0) ⊕ x. Hence f = ϕf(0)

and we have f(0), f(0)− ∈ I(M ).
For any modal operator f we have f(0)−− ∈ I(M ). In fact, f(0)−− =

f(0 � 0)−− = (f(0) � f(0))−− = f(0)−− � f(0)−−. Hence, if f = ϕf(0) and
f(0)− ∈ I(M ), then by Theorem 11, f is strong. �
������
�� 14� Specially for MV -algebras, we obtain (see [7]): If M is an
MV -algebra and f is a modal operator on M , then f is strong if and only if
f = ϕf(0).

Let M be an R�-monoid and a ∈ M . Consider mappings ψa : M −→ M
and χa : M −→ M such that ψa(x) := a → x and χa(x) := (x → a) → a
for every x ∈ M . These mappings are significant modal operators in Heyting
algebras (see [10]). We will now deal with the mappings ψa and χa in arbitrary
R�-monoids.

���
������� 15� If M is an R�-monoid and a ∈ I(M ), then for any x, y ∈M

x → ψa(y) = ψa(x) → ψa(y).

P r o o f. By the definition of ψa, x → ψa(y) = x → (a → y) and ψa(x) →
ψa(y) = (a → x) → (a → y). At the same time, by Lemma 1(5), (a → x) →
(a → y) = ((a → x) � a) → y = (a ∧ x) → y = (a � x) → y = x → (a → y),
whence the assertion follows. �

From Theorem 7 and Proposition 15 we obtain as an immediate consequence
the following claim.

������
�� 16� Let M be an R�-monoid and a ∈ I(M ). Then ψa is a modal
operator on M if and only if for any x, y ∈M

ψa(x) � ψa(y) ≥ ψa(x� y).

��		
 17� If M is an R�-monoid and a ∈M , then for any x, y ∈M

x→ χa(y) ≤ χa(x) → χa(y).

P r o o f. By the definition of χa and by Lemma 1(5), x → χa(y) = x →
((y → a) → a) = (y → a) → (x → a), χa(x) → χa(y) = ((x → a) → a) →
((y → a) → a). Since by [14, Lemma 2.3], (y → a) → (x→ a) ≤ ((x→ a) → a)
→ ((y → a) → a), we have x→ χa(y) ≤ χa(x) → χa(y). �
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For any R�-monoid M , let us denote by B(M ) the set of all elements from M
having the complement in the lattice (M ;∨,∧, 0, 1). Note that 0, 1 ∈ B(M ).
If a ∈ B(M ) then its complement a′ is equal to the element a−. By [9,
Lemma 2.8.8], B(M ) ⊆ I(M ).

���
������� 18� Let M be an R�-monoid and a ∈ B(M ). Then for any
x, y ∈M

x→ χa(y) = χa(x) → χa(y).

P r o o f. Let a ∈ B(M ), x, y ∈M . Then

x→ χa(y) = x→ ((y → a) → a) = (y → a) → (x→ a),

χa(x) → χa(y) = ((x→ a) → a) → ((y → a) → a)

= (y → a) → (((x→ a) → a) → a),

x→ a = x→ a−− = (x� a−)−,

(x→ a) → a = ((x→ a) � a−)− = ((x� a−)− � a−)− = ((x ∧ a−)− ∧ a−)−

= ((x ∧ a−) ∨ a)−− = ((x ∨ a) ∧ (a− ∨ a))−− = (x ∨ a)−− = x⊕ a,

((x→ a) → a) → a = (((x→ a) → a) � a−)− = ((x⊕ a) � a−)− = (x⊕ a) → a−−

= (x ∨ a)−− → a−− = ((x ∨ a) → a)−− = ((x ∨ a) � a−)−

= ((x� a−) ∨ (a� a−))− = (x� a−)− = x→ a.

Hence

χa(x) → χa(y) = (y → a) → (((x→ a) → a) → a)

= (y → a) → (x→ a) = x→ χa(y).

�

������
�� 19� Let M be an R�-monoid and a ∈ B(M ). Then χa is a modal
operator on M if and only if for any x, y ∈M

χa(x) � χa(y) ≥ χa(x� y).

Let M be an R�-monoid and f be a modal operator on M . Then Fix(f) ={
x ∈M : f(x) = x

}
will denote the set of all fixed elements of the operator f .

By the definition of a modal operator it is obvious that Fix(f) = Im(f).
Since f is a closure operator on the lattice (M ;∨,∧), we infer that

(Fix(f);∨F ,∧), where y ∨F z = f(y ∨ z) and “∧” is the restriction of the corre-
sponding operation from M on Fix(f), is a lattice.

������	 20� If f is a modal operator on an R�-monoid M , then Fix(f)
is closed under the operations “�” and “→” and Fix(f) =

(
Fix(f);�,∨F ,

∧,→, f(0), 1
)

is an R�-monoid.
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P r o o f.
(i) Let x, y ∈ Fix(f). Then f(x�y) = f(x)�f(y) = x�y, thus x�y ∈ Fix(f).
(ii) (Fix(f);∨F ,∧, f(0), 1) is a bounded lattice.
(iii) If y, z ∈ Fix(f), then by Proposition 3 we have y → z = f(y) → f(z) =

f(f(y) → f(z)) = f(y → z), hence y → z ∈ Fix(f).
Therefore, if x, y, z ∈ Fix(f), then x� y, y → z ∈ Fix(f) and for this reason

x� y ≤ z holds in Fix(f) if and only if x ≤ y → z.
(iv) By foregoing, Fix(f) also satisfies the identity x� (x→ y) = x ∧ y. �

Remark 21� The above theorem strengthens general Lemma 3.3 of [5] proved
for any residuated lattices in our special case of bounded (commutative) R�-mo-
noids.

������	 22� Let M be an R�-monoid, a ∈ I(M ) and

I(a) := [0, a] = {x ∈M : 0 ≤ x ≤ a}.
For any x, y ∈ I(a) we set x �a y = x � y and x →a y := (x → y) ∧ a. Then
I(a) = (I(a);�a,∨,∧,→a, 0, a) is an R�-monoid.

P r o o f.
(i) If x, y ∈ I(a), then x� y ∈ I(a) and x� a = x∧ a = x, hence (I(a);�a, a)

is a commutative monoid.
(ii) Obviously, (I(a);∨,∧, 0, a) is a bounded lattice.
(iii) Let x, y ∈ I(a). It holds that x → y is the greatest element z ∈ M such

that x� z ≤ y. Therefore (x → y) ∧ a is the greatest element in I(a) with this
property. That means, x �a z ≤ y if and only if z ≤ (x → y) ∧ a = x →a y for
every z ∈ I(a).

(iv) For any x, y ∈ I(a) we have x �a (x →a y) = x � ((x → y) ∧ a) = x �
(x→ y) � a = (x ∧ y) ∧ a = x ∧ y. �
Remark 23� If for any x, y ∈ I(a) we denote by x−a the negation of an element
x and by x ⊕a y the sum of elements x and y in the R�-monoid I(a), then it
holds

x−a = x− ∧ a, x⊕a y = (x⊕ y) ∧ a.
Indeed

x−a = x→a 0 = (x→ 0) ∧ a = x− ∧ a,

x⊕a y = (x−a � y−a)− ∧ a = (x− � a� y− � a)− ∧ a = (x− � y− � a)− ∧ a
= (a→ (x− � y−)−) � a = a ∧ (x− � y−)− = a ∧ (x⊕ y).

Now, let M be arbitrary R�-monoid (still bounded and commutative),
a ∈ I(M ) and let f be a modal operator on M . Let us consider a mapping
fa : I(a) −→ I(a) such that fa(x) = f(x) ∧ a (= f(x) � a), for every x ∈ I(a).
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������	 24� Let M be an R�-monoid, a ∈ I(M ) and f be a modal and strong
modal, respectively, operator on M . Then fa is a modal and strong modal,
respectively, operator on the R�-monoid I(a).

P r o o f. Assume x, y ∈ I(a).
1. x ≤ a and x ≤ f(x), hence x ≤ a ∧ f(x) = fa(x).
2. fa (fa(x)) = f(f(x) ∧ a) ∧ a = f(f(x) � a) ∧ a = (f(f(x)) � f(a)) ∧ a

= f(x) ∧ f(a) ∧ a = f(x) ∧ a = fa(x).
3. fa(x� y) = f(x� y) ∧ a = f(x) � f(y) � a� a = (f(x) ∧ a) � (f(y) ∧ a)

= fa(x) � fa(y).
4. Let f be strong. Then

fa(x⊕a f
a(y)) = fa((x⊕ (f(y) ∧ a)) ∧ a) = f((x⊕ (f(y) ∧ a)) ∧ a) ∧ a

= f(x⊕ (f(y) ∧ a)) ∧ f(a) ∧ a = f(x⊕ f(f(y) ∧ a)) ∧ a
= f(x⊕ ((f(f(y)) ∧ f(a))) ∧ a = f(x⊕ (f(y) ∧ f(a))) ∧ a
= f(x⊕ f(y ∧ a)) ∧ a = f(x⊕ f(y)) ∧ a = f(x⊕ y) ∧ a
= fa(x⊕ y). �

������	 25�
a) Let M be an R�-monoid, let f be a modal operator on M and f̂ = f

∣∣
I(M ).

Then I(M ) is a subalgebra of the reduct (M ;�,∨,∧, 0, 1) and f̂ is a mapping
of I(M ) into I(M ) satisfying conditions 1, 2, 3 from the definition of a modal
operator.

b) Let M be a normal R�-monoid and let x− ∈ I(M ) for each x ∈ I(M ).
Then I(M ) is closed also under the operation “⊕”. Moreover, if f is a strong
modal operator on M , then f̂ satisfies condition 4 from the definition of a strong
modal operator.

c) Let M be a BL-algebra. Then I(M ) is a subalgebra of the algebra M which
is a Heyting algebra. If f is a modal operator on M , then f̂ is a modal operator
on the Heyting algebra I(M ). If x− ∈ I(M ) holds for each x ∈ I(M ) and f is
a strong modal operator on M , then f̂ is a strong modal operator on I(M ).

P r o o f.
a) Let M be an R�-monoid and x, y ∈ I(M ). Then

(x� y) � (x� y) = (x� x) � (y � y) = x� y,

thus x� y = x ∧ y ∈ I(M ). Further,

(x∨ y)� (x∨ y) = (x� x)∨ (y� x)∨ (x� y)∨ (y� y) = x∨ y ∨ (x� y) = x∨ y,
therefore also x ∨ y ∈ I(M ).
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Obviously, 0, 1 ∈ I(M ).
Finally, if f is a modal operator on M , then for each x ∈ I(M ) we have

f(x) = f(x� x) = f(x) � f(x).

It follows that f(x) ∈ I(M ). Therefore f̂ is a mapping of I(M ) into I(M )
satisfying conditions 1–3.

b) If x− ∈ I(M ) holds for every x ∈ I(M ), then (similarly to the third part
of the proof of Theorem 11) for any x, y ∈ I(M ) we obtain x ⊕ y = (x ∨ y)−−,
and hence provided M is normal we have

(x⊕ y) � (x⊕ y) = (x ∨ y)−− � (x ∨ y)−− = ((x ∨ y) � (x ∨ y))−− = (x ∨ y)−−

= x⊕ y,

therefore x⊕ y ∈ I(M ).
At the same time it is obvious that if f is a strong modal operator on M ,

then f̂ fulfills condition 4 as well.
c) By [13], an R�-monoid M is a BL-algebra if and only if M is isomorphic

to a subdirect product of R�-chains (=BL-chains). Let now a BL-algebra M be
a subdirect product of BL-chains Mα, α ∈ Γ. If a ∈M , then a = (aα;α ∈ Γ) ∈
I(M ) if and only if aα ∈ I(Mα) for each α ∈ Γ. Let x = (xα;α ∈ Γ), y =
(yα;α ∈ Γ) ∈ I(M ). Then xα → yα = 1 for yα ≥ xα and xα → yα = yα for
xα > yα. Whence (xα → yα;α ∈ Γ) ∈ I(M ) and it is equal to the element
x→ y. By [13], furthermore, I(M ) is a Heyting algebra.

Then it is clear that f̂ is a modal operator on I(M ) for any modal opera-
tor f on M . Moreover, by [15, Proposition 5], every BL-algebra is a normal
R�-monoid. Therefore, if x− ∈ I(M ) for each x ∈ I(M ), then f̂ is a strong
modal operator on the Heyting algebra I(M ) for every strong modal operator f
on M . �
Remark 26� For any a ∈ M , also mappings πa : M −→ M (in our notation)
defined by πa(x) = a ∨ x for each x ∈ M were introduced and studied for
Heyting algebras in [10]. Evidently, if M is an arbitrary R�-monoid, then πa

satisfies conditions 1 and 2 from the definition of a modal operator on M . This
begs the question if πa fulfills condition 3 from this definition as well and in
which cases πa = ϕa holds, respectively.

a) If M is a Heyting algebra then x� y = x ∧ y for any x, y ∈M . From the
distributivity of the lattice (M ;∨,∧) it follows that condition 3 is satisfied for
any a ∈ M . At the same time, a⊕ x = (a ∨ x)−−, hence πa need not generally
be equal to ϕa. For example, π0(x) = x, ϕ0(x) = x−−.

b) If M is an MV -algebra, then a ∨ x = a ⊕ x holds for any a ∈ I(M ) and
x ∈ M , and a ⊕ (x � y) = (a ⊕ x) � (a ⊕ y). Therefore, we have ϕa = πa for
each a ∈ I(M ) and hence, for each a ∈ I(M ), moreover πa is a strong modal
operator on M .
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[15] RACHŮNEK, J.—SLEZÁK, V.: Negation in bounded commutative DR�-monoids,
Czechoslovak Math. J. 56 (2006), 755–763.

[16] SWAMY, K. L. N.: Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965),
105–114.

Received 31. 8. 2005 *Department of Algebra and Geometry
Faculty of Sciences
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