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ABSTRACT. We consider a non-associative generalization of MV-algebras. The
underlying posets of our non-associative MV-algebras are not lattices, but they
are related to so-called A-lattices.

©2007
Mathematical Institute
Slovak Academy of Sciences

1. Non-associative MV-algebras

As known, MV-algebras were introduced in the late-fifties by C. C. Chang
as an algebraic semantics of the Lukasiewicz many-valued sentential logic (see [5],
[6]). We recall the definition from [7] which is essentially due to P. Mangani
[12]; Chang’s original definition in [5] was a bit more complicated:

An MV-algebra is an algebra (A, @, —,0) of type (2,1, 0) satisfying the follow-
ing identities:

(MV1) 2z (y®2)= (DY) ® 2,

(MV2) 2@y =y ®ux,

(MV3) 2@ 0 =z,

(MV4) ==z =z,

(MV5) z@® -0 = =0 (the element —0 is denoted by 1),
(MV6) ~(~zdy)Dy=-(-ydz) .

The prototypical example of an MV-algebra is the algebra I'(G,u) =
([0,u],®, —,0), where (G,+,—,0,V,A) is an Abelian lattice-ordered group,
0<weGand[0,ul ={z e G: 0<2x <u}, and the operations @& and — are
defined via z @ y := (z + y) Au and -z := u — x, respectively. D. Mundici
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proved in [13] (see also [7]) that every MV-algebra A is isomorphic to (up to
isomorphism) unique MV-algebra I'(G, u).
Another well-known fact is that for any MV-algebra A, the relation < given
by
r<y <= axhy=1 (1)

is a lattice order on A with x Vy = (-2 @ y) Dy and x Ay = —~(—z V —y).
Obviously, if A = I'(G,u), then < is the restriction of the group order to the
interval [0, u].

In the recent years, non-commutative generalizations of MV-algebras were
considered by G. Georgescu and A. Iorgulescu [9] as pseudo MV-al-
gebras and independetly by J. Rachtunek [14] as GMV-algebras. Although
the respective definitions are slightly different, the resultant non-commutative
MV-algebras are equivalent; they are algebras with a binary operation & and
two unary operations — and ~, which coincide whenever @ is commutative.

We have to remark that the name GMV-algebra appears e.g. in [2], [§]
in a different sense. Here a GMV-algebra is a residuated lattice (in general
non-commutative and unbounded) satisfying certain additional identities and
bounded GMV-algebras correspond to pseudo MV-algebras.

In the paper we generalize MV-algebras omitting associativity of &, but in
such a way that the relation defined by (1) is still a partial order. However,
without the identity (MV1) we would not be able to show that < is transi-
tive. Therefore we replace (MV1) by another two axioms which hold in all
MV-algebras and which force < to be transitive.

DEFINITION 1. An algebra (A, @, —,0) of type (2, 1,0) is called a non-associative

MV-algebra or an NMV-algebra for short if it satisfies the identities
(MV2)-(MV6) and

2@ (2(n((z DY) Oy) D2) B 2) =1, (WA)

ooy =1 (1)

If we put y = 0 in (H), we have ~x @z = 1, so < is reflexive. It follows easily

from (MVG6) that it is antisymmetric. Finally, if ~z @y = 1 and -y ® z = 1,

then (WA) entails -z @ z = 1, thus < is also transitive. Altogether, < is a

partial order as desired. In addition, using (MV6) and (WA) with z = 0 it can

be seen that —(—z @ y) ® y is a common upper bound of z, y, but in contrast to
MV-algebras, it need not be their supremum.

*k %k >k

As usual, given a partially ordered set (P, <), we write L(z,y) = {a € P :
a<zanda<y}and U(z,y) ={a € P: a>x and a >y} for any x,y € P. If
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U(z,y) # @ for all z,y € P, then (P, <) is called an upwards directed set, and
(P, <) is called a directed set provided both L(z,y) and U(x,y) are non-empty.
V.Sn4dsel in his unpublished thesis [15] (see also [16]) introduced the con-
cept of a A-lattice as a generalization of lattices:
An algebra (L, U,N) of type (2, 2) is called a A-lattice if it satisfies the identities

(L1) zNnz =z, 22Uz ==z,
(L2) zNny=yNz,zUy=yUuz,
(L3) zn((zny)nz)=(xNny)Nz,zU((zUy)Uz)=(zUy)Uz
(L4) zN(zUy) =z, zU(xNy) =x.
If we put z < y iff z Ny =z, or equivalently, z < y iff z Uy = y, then (L, <) is
a directed set and x Ny € L(z,y) and z Uy € U(x,y).
We can analogously introduce A-semilattices (cf. [11]): An upper A-semilattice
is an algebra (S,U) of type (2) satisfying the identities

(S1) zUz ==z,
(S2) zUy=yUuz,
(S3) zU((zUy)Uz) = (xUy) U z.

If we define z < y iff z Uy = y, then the relation < is a partial order on S such
that Uy € U(z,y), so (S, <) is an upwards directed set.

The notion of a lower A-semilattice can be defined dually, but we restrict
ourselves to upper ones only, hence whenever we refer to a A-semilattice we
mean an upper A-semilattice.

We notice that our A-semilattices are equivalent to commutative directoids
which were considered by J. Jezek and R. Quackenbush [10].

THEOREM 2. Let (A, ®,—,0) be an NMV-algebra. Then upon defining Uy =
“(z@y) Dy and x Ny = ~(—xU-y), (A,U,N) is a bounded A-lattice with 0
at the bottom and 1 at the top.

Proof. Putting y =0 in (H) we obtain -z @z =1,s0 zUx = ~(-z@z) Dz =
-1@x = z. Clearly, t Uy = y Uz by (MV6). Further, by (WA) we have
—z®((zUy)Uz) = 1 whence zU((zUy)Uz) = =(—2® ((zUy)Uz2)) D ((zUy)Uz) =
(zUy)Uz. It is plain that x U0 = x and z U1 = 1 for every x € A. Thus (A4, U)
is a bounded A-semilattice.

Further, observe that t®—(zNy) = 2@ (~zU-y) = 2@ (~(z®—-y)d—y) =1
when we put z = 0 in (WA), whence it follows zU(zNy) = =(=(zNy)dz)dx = .
Using the definition of N and just proved properties of U it is straightforward to
verity the remaining equations of (L1)—(L4). d
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2. M-semilattices with involutions

A A-semilattice with involutions is a A-semilattice (S,U) with the greatest
element 1, where every interval [a,1] C S (so-called section) has an involution
fa with f,(1) = a. We write simply z® for f,(x). Clearly, a A-semilattice with
involutions can be considered as a structure (S,U, (*)qes,1).

A A-lattice with involutions is defined analogously as a system (L, U, N, (*)4er, 1).

Let (S,U, (“)aer, 1) be a A-semilattice with involutions. In order to overcome
the difficulties concerning the number of partial unary operations *: [a,1] —
[a, 1], we define a new total binary operation — on S via

z—y:=(zUy)" (2)

LEMMA 3. A A-semilattice (S,U) with the top element 1 is a A-semilattice with
involutions if and only if there exists a binary operation — on S that has the
following properties, for all xz,y € S:

(a) 1 -z =ux,
(b) zUy = (z—y) =y,
€ (z—=y) =y —y=2—y

In this case, x* = x — a for x € [a,1], a € S.

Proof. Let S be a A-semilattice with involutions and let — be the operation
given by (2). Thenl »z=(1Uz)*=1" =z, (x » y) —y = ((xUy)Y Uy)¥ =
(zUy)" =zUyand (z —y) —y) ~y=(zUy) > y=((zUy) Uy)¥ =
(xUy)Y =z — y. Obviously, z* = (xUa)® = x — a for every z € [a, 1].
Conversely, if — satisfies (a), (b) and (c), then we define f,(z) = 2% :=x — a
for z € [a,1], a € S. By (b) and (¢), (x — a)Ua = ((x — a) —a) —a =1z — a,
ie. a < x — aand 2% € [a,1]. Further, we have 2% = (z — a) — a =
xUa = x, so f, is an involution on [a,1], and 1 = 1 — a = a. Thus S
is a A-semilattice with involutions. Moreover, due to (¢) and (b) we obtain
z—y=((z—y) -y —y=(@@Uy —y=(xUy" O

Consequently, \-(semi)lattices can be treated as algebras (S, U, —, 1) of type
(2,2,0) or (L,U,N,—,1) of type (2,2,2,0), respectively.

Remark 4. Note that the partial order < can be retrieved via x <y iff z — y
=1, however, the operation — does not determine U. To be more precise, if —
is a total binary operation satisfying all the equations in the language {—,1}
which are derivable in A-semilattices with involutions, in particular, 1 — z =«
and (z — y) -y = (y — =) — z, then (z — y) — y need not be equal to x Uy.
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c d=aUb

FIGURE 1

Ezample 5. Let (S,U) be a A-semilattice as shown in Fig. 1. Let the involutions
fo and f, in the non-trivial sections [a,1] and [b, 1], respectively, be defined
as follows: f,(c) = ¢, fo(d) = d and fi(c) = d, fp(d) = c. The operation
— is then given by Table 1. However, the operation ~- given by Table 2 also
fulfils the equations 1 ~» z = x and (z ~ y) ~ y = (y ~ ) ~ =z, but
(a ~b) ~b=c#d=aUb. Observe that ~~ is obtained by (2) when a Ub is
defined as c.

—la b ¢ d 1
all ¢ 1 1 1
bld 1 1 1 1
cle d 1 d 1
d|ld ¢ ¢ 1 1
1l la b ¢ d 1

TABLE 1

~la b ¢ d 1
all d 1 1 1
blc 1 1 1 1
cle d 1 d 1
d|ld ¢ ¢ 1 1
1l la b ¢ d 1

TABLE 2

LEMMA 6. Let (S,U,—,1) be a A-semilattice with involutions. Then for all
x,y €85,
Hr—1=1lz—2=1,

(i) y<z —y.
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Proof.
(i) Wehavez - 1=(zUl)l=1'=1landz - 2= (zUx)® = 2% = 1.
(ii) This is obvious since z — y = (x Uy)Y > y. d

THEOREM 7. The variety of all A\-lattices with involutions is reqular and arith-
metical.

Proof. Let ¥ be the variety of A-lattices with involutions.
¥ is regular: Let
t(z,y,2) =((z—y)Ny—x)Nz
ta(z,y,2) = ((z = y) = 2) U((y — 2) — 2).
We show that t1(z,y, 2) = ta(z,y,2) = z iff z = y.

Obviously, t1(z,z,2) = z and to(x,z,2) = z. Conversely, let t1(x,y,z) =
to(z,y,2) =2. Thenz <z —y,y —zand z > (r - y) — z,(y — =) — z. But
by Lemma 6(ii) we have (z — y) — 2, (y = ) — 2z > 2z, so that (z —» y) - 2z =
z=(y —z) >z whencex - y=(r—y)Uz=((r—y) —2) —-z=2—
z=1,s0 x <y. Similarly y < x, and hence x = y.

¥ is arithmetical: Let

m(z,y,2) = ((zr —y) = 2)N((z = y) = 2))N(xUz).
We prove that m(z,y,y) = m(x,y,z) = m(y,y,x) = z.

We have m(z,y,y) = (((z — y) = y)N((y = y) = 2))N(zUy) = ((zUy)Nz)
N(zUy) =z m,y,z) = ((z =y —z)n(z =y —x)n@Ur) =
((x = y) —» z)Nx = x since (r — y) — x > x by Lemma 6, and m(y,y,z) =
((y=y) =2)n((z =y —y)NyVe)=(zn(=Uy)nyue) =z 0

* ok %

There is a one-to-one correspondence between NMV-algebras and bounded

A-(semi)lattices with involutions that satisfy a simple additional identity:
THEOREM 8.

(i) Let (A,®,—,0) be an NMV-algebra. Define x Uy := ~(-x ®y) Dy and
x—y:=-2®y. Then ¢(A) = (A,U,—,0,1) is a bounded \-semilattice
with involutions that satisfies the identity

= (y—0)=y—(z—0). (WE)

(i) Let (S,U,—,0,1) be a bounded \-semilattice with involutions satisfying
(WE). If we define x @y == (x — 0) — y and ~x := x — 0, then
P(S) = (5, ®,,0) is an NMV-algebra.

(iii) For any NMV-algebra A and any bounded \-semilattice with involutions S
satisfying (WE), ¥ (¢(A)) = A and ¢(1(5)) = S.
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Proof.

(i) We already know from Theorem 2 that (A, U) is a bounded A-semilattice.
We show that the conditions (a), (b) and (c) of Lemma 3 are satisfied. It is
obvious that 1 mz =-1@z=zandzUy=-(-2dy) Sy=(r —y) — ¥.
Now, due to the axiom (H), we have y < y @ -z = -2 & y whence

(z—=y) =y —y=-((woy) ey dy=(20y)Uy=20y=1—y

verifying (c). So by Lemma 3, ¢(A4) = (A,U,—,0,1) is a bounded A-semilattice
with involutions. Finally, ¢(A) fulfils (WE) since

r—=(yYy—0)=-2&(yd0)=-2d-y=-ydx
= W@ (ra0)=y—(z—0)

(ii) Let (S,U,—,0,1) be a bounded A-semilattice with involutions that satis-
fies (WE). It is worth noticing that -z @y = ((x - 0) - 0) —y = (xU0) — y
=z —uy.

MV2): 2y =(r—0)—y=(2—-0)—((y—0)—0)=(H—0—
((x—=0)—0)=(y—0) —z=ydz by (WE).

(MV3): 260=(x—0) —0=u=x.
(MV4): ==z =(x —0) - 0==z.
(MV5): zd1l=(z—0)—1=1.
(MV6): =(rz@dy) Dy = (z > y) my=aUy=(y > 2) =

“(y D) D
(WA): mz@ (—(=(~(~z@y) dy) @ 2)D2) =
= (((z—=y) =y —2)—z)=z—(zUy)Uz)=1
since < (x Uy) U z by (S3).
H: @ (zdy) =2— (= 0) -y)=1sincez < (y —0) -z =
(x — 0) — y by Lemma 6 (ii).

(iii) Let (A,®,—,0) be an NMV-algebra. Define ¢(A) = (A,U,—,0,1) and
Y(p(A)) = (4,8",7,0). Wehavez®'y = (z — 0) »y=—-(-200)dy =2y
and "'z =2 — 0= -2 ®0=—z. Thus ¥(¢(A)) = A.

Conversely, let (S, U, —, 0, 1) be a bounded A-semilattice with involutions that
fulfils (WE). Define ¢(S) = (S,®,—,0) and ¢(¢(S)) = (S,U',—',0,1"). We
have zU y=-(-z®y)dy=(z—y) 2y=azUy,z—~' y=—ady=x—y
and 1’ =-0=0— 0 =1, so that ¢(¢(S)) = S. O

COROLLARY 9. Let (S,U,—,0,1) be a bounded \-semilattice with involutions
satisfying (WE). Then (S,U,N,—,0,1), wherexNy = ((x — y) — (x — 0))— 0,

is a bounded \-lattice with involutions.
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Proof. By Theorem 8(ii), (S,®,—,0) is an NMV-algebra and by Theorem 2
we know that (S,U,N) is a bounded A-lattice in which

xNy=-(-xU-y)
=(((y = 0) = (x—=0)) = (z—0) =0
=((z—((y—0)—0)—(r—0)—0
(z —y) = (x—0)) =0

0

Remark 10. Though every NMV-algebra, as well as every bounded A-semi-
lattice with involutions satisfying (WE), is a A-lattice, Theorem 8 does not hold
for A-lattices. The reason is that Ny need not be the greatest lower bound of
{z,y}, and consequently, the operation N defined in Corollary 9 is not the only
possible one which makes (S, U, —,0, 1) into a A-lattice:

Ezample 11. Consider the M-lattice (S, U, N1) from Figure 2. Let the involutions
fo, fo and fp in the non-trivial sections be given as follows:

— fola) =d, fo(b) =c, fo(c) =band fo(d) = a,

— fa(c) = cand f,(d) =d,

= fo(c) =d and fy(d) = c.
The operation — is given by Table 3, so that (S,U,N;,—,0,1) is a bounded
M-lattice with involutions. A straightforward verification yields that — obeys
(WE), and hence (S, ®,—,0) is an NMV-algebra, where the operations @& and
— are given by Table 4. Now, upon setting z Ny := —(—z U —y), (S,U,N) is
a A-lattice, but N does not agree with the initial N;. Indeed, we have cNd =
=(mcU—d) = =¢ = b # a = c¢Ny d. Therefore, the part (iii) of Theorem 8 does
not work in the case of A-lattices with involutions.

1
c=aUb d
a=cMd b=cnd
0
FIGURE 2

By Theorem 7 and Theorem 8 (i) we get
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—10 a b ¢ d 1
0|1 1 1 1 1 1
al|ld 1 d 1 1 1
ble ¢ 1 1 1 1
c|lb ¢ d 1 d 1
dla d ¢ ¢ 1 1
1{0 a b ¢ d 1

TABLE 3
@10 a b ¢ d 1|~
0/0 a b ¢ d 1|1
ala d ¢c ¢ 1 1|d
b|lb ¢ d 1 d 1|c
cle ¢ 1 1 1 11|5b
dld 1 d 1 1 1]|a
111 1 1 1 1 1(0

TABLE 4

COROLLARY 12. The variety of all NMV-algebras is reqular and arithmetical.

3. Implication reducts

There exist several equivalent counterparts of MV-algebras; for instance,
MV-algebras are term equivalent to bounded weak implication algebras which
were introduced in [4] as a generalization of J. C. Abbott’s implication algebras
(see [1]). We recall that an implication algebra is an algebra (A, —) satisfying
the equations

M) (z —y) =z =,
(12) (z —y) —»y=(y—z)—az
(13) = (y = 2) =y — (z — 2).

These axioms capture the basic properties of the implication in the classical
propositional calculus. Starting from the implication in the Lukasiewicz logic, we
obtain weak implication algebras: An algebra (A, —, 1) with a binary operation
— and a constant 1 is called a weak implication algebra if it fulfils (I12), (I3) and

I0) z—1=1,1—-z=u=z.
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It is not hard to show that if (A, ®,—,0) is an MV-algebra then (A, —,1) is a
weak implication algebra, where x — y is defined as —x @ y.

Every weak implication algebra is a join-semilattice with 1 at the top with
respect to the partial order given by x <y iff z my=1LzVy=(z —y) -y
is the supremum of any pair z,y.

A bounded weak implication algebra is a structure (A, —,0,1) such that
(A, —,1) is a weak implication algebra with the least element 0. Clearly, this
is equivalent to the identity 0 — =z = 1. Bounded weak implication algebras
are known in the literature under the name bounded commutative BCK-algebras
(see e.g. [7]).

This motivates us to describe the generalization of weak implication algebras
which corresponds to our NMV-algebras.

DEFINITION 13. An NMV-implication algebra is an algebra (A, —,0,1) of type
(2,0,0) that satisfies the following identities:

(NI1) z—=1=1,1—-z=xand 0 -z =1,
(NI2) (z—y)—y=(y—2)—> 7,
(NIB) 2= (y—=0)=y— (z—0),
(NI) z — ((z = y) = y) = 2) = 2) =1,
(NI3) (z —y) —y) my=z—uy.

Comparing the above axioms with those of (weak) implication algebras, (NI1)
includes (I0), (NI2) is precisely (I12) and (NI3) is another name for (WE) and
rises as a weakening of (I3) by replacing z by 0. Furthermore, (NI4) captures
(WA) and (NI5) is just (c) of Lemma 3.

Weak implication algebras are a particular case of NMV-implication ones.
Indeed, any weak implication algebra fulfils (NI4) and (NI5) since in weak im-
plication algebras we have x — ((((x — y) — y) — 2) = 2) =2 — (zVyVz) =1
and ((z —y) —y) ~y=(@—yVy=z—y.

Let us note that from (NI1) we can easily infer z — x = 1.

THEOREM 14. Let (A, ®,—,0) be an NMV-algebra. If we define x — y := —z@y,
then (A, —,0,1) is an NMV-implication algebra.

Conversely, if (A, —,0,1) is an NMV-implication algebra and if we put z @y
=(x—0)—yand ~z:=x— 0, then (4,®,,0) is an NMV-algebra.

Proof. Tt is obvious at once that for each NMV-algebra (A, &, -, 0), the opera-
tion — satisfies all the identities (NI1)—(NI5), so (A, —,0,1) is an NMV-implica-
tion algebra.

Conversely, assume that (A, —,0,1) is an NMV-implication algebra. First,
we note that for any © € A we have (t - 0) - 0=(0—2) zx=1—-z=2
by (NI2) and (NI1), and hence -~z ¢y = ((zx - 0) - 0) my =2 —y.
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MV2): zdy=(z—0)—y=(2—0)—>(y—0—-0)=(H—0)—

((—0)—0)=(y—0)—z=ydu.

MV3): 2 0=(x—0) - 0==x.

MV5): z2@1=(zx—0)—1=1.

(
(MV4): ==z =(x —0) - 0==z.
(
(

MV6): Using ~z @y =1z — y we obtain 7(-zQy)Cy=(r —y) >y =

(y = 2) =z =-(-ydz)dx by (NI2). O

(WA): m2 ® (2(~(=(c2 @ y) DY) @ 2) S 2) =z — (& = y) = y)

(15]

— z) — z) = 1 by (NI4).

(H): We have 2@ (z@y) =2 — ((r = 0) = y) =2 — ((y — 0) — x),

hence it is enough to show that z — (y — z) =1 for all z,y € A.
This follows from (NI5), (NI2) and (NI1): z — (y — z) = ((z —

(y—2)—=@y—2)—=y—2)=(y—2) —2)—2)—(y—
r)=(y—z)—(y—z)=1
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