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MODAL OPERATORS ON BOUNDED
COMMUTATIVE RESIDUATED /(-MONOIDS
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ABSTRACT. Bounded commutative residuated lattice ordered monoids (R¢-mo-
noids) are a common generalization of, e.g., Heyting algebras and BL-algebras,
i.e., algebras of intuitionistic logic and basic fuzzy logic, respectively. Modal op-
erators (special cases of closure operators) on Heyting algebras were studied in
[MacNAB, D. S.: Modal operators on Heyting algebras, Algebra Universalis 12
(1981), 5-29] and on MV -algebras in [HARLENDEROVA, M.—RACHUNEK, J.:
Modal operators on MV -algebras, Math. Bohem. 131 (2006), 39-48]. In the pa-
per we generalize the notion of a modal operator for general bounded commutative
R/-monoids and investigate their properties also for certain derived algebras.
©2007

Mathematical Institute
Slovak Academy of Sciences

Commutative residuated lattice ordered monoids (R{-monoids) are duals to
commutative DR/-monoids which were introduced by Swamy [16] as a com-
mon generalization of Abelian lattice ordered groups and Brouwerian algebras.
By [11], [12], [13], also algebras of logics behind fuzzy reasoning can be consid-
ered as particular cases of bounded commutative R¢-monoids. Namely from this
point of view, M V-algebras, an algebraic counterpart of the Lukasiewicz infinite-
valued propositional logic, are precisely bounded commutative Rf-monoids sat-
isfying the double negation law. Further, BL-algebras, an algebraic semantics
of the Hajek basic fuzzy logic, are just bounded commutative R/-monoids
isomorphic to subdirect products of linearly ordered commutative R/-monoids.
Heyting algebras (duals to Brouwerian algebras), i.e. algebras of intuitionistic
logic, are characterized as bounded commutative Rf-monoids with idempotent
multiplication.
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Modal operators (special cases of closure operators) on Heyting algebras were
introduced and studied by Macnab in [10]. Analogously, modal operators on
MYV -algebras were introduced in [7] recently.

In this paper we define modal operators for arbitrary bounded commutative
R{-monoids and we study their properties in the class of normal Ré-monoids in
particular.

For concepts and results relating to M V-algebras, BL-algebras and Heyting
algebras see for instance [3], [6], [1].

DEFINITION 1. A bounded commutative R¢-monoid is an algebra M = (M; ©, V,
A, —,0,1) of type (2,2,2,2,0,0) satisfying the following conditions.
(i) (M; ®,1) is a commutative monoid.
(ii) (M; V,A,0,1) is a bounded lattice.
(iii) x @y < z if and only if x <y — z, for any z,y,z € M.
(iv) z®(x = y) =x Ay, for any z,y € M.

Bounded commutative R{-monoids are special cases of residuated lattices,
more precisely (see for instance [4]), they are exactly commutative integral gen-
eralized BL-algebras in the sense of [2] and [8].

In what follows, by an R/¢-monoid we will mean a bounded commutative
R{-monoid.

Let us define on any Rf-monoid M the unary operation of negation “~” by
x~ =z — 0 for any x € M. Further, we put t @y := (z~ ©@y~) for any
z,y € M.

Algebras of the above mentioned propositional logics can be characterized in
the class of all Rf-monoids as follows: An Rf-monoid M is

a) a BL-algebra ([13]) if and only if M satisfies the identity of pre-linearity
(z—=y)V(y—z)=1
b) an MV-algebra ([11], [12]) if and only if M fulfills the double negation law
T =
c) a Heyting algebra ([16]) if and only if the operations “©” and “A” coincide
on M.
LEMMA 1. ([16], [15]) In any bounded commutative R{-monoid M we have for
any x,y € M:
(1) z2<y <= z—y=1.
(2) zoy<zAy<mzy.
B)r<y = r102<y0z2.
D)<y = z—-z<zoy,y—z<z—2=z

322
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(B) oy mz=0—-(y—2)=y— (v —2)

©6) (z—y)o(y—2)<z—2

() 17— =1,0"" =0.

8) x<z ",x" =z~

9 z<y =y <z

(10) (zVy)~" =2~ Ay~

(11) (xANy)" " =z~ ANy~

(12) @oy) =y—a- =y —a =z—oy =z —y .

(13) (zOy)"" Z27 " Oy

(14) @@=y =2 =y

Remark 2. It is obvious that x @ z < y & z holds for any x,y, 2z € M such that
x < y. Further by [14, Lemma 2.11], 2=~ @y~ ~ = 2@y for any x,y € M, hence
alsorPy=2""Gy=xdy =z Dy .

DEFINITION 2. Let M be an Rf-monoid. A mapping f: M — M is called a
modal operator on M if, for any =,y € M,

1. z < f(x);

2. f(f(2)) = f(2);

3. fleoy) = flz)o f(y)
If, moreover, for any z,y € M,

4. flxoy) = f(zd f(v)),

then f is called a strong modal operator on M.

ProproSITION 3. If f is a modal operator on an R{-monoid M and x,y € M,
then

(i) 2 <y = f(z) < f(y);

z—y) < flx) = fly)=f(f@) = f)=2— fly)=f(z— f):
z) < (x — f(0)) — f(0);

z)©z~ < f(0);

© f(0) = f(z77) = f(2);

flxvy)=flxV fly) = f(f(z)V f(y)).

—~ —~

(i) r<y = flxAy)=flr) = flyo(y—=2)=f(z) =
fyofly—z)=fz) = flz)<fy).
(ii) By (i), f(z) © f(z = y) = f(z O (z — y)) = f(x ANy) < f(y)

This implies
flea—=y) < fl@) = fy)
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From this we get

f(f(x) = f(y))

therefore
f@) = fly) = f(f(2) = f(y) =2 = fly) = [ (z = f(y)).

(iii) By use of (ii) and (i), we have
f(@) © (f(x) = £(0)) = f(z) A f(0) = f(0) = [()

— f(z)

(f(z) = f(0)) = f(0)
(z — f(0)) — £(0).

<
<

(iv) By (ii), we obtain
0<f(0) = 27 =z —0<z— f(0) = f(z) = f(0),
thus
f@) oz < fx) © (f(z) = f(0)) = f(z) A f(0) = £(0).
(v) According to Remark 2, Lemma 1(12), (8) and the part (ii) consecutively,

x® f(0)=2"" ® f(0)= (27"~ @ f(0)" )7=x = f(0)7T
=27 = f0)T" = (7 = f0)77) = f(z7 = £(0)) > f(z~ —0)
=fz77) = f(=).
Hence
@ f(0) = flz7) = fla).
Vi) flevy) <feVfy) <fF@)V W) =ffavy)=Fflevy). O

Remark 4. By the definition of a modal operator and Proposition 3(i) every
modal operator on an R¢-monoid M is a closure operator on the lattice (M; V, A).

Remark 5. M. Galatos and C. Tsinakis introduced in [5] the notion
of a nucleus of a residuated lattice L as a closure operator v on L satisfying
~v(a)y(b) < v(ab), to represent generalizations of M V-algebras (dropping inte-
grality, commutativity and the existence of bounds) by means of ¢-groups and
nuclei of negative cones of /-groups. From this point of view, a modal operator
f on an R¢-monoid M is a nucleus of M satisfying f(z) ® f(y) > f(x ©y).

PROPOSITION 6. If f is a strong modal operator on an R{-monoid M and
x,y € M, then

(vii) flz@y) = f(f(x) @ fy));
(viii) =@ f(0) = f(z77).
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Proof. Let us suppose that f is a strong modal operator. Then

(vii) fz@y) = flz® f(y) = f(f(2) D f(y));

(viii) By Proposition 3(v), f(z® f(0)) = f(z®0) = f(z~ ) implies f(z~~) =
[l f0) zza f(0) = f(z=7). 0
THEOREM 7. Let M be an R{-monoid and f: M — M be a mapping. Then f
is a modal operator on M if and only if for any x,y € M it is satisfied:

(a) z — f(y) = f(z) — f(y);
(b) f(@) O fly) > flzOy).

Proof. Let a mapping f fulfil conditions (a) and (b).

)
1. For any © € M we have x — f(z) = f(z) — f(z) = 1. Therefore z < f(z).
2. For all z € M it holds 1 = f(x) — f(z) = f(f(x)) — f(x). This implies
f(f(@)) < f(x). Therefore, by 1, f(f(x)) = f(x).

3. For any z,y € M it is true
Oy < fzoy) = y<z— f(z0y) = f(z) = f(zOy) = yO f(z)
flzoy) = fl@)<y— flzoy)=fy) = flzoy) = f@)of
flzoy) = f(x)0 fly) = flzOy).

The converse implication is obvious. O

COROLLARY 8. If M is an R{-monoid and f: M — M is a mapping, then f
is a nucleus of M if and only if f satisfies (a) of Theorem 7 and it is isotone.

Remark 9. If M is a Heyting algebra and z,y € M, then f(z) ® f(y) =
f@)A fly) = flx Ay) = f(z ©y). Therefore, by Theorem 7, f is a modal
operator on M iff it satisfies condition (a) (see also [10]).

We say that an R¢-monoid M is normal if M satisfies the identity
(oY) =277 Oy~

Remark 10. By [15, Proposition 5], every BL-algebra and every Heyting alge-
bra is normal, hence the variety of normal R¢-monoids is considerably wide.

Let M be an Rf-monoid. For arbitrary element a € M we denote by
Ya: M — M the mapping such that ¢,(z) = a @ x for every x € M.
Denote by
IM)={aeM: a®a=a}
the set of all multiplicative idempotents in an R¢-monoid M. It is obvious that
0,1 € I(M). By [9, Lemma 2.8.3], a®z = aAz holds for any a € [(M), x € M.
Further, if M is a normal R¢-monoid and a € I(M), then also a=~ € I(M).

THEOREM 11. If M is a normal R¢-monoid and a € M, then ¢, is a strong
modal operator on M if and only if a=,a~~ € I(M).
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Proof.
a) Let a,xz,y € M, a",a~~ € I(M).
1. po(z)=a®rz=(a"Ga")" >z~ >ua.
2. a(pa(r)) =a®(adz)=a&(a” ©z7) =(a” O ©z7) )" =
(a0 0z7) =(a0a" )0z )" =(a” 0z7 )" =adx = pu(z).
3. We first prove that a®z = (a V)™ ~.
By Lemma 1(10), we obtain a @z = (¢~ ©z7)” = (6~ Ax™)” =
((avz)")" =(aVa) .
We will now prove condition 3 from the definition of a modal operator.

We have
Pa(r) O pa(y) = (a®z) O (a@y) = (a7 ©r)O(a” SY)
=(a V) "o Vy)  =(a"Va)o(a " Vy))
=(a""@a )V(Eoa T )V(eT T oy V(zoy)
=@ V(@oy)  =a @0y =ad®(z0vy)
= ¢a(z O Y).

4. According to [14, Proposition 2.10], (M;@®) is a commutative semigroup.
For this reason

az@y)=a®(zdy)=a  D(zdy)=(a®a)D(zDy)
=aP (@ (adYy)) = palr® @a(y)).

b) Let ¢, be a strong modal operator on M. Then on account of condition 3,
we have a® (zOy) = (a®x)®(a®y). Then for x = y = 0 we obtain a® (0©0) =
(a®0)® (a®0), hence a® 0= (a®0)® (a ®0). Since a 0 =a" " (see [14,
Lemma 2.11]), we conclude that a=~ =a~~ ® @~ ~, which yields a=~ € I(M).

From condition 4 we have a® (z ®y) =a® (@ (a®y)). Then forx =y =0
it follows that a™ = =a®0=a® (000)=a®(0® (a®0)) = (aB0)Da ~ =

a” " @®a ", thus a™” =a = @a . From this a~ = (¢~ ®a”)~, hence
a- = (6~ ®a~)”~. Since M is normal, we obtain a= = a~ ® ¢~ and so
a= € I(M). O

Remark 12. If M is an MV-algebra and a € M, then a € I(M) if and only
if a=,a=~ € I(M). Concurrently, by [7], in any MV-algebra it is true that ¢,
is a modal operator on M if and only if ¢, is a strong modal operator on M
(namely if and only if @ € I(M)). The question, whether ¢, is a modal operator
on M if and only if it is a strong modal operator also for any normal R¢-monoid
M, remains open.
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COROLLARY 13. Let M be a normal RC-monoid and f be a modal operator on
M such that f(x) = f(z=7) for all x € M. Then f is strong if and only if

f= 50 and f(0)" € I(M).

Proof. Suppose that a modal operator f on M satisfies the condition f(x) =
f(z=) for every x € M. Then by Proposition 6 and Theorem 11, f is strong if
and only if f = ¢, for some a € M such that a=,a=~ € I(M).

If f is strong and @ € M, then f(x) = f(277) = f(0) © x. Hence f = py(
and we have f(0), f(0)~ € I(M).

For any modal operator f we have f(0)™~ € I(M). In fact, f(0)"~ =
F0©0) = (£(0)® f(0))~ = J(0) ® f(0)~. Hence, if | = ¢yq and
f(0)~ € I(M), then by Theorem 11, f is strong. d

COROLLARY 14. Specially for MV -algebras, we obtain (see [7]): If M is an
MV -algebra and f is a modal operator on M, then f is strong if and only if
=50

Let M be an Rf-monoid and a € M. Consider mappings ¥,: M — M
and xq: M — M such that ¢,(z) := a — x and x.(z) := (x — a) — a
for every x € M. These mappings are significant modal operators in Heyting
algebras (see [10]). We will now deal with the mappings 1, and x, in arbitrary
R{-monoids.

PROPOSITION 15. If M is an R{-monoid and a € I(M), then for any x,y € M
€r— ¢a(y) = %(l‘) - wa(y)-

Proof. By the definition of ¢,, * — ¥,(y) = z — (a — y) and Y(z) —
Ya(y) = (@ = z) — (a — y). At the same time, by Lemma 1(5), (a — z) —
(@a—y)=((a—2)0a) my=(aAz) my=(a0z) >y=2z— (a —y),
whence the assertion follows. 0

From Theorem 7 and Proposition 15 we obtain as an immediate consequence
the following claim.

COROLLARY 16. Let M be an Rl-monoid and a € I(M). Then 1, is a modal
operator on M if and only if for any x,y € M

Ya(2) © Ya(y) > Yalz ©y).
LemMA 17. If M is an R¢-monoid and a € M, then for any x,y € M

T — Xa(y) < Xa(2) = Xa(y)-

Proof. By the definition of x, and by Lemma 1(5)
(y —a) = a)=(y = a) = (z = a), xa(z) = Xaly
((y — a) — a). Since by [14, Lemma 2.3], (y — a) — (z — a) < ((z — a) — a)
— ((y = a) — a), we have z — Xa(y) < Xa(r) = Xa(y)- 0

, T = Xaly) = = —
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For any R¢-monoid M, let us denote by B(M) the set of all elements from M
having the complement in the lattice (M;V,A,0,1). Note that 0,1 € B(M).

If @ € B(M) then its complement a’ is equal to the element a~. By 9,
Lemma 2.8.8], B(M) C I(M).

PROPOSITION 18. Let M be an Rl-monoid and a € B(M). Then for any
z,y e M
r— Xa(y> = Xa(x) - Xa(y)‘
Proof. Let a € B(M), z,y € M. Then
= Xay) =2 — ((y > a) > a)=(y —a) = (z—a),
Xa() = Xa(y) = ( = a) = a) = ((y = a) —q)
=y —a)— ((z —a) —a)—a),

r—a=x—a =(xGa )",
(x—a)—a=((r—a)0a) " =(z0a")" ®a" )" =(xzAa")" Aa")~
=({(xzANa")Va) " =(xVa)A(a~ Va) " =(xVa) ~ =zda,

(x®a)®a”)" =(x®a) —a ~
a)—a)” " =((xVa)®a )~
(x®a")" =z —a.

Hence

Xa(#) = Xa(y) = (y = @) = (((z = a) = a) — a)
=y —a)=(z—a)=2—Xay)

O

COROLLARY 19. Let M be an Rl-monoid and a € B(M). Then x, is a modal
operator on M if and only if for any x,y € M

Xa(2) © Xa(y) > Xa(z O y).

Let M be an R¢-monoid and f be a modal operator on M. Then Fix(f) =
{x eEM: f(z)= x} will denote the set of all fixed elements of the operator f.
By the definition of a modal operator it is obvious that Fix(f) = Im(f).

Since f is a closure operator on the lattice (M;V,A), we infer that
(Fix(f); Vr,A), where y Vi z = f(y V z) and “A” is the restriction of the corre-
sponding operation from M on Fix(f), is a lattice.

THEOREM 20. If f is a modal operator on an Rl-monoid M, then Fix(f)
is closed under the operations “©” and “=7 and Fix(f) = (Fix(f);®,Vr,
A, —, £(0), 1) is an RE-monoid.
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Proof.

(i) Let 2,y € Fix(f). Then f(z@y) = f(z)Of(y) = 2Oy, thus 20y € Fix(f).

(ii) (Fix(f);VE, A, f(0),1) is a bounded lattice.

(iii) If y, z € Fix(f), then by Proposition 3 we have y — z = f(y) — f(z) =
F(Fy) — £(2) = fy — 2), hence y — = € Fix(f).

Therefore, if x,y, z € Fix(f), then z ©® y,y — 2z € Fix(f) and for this reason
2 ®y < z holds in Fix(f) if and only if z <y — 2.

(iv) By foregoing, Fix(f) also satisfies the identity z ® (z —y) =z Ay. O

Remark 21. The above theorem strengthens general Lemma 3.3 of [5] proved
for any residuated lattices in our special case of bounded (commutative) R¢-mo-
noids.

THEOREM 22. Let M be an Ré-monoid, a € I(M) and
I(a) :==[0,a] ={x e M: 0 <z <a}.

For any z,y € I(a) we set x Oy =2 Oy and x —, y = (x — y) Aa. Then
I(a) = (I(a); ®q, V, A\, —4,0,a) is an R{-monoid.

Proof.

(i) If z,y € I(a), then x ®y € I(a) and  ®a = x Aa = z, hence (I(a); ®q,a)
is a commutative monoid.

(ii) Obviously, (I(a);V,A,0,a) is a bounded lattice.

(iii) Let =,y € I(a). It holds that z — y is the greatest element z € M such
that z © z < y. Therefore (x — y) A a is the greatest element in I(a) with this
property. That means, x ®, z < y if and only if 2 < (x — y) Aa =z —, y for
every z € I(a).

(iv) For any z,y € I(a) we have  @q (z =4 y) =20 ((z = y)Na) =2 O
(x—=y)oa=(@Ay)Na=xANy. O

Remark 23. If for any z,y € I(a) we denote by 27« the negation of an element
x and by x @, y the sum of elements z and y in the R¢-monoid I(a), then it
holds

e =127 Aa, r®,y=(r®y)Aa.
Indeed

xTr=1x—,0=(x—0)Aa=2" Aa,
TBey=(7*0y ) Aa=(2" ©a®y ©a)” ANa= (2" Oy ©a)” Aa
=(a—(z7 Oy ) )0a=aA(z” Oy ) =aA(zDy).

Now, let M be arbitrary Rf¢-monoid (still bounded and commutative),
a € I(M) and let f be a modal operator on M. Let us consider a mapping
f@: I(a) — I(a) such that f*(z) = f(z) Aa (= f(z) © a), for every z € I(a).

329



JIRI RACHUNEK — DANA SALOUNOVA

THEOREM 24. Let M be an Rl-monoid, a € I(M) and f be a modal and strong
modal, respectively, operator on M. Then f* is a modal and strong modal,
respectively, operator on the Re-monoid I(a).
Proof. Assume z,y € I(a).
1. x<aand z < f(z), hence x < a A f(x) = f*(x).
2. 1 (f*" (@) = f(fx) Na) Na = f(f(z) ©a) Na = (f(f(z)) © fla)) Na
= f(#) A f(@) Na = fx) ANa = f(z).
3. fwoy) = froyAa=fE) o fy)oava=(f) Ao (fy) Aa)
— fo(@) © fo().
4. Let f be strong. Then

'@ @ ') = F(@ @ (F) A a) Aa) = f((z @ (F(y) Aa) Aa) Aa
f® (fy) A o) A f(a) ha = f(z & f(f(y) Aa) Aa
J@® (FF) A @) Aa= [ & () A () Aa

J@ flyna)na= e fy)Aa=fzoy)Aa
= @) -

THEOREM 25.

a) Let M be an RC-monoid, let f be a modal operator on M and f f’I M)
Then I(M) is a subalgebra of the reduct (M;®,V,A,0,1) and f is a mappmg
of I(M) into I(M) satisfying conditions 1, 2, 3 from the definition of a modal
operator.

b) Let M be a normal Rl-monoid and let = € I(M) for each x € I(M).
Then I(M) is closed also under the operation “®”. Moreover, if f is a strong
modal operator on M, then f satisfies condition 4 from the definition of a strong
modal operator.

¢) Let M be a BL-algebra. Then I(M) is a subalgebra of the algebra M which
is a Heyting algebra. If f is a modal operator on M, then f is @ modal operator
on the Heyting algebra I(M). If x= € I(M) holds for each x € I(M) and f is
a strong modal operator on M, then f is a strong modal operator on I(M).

Proof.
a) Let M be an R¢-monoid and =,y € I(M). Then

(oY) ooy =(o0r)0 oY) =r0yY,
thus x @ y = x Ay € I(M). Further,
(zVy)o(zVy) = (z02)V([yo2)V(zoYy V(yoy) =2VyV(z0y) =z Vy,
therefore also z vV y € I(M).
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Obviously, 0,1 € I(M).
Finally, if f is a modal operator on M, then for each x € I(M) we have
f@)=flzox) = f(x)© f(z).
It follows that f(x) € I(M). Therefore f is a mapping of I(M) into I(M)
satisfying conditions 1-3.
b) If = € I(M) holds for every x € I(M), then (similarly to the third part

of the proof of Theorem 11) for any z,y € I(M) we obtain t ®y = (z Vy) —,
and hence provided M is normal we have

(zoy)o(ray)=(@Vy)  o@Vy)  =((zVy)o(xVvy)  =(@Vy
=zdy,

therefore x @y € I(M).

At the same time it is obvious that if f is a strong modal operator on M,
then f fulfills condition 4 as well.

¢) By [13], an R¢-monoid M is a BL-algebra if and only if M is isomorphic
to a subdirect product of R¢-chains (=BL-chains). Let now a BL-algebra M be
a subdirect product of BL-chains M,, a € I'. If a € M, then a = (an; 0 €T) €
I(M) if and only if a, € I(M,) for each a € I'. Let z = (zq;a € '), y =
(yo;a € T) € I(M). Then z, — yo = 1 for yo, > x4 and x4 — Yo = Yo for
ZTo > Ya. Whence (x4 — yo;a € T') € I(M) and it is equal to the element
x — y. By [13], furthermore, I(M) is a Heyting algebra.

Then it is clear that f is a modal operator on I (M) for any modal opera-
tor f on M. Moreover, by [15, Proposition 5|, every BL-algebra is a normal
Rl-monoid. Therefore, if 2= € I(M) for each = € I(M), then f is a strong
modal operator on the Heyting algebra I (M) for every strong modal operator f
on M. U

Remark 26. For any a € M, also mappings m,: M — M (in our notation)
defined by 7,(z) = a V x for each z € M were introduced and studied for
Heyting algebras in [10]. Evidently, if M is an arbitrary R{-monoid, then ,
satisfies conditions 1 and 2 from the definition of a modal operator on M. This
begs the question if m, fulfills condition 3 from this definition as well and in
which cases 7, = ¢, holds, respectively.

a) If M is a Heyting algebra then x © y = ¢ A y for any x,y € M. From the
distributivity of the lattice (M;V,A) it follows that condition 3 is satisfied for
any a € M. At the same time, a @ z = (a V )~ ~, hence 7, need not generally
be equal to ¢,. For example, mo(z) =z, @o(z) =z~ ~.

b) If M is an MV-algebra, then a V& = a & « holds for any a € I(M) and
zeEM,and a®@ (z0y) = (a®x) O (a ®y). Therefore, we have ¢, = 7, for
each a € I(M) and hence, for each a € I(M), moreover 7, is a strong modal
operator on M .
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