

DOI: 10.2478/s12175-007-0026-3 Math. Slovaca **57** (2007), No. 4, 321–332

MODAL OPERATORS ON BOUNDED COMMUTATIVE RESIDUATED ℓ -MONOIDS

Jiří Rachůnek* — Dana Šalounová**

(Communicated by Anatolij Dvurečenskij)

ABSTRACT. Bounded commutative residuated lattice ordered monoids ($R\ell$ -monoids) are a common generalization of, e.g., Heyting algebras and BL-algebras, i.e., algebras of intuitionistic logic and basic fuzzy logic, respectively. Modal operators (special cases of closure operators) on Heyting algebras were studied in [MacNAB, D. S.: Modal operators on Heyting algebras, Algebra Universalis 12 (1981), 5–29] and on MV-algebras in [HARLENDEROVÁ, M.—RACHŮNEK, J.: Modal operators on MV-algebras, Math. Bohem. 131 (2006), 39–48]. In the paper we generalize the notion of a modal operator for general bounded commutative $R\ell$ -monoids and investigate their properties also for certain derived algebras.

© 2007 Mathematical Institute Slovak Academy of Sciences

Commutative residuated lattice ordered monoids ($R\ell$ -monoids) are duals to commutative $DR\ell$ -monoids which were introduced by S w a m y [16] as a common generalization of Abelian lattice ordered groups and Brouwerian algebras. By [11], [12], [13], also algebras of logics behind fuzzy reasoning can be considered as particular cases of bounded commutative $R\ell$ -monoids. Namely from this point of view, MV-algebras, an algebraic counterpart of the Łukasiewicz infinite-valued propositional logic, are precisely bounded commutative $R\ell$ -monoids satisfying the double negation law. Further, BL-algebras, an algebraic semantics of the Hájek basic fuzzy logic, are just bounded commutative $R\ell$ -monoids isomorphic to subdirect products of linearly ordered commutative $R\ell$ -monoids. Heyting algebras (duals to Brouwerian algebras), i.e. algebras of intuitionistic logic, are characterized as bounded commutative $R\ell$ -monoids with idempotent multiplication.

Modal operators (special cases of closure operators) on Heyting algebras were introduced and studied by Macnab in [10]. Analogously, modal operators on MV-algebras were introduced in [7] recently.

In this paper we define modal operators for arbitrary bounded commutative $R\ell$ -monoids and we study their properties in the class of normal $R\ell$ -monoids in particular.

For concepts and results relating to MV-algebras, BL-algebras and Heyting algebras see for instance [3], [6], [1].

DEFINITION 1. A bounded commutative $R\ell$ -monoid is an algebra $M = (M; \odot, \vee, \wedge, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) satisfying the following conditions.

- (i) $(M; \odot, 1)$ is a commutative monoid.
- (ii) $(M; \vee, \wedge, 0, 1)$ is a bounded lattice.
- (iii) $x \odot y \le z$ if and only if $x \le y \to z$, for any $x, y, z \in M$.
- (iv) $x \odot (x \to y) = x \land y$, for any $x, y \in M$.

Bounded commutative $R\ell$ -monoids are special cases of residuated lattices, more precisely (see for instance [4]), they are exactly commutative integral generalized BL-algebras in the sense of [2] and [8].

In what follows, by an $R\ell$ -monoid we will mean a bounded commutative $R\ell$ -monoid.

Let us define on any $R\ell$ -monoid M the unary operation of negation "-" by $x^- := x \to 0$ for any $x \in M$. Further, we put $x \oplus y := (x^- \odot y^-)^-$ for any $x, y \in M$.

Algebras of the above mentioned propositional logics can be characterized in the class of all $R\ell$ -monoids as follows: An $R\ell$ -monoid M is

- a) a *BL*-algebra ([13]) if and only if *M* satisfies the identity of pre-linearity $(x \to y) \lor (y \to x) = 1$;
- b) an MV-algebra ([11], [12]) if and only if M fulfills the double negation law $x^{--}=x;$
- c) a Heyting algebra ([16]) if and only if the operations " \odot " and " \wedge " coincide on M.

Lemma 1. ([16], [15]) In any bounded commutative $R\ell$ -monoid M we have for any $x, y \in M$:

- (1) $x \le y \iff x \to y = 1$.
- (2) $x \odot y \le x \land y \le x, y$.
- (3) $x \le y \implies x \odot z \le y \odot z$.
- (4) $x \le y \implies z \to x \le z \to y, y \to z \le x \to z.$

MODAL OPERATORS ON BOUNDED COMMUTATIVE RESIDUATED ℓ-MONOIDS

(5)
$$(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$$
.

(6)
$$(x \to y) \odot (y \to z) \le x \to z$$
.

(7)
$$1^{--} = 1$$
, $0^{--} = 0$.

(8)
$$x \le x^{--}, x^{-} = x^{---}.$$

(9)
$$x \le y \implies y^- \le x^-$$
.

(10)
$$(x \vee y)^- = x^- \wedge y^-$$
.

(11)
$$(x \wedge y)^{--} = x^{--} \wedge y^{--}$$
.

$$(12) (x \odot y)^- = y \to x^- = y^{--} \to x^- = x \to y^- = x^{--} \to y^-.$$

(13)
$$(x \odot y)^{--} \ge x^{--} \odot y^{--}$$
.

$$(14) (x \to y)^{--} = x^{--} \to y^{--}.$$

Remark 2. It is obvious that $x \oplus z \le y \oplus z$ holds for any $x, y, z \in M$ such that $x \le y$. Further by [14, Lemma 2.11], $x^{--} \oplus y^{--} = x \oplus y$ for any $x, y \in M$, hence also $x \oplus y = x^{--} \oplus y = x \oplus y^{--} = x^{--} \oplus y^{--}$.

DEFINITION 2. Let M be an $R\ell$ -monoid. A mapping $f: M \longrightarrow M$ is called a *modal operator* on M if, for any $x, y \in M$,

1.
$$x \leq f(x)$$
;

2.
$$f(f(x)) = f(x)$$
;

3.
$$f(x \odot y) = f(x) \odot f(y)$$
.

If, moreover, for any $x, y \in M$,

4.
$$f(x \oplus y) = f(x \oplus f(y)),$$

then f is called a *strong modal operator* on M.

PROPOSITION 3. If f is a modal operator on an $R\ell$ -monoid M and $x, y \in M$, then

(i)
$$x \le y \implies f(x) \le f(y)$$
;

(ii)
$$f(x \to y) \le f(x) \to f(y) = f(f(x) \to f(y)) = x \to f(y) = f(x \to f(y));$$

(iii)
$$f(x) \le (x \to f(0)) \to f(0)$$
;

(iv)
$$f(x) \odot x^- \le f(0)$$
;

(v)
$$x \oplus f(0) \ge f(x^{--}) \ge f(x)$$
;

(vi)
$$f(x \lor y) = f(x \lor f(y)) = f(f(x) \lor f(y)).$$

Proof.

(i)
$$x \le y \implies f(x \land y) = f(x) \implies f(y \odot (y \to x)) = f(x) \implies f(y) \odot f(y \to x) = f(x) \implies f(x) \le f(y).$$

(ii) By (i),
$$f(x) \odot f(x \to y) = f(x \odot (x \to y)) = f(x \land y) \le f(y)$$
. This implies

$$f(x \to y) \le f(x) \to f(y)$$
.

From this we get

$$f(f(x) \to f(y)) \le f(f(x)) \to f(f(y)) = f(x) \to f(y) \le x \to f(y)$$

$$\le f(x \to f(y)) \le f(x) \to f(f(y))$$

$$= f(x) \to f(y) \le f(f(x) \to f(y)),$$

therefore

$$f(x) \to f(y) = f(f(x) \to f(y)) = x \to f(y) = f(x \to f(y)).$$

(iii) By use of (ii) and (i), we have

$$f(x)\odot(f(x)\to f(0))=f(x)\land f(0)=f(0)\implies f(x)\leq (f(x)\to f(0))\to f(0)\\ \implies f(x)\leq (x\to f(0))\to f(0).$$

(iv) By (ii), we obtain

$$0 \le f(0) \implies x^- = x \to 0 \le x \to f(0) = f(x) \to f(0),$$

thus

$$f(x) \odot x^{-} \le f(x) \odot (f(x) \to f(0)) = f(x) \land f(0) = f(0).$$

(v) According to Remark 2, Lemma 1(12), (8) and the part (ii) consecutively,

$$x \oplus f(0) = x^{--} \oplus f(0) = (x^{---} \odot f(0)^{-})^{-} = x^{---} \to f(0)^{--}$$
$$= x^{-} \to f(0)^{--} = f(x^{-} \to f(0)^{--}) \ge f(x^{-} \to f(0)) \ge f(x^{-} \to 0)$$
$$= f(x^{--}) \ge f(x).$$

Hence

$$x \oplus f(0) \ge f(x^{--}) \ge f(x).$$

(vi)
$$f(x \lor y) \le f(x \lor f(y)) \le f(f(x) \lor f(y)) = f(f(x \lor y)) = f(x \lor y)$$
. \Box

Remark 4. By the definition of a modal operator and Proposition 3(i) every modal operator on an $R\ell$ -monoid M is a closure operator on the lattice $(M; \vee, \wedge)$.

Remark 5. M. Galatos and C. Tsinakis introduced in [5] the notion of a nucleus of a residuated lattice L as a closure operator γ on L satisfying $\gamma(a)\gamma(b) \leq \gamma(ab)$, to represent generalizations of MV-algebras (dropping integrality, commutativity and the existence of bounds) by means of ℓ -groups and nuclei of negative cones of ℓ -groups. From this point of view, a modal operator f on an $R\ell$ -monoid M is a nucleus of M satisfying $f(x) \odot f(y) \geq f(x \odot y)$.

Proposition 6. If f is a strong modal operator on an $R\ell$ -monoid M and $x,y\in M$, then

(vii)
$$f(x \oplus y) = f(f(x) \oplus f(y));$$

(viii)
$$x \oplus f(0) = f(x^{--}).$$

Proof. Let us suppose that f is a strong modal operator. Then

(vii)
$$f(x \oplus y) = f(x \oplus f(y)) = f(f(x) \oplus f(y));$$

(viii) By Proposition 3(v),
$$f(x \oplus f(0)) = f(x \oplus 0) = f(x^{--})$$
 implies $f(x^{--}) = f(x \oplus f(0)) \ge x \oplus f(0) \ge f(x^{--})$.

THEOREM 7. Let M be an $R\ell$ -monoid and $f: M \longrightarrow M$ be a mapping. Then f is a modal operator on M if and only if for any $x, y \in M$ it is satisfied:

- (a) $x \to f(y) = f(x) \to f(y)$;
- (b) $f(x) \odot f(y) \ge f(x \odot y)$.

Proof. Let a mapping f fulfil conditions (a) and (b).

- 1. For any $x \in M$ we have $x \to f(x) = f(x) \to f(x) = 1$. Therefore $x \le f(x)$.
- 2. For all $x \in M$ it holds $1 = f(x) \to f(x) = f(f(x)) \to f(x)$. This implies $f(f(x)) \le f(x)$. Therefore, by 1, f(f(x)) = f(x).
- 3. For any $x, y \in M$ it is true $x \odot y \le f(x \odot y) \implies y \le x \to f(x \odot y) = f(x) \to f(x \odot y) \implies y \odot f(x) \le f(x \odot y) \implies f(x) \le y \to f(x \odot y) = f(y) \to f(x \odot y) \implies f(x) \odot f(y) \le f(x \odot y) \implies f(x) \odot f(y) = f(x \odot y).$

The converse implication is obvious.

COROLLARY 8. If M is an $R\ell$ -monoid and $f: M \longrightarrow M$ is a mapping, then f is a nucleus of M if and only if f satisfies (a) of Theorem 7 and it is isotone.

Remark 9. If M is a Heyting algebra and $x, y \in M$, then $f(x) \odot f(y) = f(x) \wedge f(y) \geq f(x \wedge y) = f(x \odot y)$. Therefore, by Theorem 7, f is a modal operator on M iff it satisfies condition (a) (see also [10]).

We say that an $R\ell$ -monoid M is normal if M satisfies the identity

$$(x \odot y)^{--} = x^{--} \odot y^{--}.$$

Remark 10. By [15, Proposition 5], every BL-algebra and every Heyting algebra is normal, hence the variety of normal $R\ell$ -monoids is considerably wide.

Let M be an $R\ell$ -monoid. For arbitrary element $a \in M$ we denote by $\varphi_a : M \longrightarrow M$ the mapping such that $\varphi_a(x) = a \oplus x$ for every $x \in M$.

Denote by

$$I(M) = \{ a \in M : a \odot a = a \}$$

the set of all multiplicative idempotents in an $R\ell$ -monoid M. It is obvious that $0, 1 \in I(M)$. By [9, Lemma 2.8.3], $a \odot x = a \wedge x$ holds for any $a \in I(M)$, $x \in M$. Further, if M is a normal $R\ell$ -monoid and $a \in I(M)$, then also $a^{--} \in I(M)$.

THEOREM 11. If M is a normal Rl-monoid and $a \in M$, then φ_a is a strong modal operator on M if and only if $a^-, a^{--} \in I(M)$.

Proof.

- a) Let $a, x, y \in M, a^-, a^{--} \in I(M)$.
- 1. $\varphi_a(x) = a \oplus x = (a^- \odot x^-)^- \ge x^{--} \ge x$.
- 2. $\varphi_a(\varphi_a(x)) = a \oplus (a \oplus x) = a \oplus (a^- \odot x^-)^- = (a^- \odot (a^- \odot x^-)^{--})^- = (a^- \odot (a^- \odot x^-))^- = ((a^- \odot a^-) \odot x^-)^- = (a^- \odot x^-)^- = a \oplus x = \varphi_a(x).$
- 3. We first prove that $a \oplus x = (a \vee x)^{--}$.

By Lemma 1(10), we obtain $a \oplus x = (a^- \odot x^-)^- = (a^- \wedge x^-)^- = ((a \vee x)^-)^- = (a \vee x)^{--}$.

We will now prove condition 3 from the definition of a modal operator. We have

$$\varphi_{a}(x) \odot \varphi_{a}(y) = (a \oplus x) \odot (a \oplus y) = (a^{--} \oplus x) \odot (a^{--} \oplus y)
= (a^{--} \lor x)^{--} \odot (a^{--} \lor y)^{--} = ((a^{--} \lor x) \odot (a^{--} \lor y))^{--}
= ((a^{--} \odot a^{--}) \lor (x \odot a^{--}) \lor (a^{--} \odot y) \lor (x \odot y))^{--}
= (a^{--} \lor (x \odot y))^{--} = a^{--} \oplus (x \odot y) = a \oplus (x \odot y)
= \varphi_{a}(x \odot y).$$

4. According to [14, Proposition 2.10], $(M; \oplus)$ is a commutative semigroup. For this reason

$$\varphi_a(x \oplus y) = a \oplus (x \oplus y) = a^{--} \oplus (x \oplus y) = (a \oplus a) \oplus (x \oplus y)$$
$$= a \oplus (x \oplus (a \oplus y)) = \varphi_a(x \oplus \varphi_a(y)).$$

b) Let φ_a be a strong modal operator on M. Then on account of condition 3, we have $a \oplus (x \odot y) = (a \oplus x) \odot (a \oplus y)$. Then for x = y = 0 we obtain $a \oplus (0 \odot 0) = (a \oplus 0) \odot (a \oplus 0)$, hence $a \oplus 0 = (a \oplus 0) \odot (a \oplus 0)$. Since $a \oplus 0 = a^{--}$ (see [14, Lemma 2.11]), we conclude that $a^{--} = a^{--} \odot a^{--}$, which yields $a^{--} \in I(M)$.

From condition 4 we have $a \oplus (x \oplus y) = a \oplus (x \oplus (a \oplus y))$. Then for x = y = 0 it follows that $a^{--} = a \oplus 0 = a \oplus (0 \oplus 0) = a \oplus (0 \oplus (a \oplus 0)) = (a \oplus 0) \oplus a^{--} = a^{--} \oplus a^{--}$, thus $a^{--} = a^{--} \oplus a^{--}$. From this $a^{--} = (a^{-} \odot a^{-})^{-}$, hence $a^{-} = (a^{-} \odot a^{-})^{--}$. Since M is normal, we obtain $a^{-} = a^{-} \odot a^{-}$ and so $a^{-} \in I(M)$.

Remark 12. If M is an MV-algebra and $a \in M$, then $a \in I(M)$ if and only if $a^-, a^{--} \in I(M)$. Concurrently, by [7], in any MV-algebra it is true that φ_a is a modal operator on M if and only if φ_a is a strong modal operator on M (namely if and only if $a \in I(M)$). The question, whether φ_a is a modal operator on M if and only if it is a strong modal operator also for any normal $R\ell$ -monoid M, remains open.

COROLLARY 13. Let M be a normal $R\ell$ -monoid and f be a modal operator on M such that $f(x) = f(x^{--})$ for all $x \in M$. Then f is strong if and only if $f = \varphi_{f(0)}$ and $f(0)^- \in I(M)$.

Proof. Suppose that a modal operator f on M satisfies the condition $f(x) = f(x^{--})$ for every $x \in M$. Then by Proposition 6 and Theorem 11, f is strong if and only if $f = \varphi_a$ for some $a \in M$ such that $a^-, a^{--} \in I(M)$.

If f is strong and $x \in M$, then $f(x) = f(x^{--}) = f(0) \oplus x$. Hence $f = \varphi_{f(0)}$ and we have $f(0), f(0)^- \in I(M)$.

For any modal operator f we have $f(0)^{--} \in I(M)$. In fact, $f(0)^{--} = f(0 \odot 0)^{--} = (f(0) \odot f(0))^{--} = f(0)^{--} \odot f(0)^{--}$. Hence, if $f = \varphi_{f(0)}$ and $f(0)^{-} \in I(M)$, then by Theorem 11, f is strong.

COROLLARY 14. Specially for MV-algebras, we obtain (see [7]): If M is an MV-algebra and f is a modal operator on M, then f is strong if and only if $f = \varphi_{f(0)}$.

Let M be an $R\ell$ -monoid and $a \in M$. Consider mappings $\psi_a \colon M \longrightarrow M$ and $\chi_a \colon M \longrightarrow M$ such that $\psi_a(x) := a \to x$ and $\chi_a(x) := (x \to a) \to a$ for every $x \in M$. These mappings are significant modal operators in Heyting algebras (see [10]). We will now deal with the mappings ψ_a and χ_a in arbitrary $R\ell$ -monoids.

PROPOSITION 15. If M is an $R\ell$ -monoid and $a \in I(M)$, then for any $x, y \in M$ $x \to \psi_a(y) = \psi_a(x) \to \psi_a(y)$.

Proof. By the definition of ψ_a , $x \to \psi_a(y) = x \to (a \to y)$ and $\psi_a(x) \to \psi_a(y) = (a \to x) \to (a \to y)$. At the same time, by Lemma 1(5), $(a \to x) \to (a \to y) = ((a \to x) \odot a) \to y = (a \wedge x) \to y = (a \odot x) \to y = x \to (a \to y)$, whence the assertion follows.

From Theorem 7 and Proposition 15 we obtain as an immediate consequence the following claim.

COROLLARY 16. Let M be an $R\ell$ -monoid and $a \in I(M)$. Then ψ_a is a modal operator on M if and only if for any $x, y \in M$

$$\psi_a(x) \odot \psi_a(y) \ge \psi_a(x \odot y).$$

Lemma 17. If M is an $R\ell$ -monoid and $a \in M$, then for any $x, y \in M$

$$x \to \chi_a(y) \le \chi_a(x) \to \chi_a(y)$$
.

Proof. By the definition of χ_a and by Lemma 1(5), $x \to \chi_a(y) = x \to ((y \to a) \to a) = (y \to a) \to (x \to a)$, $\chi_a(x) \to \chi_a(y) = ((x \to a) \to a) \to ((y \to a) \to a)$. Since by [14, Lemma 2.3], $(y \to a) \to (x \to a) \leq ((x \to a) \to a)$ $\to ((y \to a) \to a)$, we have $x \to \chi_a(y) \leq \chi_a(x) \to \chi_a(y)$.

For any $R\ell$ -monoid M, let us denote by B(M) the set of all elements from M having the complement in the lattice $(M; \vee, \wedge, 0, 1)$. Note that $0, 1 \in B(M)$. If $a \in B(M)$ then its complement a' is equal to the element a^- . By [9, Lemma 2.8.8], $B(M) \subseteq I(M)$.

PROPOSITION 18. Let M be an $R\ell$ -monoid and $a \in B(M)$. Then for any $x, y \in M$

$$x \to \chi_a(y) = \chi_a(x) \to \chi_a(y).$$

Proof. Let $a \in B(M)$, $x, y \in M$. Then

$$x \to \chi_a(y) = x \to ((y \to a) \to a) = (y \to a) \to (x \to a),$$

$$\chi_a(x) \to \chi_a(y) = ((x \to a) \to a) \to ((y \to a) \to a)$$

$$= (y \to a) \to (((x \to a) \to a) \to a),$$

$$x \to a = x \to a^{--} = (x \odot a^{-})^{-},$$

$$(x \to a) \to a = ((x \to a) \odot a^{-})^{-} = ((x \odot a^{-})^{-} \odot a^{-})^{-} = ((x \wedge a^{-})^{-} \wedge a^{-})^{-}$$
$$= ((x \wedge a^{-}) \vee a)^{--} = ((x \vee a) \wedge (a^{-} \vee a))^{--} = (x \vee a)^{--} = x \oplus a,$$

$$((x \to a) \to a) \to a = (((x \to a) \to a) \odot a^{-})^{-} = ((x \oplus a) \odot a^{-})^{-} = (x \oplus a) \to a^{--}$$

$$= (x \lor a)^{--} \to a^{--} = ((x \lor a) \to a)^{--} = ((x \lor a) \odot a^{-})^{-}$$

$$= ((x \odot a^{-}) \lor (a \odot a^{-}))^{-} = (x \odot a^{-})^{-} = x \to a.$$

Hence

$$\chi_a(x) \to \chi_a(y) = (y \to a) \to (((x \to a) \to a) \to a)$$
$$= (y \to a) \to (x \to a) = x \to \chi_a(y).$$

COROLLARY 19. Let M be an $R\ell$ -monoid and $a \in B(M)$. Then χ_a is a modal operator on M if and only if for any $x, y \in M$

$$\chi_a(x) \odot \chi_a(y) \ge \chi_a(x \odot y).$$

Let M be an $R\ell$ -monoid and f be a modal operator on M. Then $\operatorname{Fix}(f) = \{x \in M : f(x) = x\}$ will denote the set of all fixed elements of the operator f. By the definition of a modal operator it is obvious that $\operatorname{Fix}(f) = \operatorname{Im}(f)$.

Since f is a closure operator on the lattice $(M; \vee, \wedge)$, we infer that $(\text{Fix}(f); \vee_F, \wedge)$, where $y \vee_F z = f(y \vee z)$ and " \wedge " is the restriction of the corresponding operation from M on Fix(f), is a lattice.

THEOREM 20. If f is a modal operator on an $R\ell$ -monoid M, then $\operatorname{Fix}(f)$ is closed under the operations " \odot " and " \rightarrow " and $\operatorname{Fix}(f) = (\operatorname{Fix}(f); \odot, \vee_F, \wedge, \rightarrow, f(0), 1)$ is an $R\ell$ -monoid.

Proof.

- (i) Let $x, y \in \text{Fix}(f)$. Then $f(x \odot y) = f(x) \odot f(y) = x \odot y$, thus $x \odot y \in \text{Fix}(f)$.
- (ii) $(\text{Fix}(f); \vee_F, \wedge, f(0), 1)$ is a bounded lattice.
- (iii) If $y, z \in \text{Fix}(f)$, then by Proposition 3 we have $y \to z = f(y) \to f(z) = f(f(y) \to f(z)) = f(y \to z)$, hence $y \to z \in \text{Fix}(f)$.

Therefore, if $x, y, z \in \text{Fix}(f)$, then $x \odot y, y \to z \in \text{Fix}(f)$ and for this reason $x \odot y \le z$ holds in Fix(f) if and only if $x \le y \to z$.

(iv) By foregoing, Fix(f) also satisfies the identity $x \odot (x \to y) = x \wedge y$. \square

Remark 21. The above theorem strengthens general Lemma 3.3 of [5] proved for any residuated lattices in our special case of bounded (commutative) $R\ell$ -monoids.

THEOREM 22. Let M be an $R\ell$ -monoid, $a \in I(M)$ and

$$I(a) := [0, a] = \{x \in M : 0 \le x \le a\}.$$

For any $x, y \in I(a)$ we set $x \odot_a y = x \odot y$ and $x \rightarrow_a y := (x \rightarrow y) \land a$. Then $I(a) = (I(a); \odot_a, \lor, \land, \rightarrow_a, 0, a)$ is an $R\ell$ -monoid.

Proof.

- (i) If $x, y \in I(a)$, then $x \odot y \in I(a)$ and $x \odot a = x \land a = x$, hence $(I(a); \odot_a, a)$ is a commutative monoid.
 - (ii) Obviously, $(I(a); \vee, \wedge, 0, a)$ is a bounded lattice.
- (iii) Let $x, y \in I(a)$. It holds that $x \to y$ is the greatest element $z \in M$ such that $x \odot z \le y$. Therefore $(x \to y) \land a$ is the greatest element in I(a) with this property. That means, $x \odot_a z \le y$ if and only if $z \le (x \to y) \land a = x \to_a y$ for every $z \in I(a)$.
- (iv) For any $x, y \in I(a)$ we have $x \odot_a (x \to_a y) = x \odot ((x \to y) \land a) = x \odot (x \to y) \odot a = (x \land y) \land a = x \land y$.

Remark 23. If for any $x, y \in I(a)$ we denote by x^{-a} the negation of an element x and by $x \oplus_a y$ the sum of elements x and y in the $R\ell$ -monoid I(a), then it holds

$$x^{-a} = x^{-} \wedge a, \qquad x \oplus_{a} y = (x \oplus y) \wedge a.$$

Indeed

$$x^{-a} = x \to_a 0 = (x \to 0) \land a = x^- \land a,$$

$$x \oplus_a y = (x^{-a} \odot y^{-a})^- \land a = (x^- \odot a \odot y^- \odot a)^- \land a = (x^- \odot y^- \odot a)^- \land a$$

= $(a \to (x^- \odot y^-)^-) \odot a = a \land (x^- \odot y^-)^- = a \land (x \oplus y).$

Now, let M be arbitrary $R\ell$ -monoid (still bounded and commutative), $a \in I(M)$ and let f be a modal operator on M. Let us consider a mapping $f^a \colon I(a) \longrightarrow I(a)$ such that $f^a(x) = f(x) \wedge a \ (= f(x) \odot a)$, for every $x \in I(a)$.

THEOREM 24. Let M be an $R\ell$ -monoid, $a \in I(M)$ and f be a modal and strong modal, respectively, operator on M. Then f^a is a modal and strong modal, respectively, operator on the $R\ell$ -monoid I(a).

Proof. Assume $x, y \in I(a)$.

- 1. $x \le a$ and $x \le f(x)$, hence $x \le a \land f(x) = f^a(x)$.
- 2. $f^a(f^a(x)) = f(f(x) \wedge a) \wedge a = f(f(x) \odot a) \wedge a = (f(f(x)) \odot f(a)) \wedge a$ = $f(x) \wedge f(a) \wedge a = f(x) \wedge a = f^a(x)$.
- 3. $f^{a}(x \odot y) = f(x \odot y) \land a = f(x) \odot f(y) \odot a \odot a = (f(x) \land a) \odot (f(y) \land a)$ $= f^{a}(x) \odot f^{a}(y).$
- 4. Let f be strong. Then

$$\begin{split} f^a(x \oplus_a f^a(y)) &= f^a((x \oplus (f(y) \wedge a)) \wedge a) = f((x \oplus (f(y) \wedge a)) \wedge a) \wedge a \\ &= f(x \oplus (f(y) \wedge a)) \wedge f(a) \wedge a = f(x \oplus f(f(y) \wedge a)) \wedge a \\ &= f(x \oplus ((f(f(y)) \wedge f(a))) \wedge a = f(x \oplus (f(y) \wedge f(a))) \wedge a \\ &= f(x \oplus f(y \wedge a)) \wedge a = f(x \oplus f(y)) \wedge a = f(x \oplus y) \wedge a \\ &= f^a(x \oplus y). \end{split}$$

THEOREM 25.

- a) Let M be an $R\ell$ -monoid, let f be a modal operator on M and $\hat{f} = f|_{I(M)}$. Then I(M) is a subalgebra of the reduct $(M; \odot, \lor, \land, 0, 1)$ and \hat{f} is a mapping of I(M) into I(M) satisfying conditions 1, 2, 3 from the definition of a modal operator.
- b) Let M be a normal $R\ell$ -monoid and let $x^- \in I(M)$ for each $x \in I(M)$. Then I(M) is closed also under the operation " \oplus ". Moreover, if f is a strong modal operator on M, then \hat{f} satisfies condition 4 from the definition of a strong modal operator.
- c) Let M be a BL-algebra. Then I(M) is a subalgebra of the algebra M which is a Heyting algebra. If f is a modal operator on M, then \hat{f} is a modal operator on the Heyting algebra I(M). If $x^- \in I(M)$ holds for each $x \in I(M)$ and f is a strong modal operator on M, then \hat{f} is a strong modal operator on I(M).

Proof.

a) Let M be an $R\ell$ -monoid and $x, y \in I(M)$. Then

$$(x \odot y) \odot (x \odot y) = (x \odot x) \odot (y \odot y) = x \odot y,$$

thus $x \odot y = x \land y \in I(M)$. Further,

$$(x\vee y)\odot(x\vee y)=(x\odot x)\vee(y\odot x)\vee(x\odot y)\vee(y\odot y)=x\vee y\vee(x\odot y)=x\vee y,$$
 therefore also $x\vee y\in I(M).$

Obviously, $0, 1 \in I(M)$.

Finally, if f is a modal operator on M, then for each $x \in I(M)$ we have

$$f(x) = f(x \odot x) = f(x) \odot f(x).$$

It follows that $f(x) \in I(M)$. Therefore \hat{f} is a mapping of I(M) into I(M) satisfying conditions 1–3.

b) If $x^- \in I(M)$ holds for every $x \in I(M)$, then (similarly to the third part of the proof of Theorem 11) for any $x, y \in I(M)$ we obtain $x \oplus y = (x \vee y)^{--}$, and hence provided M is normal we have

$$(x \oplus y) \odot (x \oplus y) = (x \lor y)^{--} \odot (x \lor y)^{--} = ((x \lor y) \odot (x \lor y))^{--} = (x \lor y)^{--}$$

= $x \oplus y$,

therefore $x \oplus y \in I(M)$.

At the same time it is obvious that if f is a strong modal operator on M, then \hat{f} fulfills condition 4 as well.

c) By [13], an $R\ell$ -monoid M is a BL-algebra if and only if M is isomorphic to a subdirect product of $R\ell$ -chains (=BL-chains). Let now a BL-algebra M be a subdirect product of BL-chains M_{α} , $\alpha \in \Gamma$. If $a \in M$, then $a = (a_{\alpha}; \alpha \in \Gamma) \in I(M)$ if and only if $a_{\alpha} \in I(M_{\alpha})$ for each $\alpha \in \Gamma$. Let $x = (x_{\alpha}; \alpha \in \Gamma)$, $y = (y_{\alpha}; \alpha \in \Gamma) \in I(M)$. Then $x_{\alpha} \to y_{\alpha} = 1$ for $y_{\alpha} \ge x_{\alpha}$ and $x_{\alpha} \to y_{\alpha} = y_{\alpha}$ for $x_{\alpha} > y_{\alpha}$. Whence $(x_{\alpha} \to y_{\alpha}; \alpha \in \Gamma) \in I(M)$ and it is equal to the element $x \to y$. By [13], furthermore, I(M) is a Heyting algebra.

Then it is clear that \hat{f} is a modal operator on I(M) for any modal operator f on M. Moreover, by [15, Proposition 5], every BL-algebra is a normal $R\ell$ -monoid. Therefore, if $x^- \in I(M)$ for each $x \in I(M)$, then \hat{f} is a strong modal operator on the Heyting algebra I(M) for every strong modal operator f on M.

Remark 26. For any $a \in M$, also mappings $\pi_a \colon M \longrightarrow M$ (in our notation) defined by $\pi_a(x) = a \vee x$ for each $x \in M$ were introduced and studied for Heyting algebras in [10]. Evidently, if M is an arbitrary $R\ell$ -monoid, then π_a satisfies conditions 1 and 2 from the definition of a modal operator on M. This begs the question if π_a fulfills condition 3 from this definition as well and in which cases $\pi_a = \varphi_a$ holds, respectively.

- a) If M is a Heyting algebra then $x \odot y = x \wedge y$ for any $x, y \in M$. From the distributivity of the lattice $(M; \vee, \wedge)$ it follows that condition 3 is satisfied for any $a \in M$. At the same time, $a \oplus x = (a \vee x)^{--}$, hence π_a need not generally be equal to φ_a . For example, $\pi_0(x) = x$, $\varphi_0(x) = x^{--}$.
- b) If M is an MV-algebra, then $a \vee x = a \oplus x$ holds for any $a \in I(M)$ and $x \in M$, and $a \oplus (x \odot y) = (a \oplus x) \odot (a \oplus y)$. Therefore, we have $\varphi_a = \pi_a$ for each $a \in I(M)$ and hence, for each $a \in I(M)$, moreover π_a is a strong modal operator on M.

REFERENCES

- BALBES, R.—DWINGER, P.: Distributive Lattices, Univ. Missouri Press, Columbia, 1974.
- [2] BLOUNT, K.—TSINAKIS, C.: The structure of residuated lattices, Internat. J. Algebra Comput. 13 (2003), 437–461.
- [3] CIGNOLI, R. L. O.—D'OTTAVIANO, I. M. L.—MUNDICI, D.: Algebraic Foundation of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
- [4] DVUREČENSKIJ, A.—RACHŮNEK, J.: Probabilistic averaging in bounded commutative residuated ℓ-monoids, Discrete Math. 306 (2006), 1317–1326.
- [5] GALATOS, M.—TSINAKIS, C.: Generalized MV-algebras, J. Algebra 283 (2005), 254-291.
- [6] HÁJEK, P.: Metamathematics of Fuzzy Logic, Kluwer, Amsterdam, 1998.
- [7] HARLENDEROVÁ, M.—RACHŮNEK, J.: Modal operators on MV-algebras, Math. Bohem. 131 (2006), 39–48.
- [8] JIPSEN, P.—TSINAKIS, C.: A survey of residuated lattices. In: Ordered Algebraic Structures (J. Martinez, ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56.
- KÜHR, J.: Dually Residuated Lattice-Ordered Monoids. Ph.D. Thesis, Palacký Univ. Olomouc, 2003.
- [10] MACNAB, D. S.: Modal operators on Heyting algebras, Algebra Universalis 12 (1981), 5–29.
- [11] RACHŮNEK, J.: DRℓ-semigroups and MV-algebras, Czechoslovak Math. J. 48 (1998), 365–372.
- [12] RACHŮNEK, J.: MV-algebras are categorically equivalent to a class of $DR\ell_{1(i)}$ -semi-groups, Math. Bohem. **123** (1998), 437–441.
- [13] RACHŮNEK, J.: A duality between algebras of basic logic and bounded representable DRℓ-monoids, Math. Bohem. 126 (2001), 561–569.
- [14] RACHŮNEK, J.—ŠALOUNOVÁ, D.: Local bounded commutative residuated ℓ-monoids, Czechoslovak Math. J. 57 (2007), 395–406.
- [15] RACHŮNEK, J.—SLEZÁK, V.: Negation in bounded commutative DRl-monoids, Czechoslovak Math. J. 56 (2006), 755–763.
- [16] SWAMY, K. L. N.: Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105–114.

Received 31. 8. 2005

*Department of Algebra and Geometry Faculty of Sciences Palacký University Tomkova 40 CZ-779 00 Olomouc CZECH REPUBLIC

E-mail: rachunek@inf.upol.cz

** Department of Mathematical Methods in Economy Faculty of Economics VŠB-Technical University Ostrava Sokolská 33 CZ-701 21 Ostrava CZECH REPUBLIC

E-mail: dana.salounova@vsb.cz