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ABSTRACT. We consider a non-associative generalization of MV-algebras. The
underlying posets of our non-associative MV-algebras are not lattices, but they

are related to so-called λ-lattices.
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1. Non-associative MV-algebras

As known, MV-algebras were introduced in the late-fifties by C . C . C h a n g
as an algebraic semantics of the �Lukasiewicz many-valued sentential logic (see [5],
[6]). We recall the definition from [7] which is essentially due to P . M a n g a n i
[12]; C h a n g ’s original definition in [5] was a bit more complicated:

An MV-algebra is an algebra (A,⊕,¬, 0) of type (2, 1, 0) satisfying the follow-
ing identities:
(MV1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z,
(MV2) x⊕ y = y ⊕ x,
(MV3) x⊕ 0 = x,
(MV4) ¬¬x = x,
(MV5) x⊕ ¬0 = ¬0 (the element ¬0 is denoted by 1),
(MV6) ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

The prototypical example of an MV-algebra is the algebra Γ (G, u) =
([0, u],⊕,¬, 0), where (G,+,−, 0,∨,∧) is an Abelian lattice-ordered group,
0 < u ∈ G and [0, u] = {x ∈ G : 0 ≤ x ≤ u}, and the operations ⊕ and ¬ are
defined via x⊕ y := (x+ y) ∧ u and ¬x := u− x, respectively. D . M u n d i c i
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proved in [13] (see also [7]) that every MV-algebra A is isomorphic to (up to
isomorphism) unique MV-algebra Γ (G, u).

Another well-known fact is that for any MV-algebra A, the relation ≤ given
by

x ≤ y : ⇐⇒ ¬x⊕ y = 1 (1)

is a lattice order on A with x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y).
Obviously, if A = Γ (G, u), then ≤ is the restriction of the group order to the
interval [0, u].

In the recent years, non-commutative generalizations of MV-algebras were
considered by G . G e o r g e s c u and A . I o r g u l e s c u [9] as pseudo MV-al-
gebras and independetly by J . R a c h ů n e k [14] as GMV-algebras. Although
the respective definitions are slightly different, the resultant non-commutative
MV-algebras are equivalent; they are algebras with a binary operation ⊕ and
two unary operations ¬ and ∼, which coincide whenever ⊕ is commutative.

We have to remark that the name GMV-algebra appears e.g. in [2], [8]
in a different sense. Here a GMV-algebra is a residuated lattice (in general
non-commutative and unbounded) satisfying certain additional identities and
bounded GMV-algebras correspond to pseudo MV-algebras.

In the paper we generalize MV-algebras omitting associativity of ⊕, but in
such a way that the relation defined by (1) is still a partial order. However,
without the identity (MV1) we would not be able to show that ≤ is transi-
tive. Therefore we replace (MV1) by another two axioms which hold in all
MV-algebras and which force ≤ to be transitive.

���������� 1� An algebra (A,⊕,¬, 0) of type (2, 1, 0) is called a non-associative
MV-algebra or an NMV-algebra for short if it satisfies the identities
(MV2)–(MV6) and

¬x⊕ (¬(¬(¬(¬x⊕ y) ⊕ y) ⊕ z) ⊕ z) = 1, (WA)

¬x⊕ (x⊕ y) = 1. (H)

If we put y = 0 in (H), we have ¬x⊕x = 1, so ≤ is reflexive. It follows easily
from (MV6) that it is antisymmetric. Finally, if ¬x ⊕ y = 1 and ¬y ⊕ z = 1,
then (WA) entails ¬x ⊕ z = 1, thus ≤ is also transitive. Altogether, ≤ is a
partial order as desired. In addition, using (MV6) and (WA) with z = 0 it can
be seen that ¬(¬x⊕ y)⊕ y is a common upper bound of x, y, but in contrast to
MV-algebras, it need not be their supremum.

∗ ∗ ∗
As usual, given a partially ordered set (P,≤), we write L(x, y) = {a ∈ P :

a ≤ x and a ≤ y} and U (x, y) = {a ∈ P : a ≥ x and a ≥ y} for any x, y ∈ P . If
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U (x, y) �= ∅ for all x, y ∈ P , then (P,≤) is called an upwards directed set, and
(P,≤) is called a directed set provided both L(x, y) and U (x, y) are non-empty.

V . S n á š e l in his unpublished thesis [15] (see also [16]) introduced the con-
cept of a λ-lattice as a generalization of lattices:

An algebra (L,∪,∩) of type (2, 2) is called a λ-lattice if it satisfies the identities

(L1) x ∩ x = x, x ∪ x = x,
(L2) x ∩ y = y ∩ x, x ∪ y = y ∪ x,
(L3) x ∩ ((x ∩ y) ∩ z) = (x ∩ y) ∩ z, x ∪ ((x ∪ y) ∪ z) = (x ∪ y) ∪ z,
(L4) x ∩ (x ∪ y) = x, x ∪ (x ∩ y) = x.

If we put x ≤ y iff x ∩ y = x, or equivalently, x ≤ y iff x ∪ y = y, then (L,≤) is
a directed set and x ∩ y ∈ L(x, y) and x ∪ y ∈ U (x, y).

We can analogously introduce λ-semilattices (cf. [11]): An upper λ-semilattice
is an algebra (S,∪) of type (2) satisfying the identities

(S1) x ∪ x = x,
(S2) x ∪ y = y ∪ x,
(S3) x ∪ ((x ∪ y) ∪ z) = (x ∪ y) ∪ z.

If we define x ≤ y iff x ∪ y = y, then the relation ≤ is a partial order on S such
that x ∪ y ∈ U (x, y), so (S,≤) is an upwards directed set.

The notion of a lower λ-semilattice can be defined dually, but we restrict
ourselves to upper ones only, hence whenever we refer to a λ-semilattice we
mean an upper λ-semilattice.

We notice that our λ-semilattices are equivalent to commutative directoids
which were considered by J . J e ž e k and R . Q u a c k e n b u s h [10].

�	��
�� 2� Let (A,⊕,¬, 0) be an NMV-algebra. Then upon defining x ∪ y :=
¬(¬x ⊕ y) ⊕ y and x ∩ y := ¬(¬x ∪ ¬y), (A,∪,∩) is a bounded λ-lattice with 0
at the bottom and 1 at the top.

P r o o f. Putting y = 0 in (H) we obtain ¬x⊕x = 1, so x∪x = ¬(¬x⊕x)⊕x =
¬1 ⊕ x = x. Clearly, x ∪ y = y ∪ x by (MV6). Further, by (WA) we have
¬x⊕((x∪y)∪z) = 1 whence x∪((x∪y)∪z) = ¬(¬x⊕((x∪y)∪z))⊕((x∪y)∪z) =
(x∪ y)∪ z. It is plain that x∪ 0 = x and x∪ 1 = 1 for every x ∈ A. Thus (A,∪)
is a bounded λ-semilattice.

Further, observe that x⊕¬(x∩y) = x⊕ (¬x∪¬y) = x⊕ (¬(x⊕¬y)⊕¬y) = 1
when we put z = 0 in (WA), whence it follows x∪(x∩y) = ¬(¬(x∩y)⊕x)⊕x= x.
Using the definition of ∩ and just proved properties of ∪ it is straightforward to
verity the remaining equations of (L1)–(L4). �
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2. λ-semilattices with involutions

A λ-semilattice with involutions is a λ-semilattice (S,∪) with the greatest
element 1, where every interval [a, 1] ⊆ S (so-called section) has an involution
fa with fa(1) = a. We write simply xa for fa(x). Clearly, a λ-semilattice with
involutions can be considered as a structure (S,∪, (a)a∈S, 1).
A λ-lattice with involutions is defined analogously as a system (L,∪,∩, (a)a∈L, 1).

Let (S,∪, (a)a∈L, 1) be a λ-semilattice with involutions. In order to overcome
the difficulties concerning the number of partial unary operations a : [a, 1] −→
[a, 1], we define a new total binary operation → on S via

x→ y := (x ∪ y)y. (2)

����
 3� A λ-semilattice (S,∪) with the top element 1 is a λ-semilattice with
involutions if and only if there exists a binary operation → on S that has the
following properties, for all x, y ∈ S:

(a) 1 → x = x,
(b) x ∪ y = (x→ y) → y,
(c) ((x→ y) → y) → y = x→ y.

In this case, xa = x→ a for x ∈ [a, 1], a ∈ S.

P r o o f. Let S be a λ-semilattice with involutions and let → be the operation
given by (2). Then 1 → x = (1∪x)x = 1x = x, (x→ y) → y = ((x∪ y)y ∪ y)y =
(x ∪ y)yy = x ∪ y and ((x → y) → y) → y = (x ∪ y) → y = ((x ∪ y) ∪ y)y =
(x ∪ y)y = x→ y. Obviously, xa = (x ∪ a)a = x→ a for every x ∈ [a, 1].

Conversely, if → satisfies (a), (b) and (c), then we define fa(x) = xa := x→ a
for x ∈ [a, 1], a ∈ S. By (b) and (c), (x→ a)∪a = ((x→ a) → a) → a = x→ a,
i.e. a ≤ x → a and xa ∈ [a, 1]. Further, we have xaa = (x → a) → a =
x ∪ a = x, so fa is an involution on [a, 1], and 1a = 1 → a = a. Thus S
is a λ-semilattice with involutions. Moreover, due to (c) and (b) we obtain
x→ y = ((x→ y) → y) → y = (x ∪ y) → y = (x ∪ y)y. �

Consequently, λ-(semi)lattices can be treated as algebras (S,∪,→, 1) of type
(2, 2, 0) or (L,∪,∩,→, 1) of type (2, 2, 2, 0), respectively.

Remark 4� Note that the partial order ≤ can be retrieved via x ≤ y iff x→ y
= 1, however, the operation → does not determine ∪. To be more precise, if →
is a total binary operation satisfying all the equations in the language {→, 1}
which are derivable in λ-semilattices with involutions, in particular, 1 → x = x
and (x→ y) → y = (y → x) → x, then (x→ y) → y need not be equal to x∪ y.
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Figure 1

Example 5. Let (S,∪) be a λ-semilattice as shown in Fig. 1. Let the involutions
fa and fb in the non-trivial sections [a, 1] and [b, 1], respectively, be defined
as follows: fa(c) = c, fa(d) = d and fb(c) = d, fb(d) = c. The operation
→ is then given by Table 1. However, the operation � given by Table 2 also
fulfils the equations 1 � x = x and (x � y) � y = (y � x) � x, but
(a � b) � b = c �= d = a ∪ b. Observe that � is obtained by (2) when a ∪ b is
defined as c.

→ a b c d 1
a 1 c 1 1 1
b d 1 1 1 1
c c d 1 d 1
d d c c 1 1
1 a b c d 1

Table 1

� a b c d 1
a 1 d 1 1 1
b c 1 1 1 1
c c d 1 d 1
d d c c 1 1
1 a b c d 1

Table 2

����
 6� Let (S,∪,→, 1) be a λ-semilattice with involutions. Then for all
x, y ∈ S,

(i) x→ 1 = 1, x→ x = 1,
(ii) y ≤ x → y.
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P r o o f.
(i) We have x→ 1 = (x ∪ 1)1 = 11 = 1 and x→ x = (x ∪ x)x = xx = 1.
(ii) This is obvious since x→ y = (x ∪ y)y ≥ y. �

�	��
�� 7� The variety of all λ-lattices with involutions is regular and arith-
metical.

P r o o f. Let V be the variety of λ-lattices with involutions.
V is regular: Let

t1(x, y, z) = ((x→ y) ∩ (y → x)) ∩ z,
t2(x, y, z) = ((x→ y) → z) ∪ ((y → x) → z).

We show that t1(x, y, z) = t2(x, y, z) = z iff x = y.
Obviously, t1(x, x, z) = z and t2(x, x, z) = z. Conversely, let t1(x, y, z) =

t2(x, y, z) = z. Then z ≤ x→ y, y → x and z ≥ (x→ y) → z, (y → x) → z. But
by Lemma 6(ii) we have (x→ y) → z, (y → x) → z ≥ z, so that (x→ y) → z =
z = (y → x) → z, whence x → y = (x → y) ∪ z = ((x → y) → z) → z = z →
z = 1, so x ≤ y. Similarly y ≤ x, and hence x = y.

V is arithmetical: Let

m(x, y, z) = (((x→ y) → z) ∩ ((z → y) → x)) ∩ (x ∪ z).

We prove that m(x, y, y) = m(x, y, x) = m(y, y, x) = x.
We have m(x, y, y) = (((x→ y) → y)∩((y → y) → x))∩(x∪y) = ((x∪y)∩x)

∩ (x ∪ y) = x, m(x, y, x) = (((x → y) → x) ∩ ((x → y) → x)) ∩ (x ∪ x) =
((x → y) → x) ∩ x = x since (x → y) → x ≥ x by Lemma 6, and m(y, y, x) =
(((y → y) → x) ∩ ((x→ y) → y)) ∩ (y ∪ x) = (x ∩ (x ∪ y)) ∩ (y ∪ x) = x. �

∗ ∗ ∗
There is a one-to-one correspondence between NMV-algebras and bounded

λ-(semi)lattices with involutions that satisfy a simple additional identity:

�	��
�� 8�

(i) Let (A,⊕,¬, 0) be an NMV-algebra. Define x ∪ y := ¬(¬x ⊕ y) ⊕ y and
x → y := ¬x ⊕ y. Then φ(A) = (A,∪,→, 0, 1) is a bounded λ-semilattice
with involutions that satisfies the identity

x→ (y → 0) = y → (x→ 0). (WE)

(ii) Let (S,∪,→, 0, 1) be a bounded λ-semilattice with involutions satisfying
(WE). If we define x ⊕ y := (x → 0) → y and ¬x := x → 0, then
ψ(S) = (S,⊕,¬, 0) is an NMV-algebra.

(iii) For any NMV-algebra A and any bounded λ-semilattice with involutions S
satisfying (WE), ψ(φ(A)) = A and φ(ψ(S)) = S.
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P r o o f.
(i) We already know from Theorem 2 that (A,∪) is a bounded λ-semilattice.

We show that the conditions (a), (b) and (c) of Lemma 3 are satisfied. It is
obvious that 1 → x = ¬1 ⊕ x = x and x ∪ y = ¬(¬x ⊕ y) ⊕ y = (x → y) → y.
Now, due to the axiom (H), we have y ≤ y ⊕ ¬x = ¬x⊕ y whence

((x→ y) → y) → y = ¬(¬(¬x⊕ y) ⊕ y) ⊕ y = (¬x⊕ y) ∪ y = ¬x⊕ y = x→ y

verifying (c). So by Lemma 3, φ(A) = (A,∪,→, 0, 1) is a bounded λ-semilattice
with involutions. Finally, φ(A) fulfils (WE) since

x→ (y → 0) = ¬x⊕ (¬y ⊕ 0) = ¬x⊕ ¬y = ¬y ⊕ ¬x
= ¬y ⊕ (¬x⊕ 0) = y → (x→ 0).

(ii) Let (S,∪,→, 0, 1) be a bounded λ-semilattice with involutions that satis-
fies (WE). It is worth noticing that ¬x⊕ y = ((x→ 0) → 0) → y = (x ∪ 0) → y
= x→ y.
(MV2): x ⊕ y = (x → 0) → y = (x → 0) → ((y → 0) → 0) = (y → 0) →

((x→ 0) → 0) = (y → 0) → x = y ⊕ x by (WE).
(MV3): x⊕ 0 = (x→ 0) → 0 = x.
(MV4): ¬¬x = (x→ 0) → 0 = x.
(MV5): x⊕ 1 = (x→ 0) → 1 = 1.
(MV6): ¬(¬x ⊕ y) ⊕ y = (x → y) → y = x ∪ y = (y → x) → x =

¬(¬y ⊕ x) ⊕ x.
(WA): ¬x⊕ (¬(¬(¬(¬x⊕ y) ⊕ y) ⊕ z) ⊕ z) =

x→ ((((x→ y) → y) → z) → z) = x→ ((x ∪ y) ∪ z) = 1
since x ≤ (x ∪ y) ∪ z by (S3).

(H): ¬x⊕ (x⊕ y) = x → ((x → 0) → y) = 1 since x ≤ (y → 0) → x =
(x→ 0) → y by Lemma 6 (ii).

(iii) Let (A,⊕,¬, 0) be an NMV-algebra. Define φ(A) = (A,∪,→, 0, 1) and
ψ(φ(A)) = (A,⊕′,¬′, 0). We have x⊕′ y = (x→ 0) → y = ¬(¬x⊕0)⊕y = x⊕y
and ¬′x = x→ 0 = ¬x⊕ 0 = ¬x. Thus ψ(φ(A)) = A.

Conversely, let (S,∪,→, 0, 1) be a bounded λ-semilattice with involutions that
fulfils (WE). Define ψ(S) = (S,⊕,¬, 0) and φ(ψ(S)) = (S,∪′,→′, 0, 1′). We
have x ∪′ y = ¬(¬x⊕ y) ⊕ y = (x → y) → y = x ∪ y, x→′ y = ¬x⊕ y = x→ y
and 1′ = ¬0 = 0 → 0 = 1, so that φ(ψ(S)) = S. �

��
���

� 9� Let (S,∪,→, 0, 1) be a bounded λ-semilattice with involutions
satisfying (WE). Then (S,∪,∩,→, 0, 1), where x∩y = ((x→ y) → (x→ 0))→ 0,
is a bounded λ-lattice with involutions.
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P r o o f. By Theorem 8(ii), (S,⊕,¬, 0) is an NMV-algebra and by Theorem 2
we know that (S,∪,∩) is a bounded λ-lattice in which

x ∩ y = ¬(¬x ∪ ¬y)

= (((y → 0) → (x→ 0)) → (x→ 0)) → 0

= ((x→ ((y → 0) → 0)) → (x→ 0)) → 0

= ((x→ y) → (x→ 0)) → 0.

�
Remark 10� Though every NMV-algebra, as well as every bounded λ-semi-
lattice with involutions satisfying (WE), is a λ-lattice, Theorem 8 does not hold
for λ-lattices. The reason is that x ∩ y need not be the greatest lower bound of
{x, y}, and consequently, the operation ∩ defined in Corollary 9 is not the only
possible one which makes (S,∪,→, 0, 1) into a λ-lattice:

Example 11. Consider the λ-lattice (S,∪,∩1) from Figure 2. Let the involutions
f0, fa and fb in the non-trivial sections be given as follows:

– f0(a) = d, f0(b) = c, f0(c) = b and f0(d) = a,
– fa(c) = c and fa(d) = d,
– fb(c) = d and fb(d) = c.

The operation → is given by Table 3, so that (S,∪,∩1,→, 0, 1) is a bounded
λ-lattice with involutions. A straightforward verification yields that → obeys
(WE), and hence (S,⊕,¬, 0) is an NMV-algebra, where the operations ⊕ and
¬ are given by Table 4. Now, upon setting x ∩ y := ¬(¬x ∪ ¬y), (S,∪,∩) is
a λ-lattice, but ∩ does not agree with the initial ∩1. Indeed, we have c ∩ d =
¬(¬c ∪ ¬d) = ¬c = b �= a = c ∩1 d. Therefore, the part (iii) of Theorem 8 does
not work in the case of λ-lattices with involutions.
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Figure 2

By Theorem 7 and Theorem 8 (i) we get
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→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 1 1
b c c 1 1 1 1
c b c d 1 d 1
d a d c c 1 1
1 0 a b c d 1

Table 3

⊕ 0 a b c d 1 ¬
0 0 a b c d 1 1
a a d c c 1 1 d
b b c d 1 d 1 c
c c c 1 1 1 1 b
d d 1 d 1 1 1 a
1 1 1 1 1 1 1 0

Table 4

��
���

� 12� The variety of all NMV-algebras is regular and arithmetical.

3. Implication reducts

There exist several equivalent counterparts of MV-algebras; for instance,
MV-algebras are term equivalent to bounded weak implication algebras which
were introduced in [4] as a generalization of J. C. Abbott’s implication algebras
(see [1]). We recall that an implication algebra is an algebra (A,→) satisfying
the equations

(I1) (x→ y) → x = x,
(I2) (x→ y) → y = (y → x) → x,
(I3) x→ (y → z) = y → (x→ z).

These axioms capture the basic properties of the implication in the classical
propositional calculus. Starting from the implication in the �Lukasiewicz logic, we
obtain weak implication algebras: An algebra (A,→, 1) with a binary operation
→ and a constant 1 is called a weak implication algebra if it fulfils (I2), (I3) and

(I0) x→ 1 = 1, 1 → x = x.
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It is not hard to show that if (A,⊕,¬, 0) is an MV-algebra then (A,→, 1) is a
weak implication algebra, where x→ y is defined as ¬x⊕ y.

Every weak implication algebra is a join-semilattice with 1 at the top with
respect to the partial order given by x ≤ y iff x → y = 1; x ∨ y = (x → y) → y
is the supremum of any pair x, y.

A bounded weak implication algebra is a structure (A,→, 0, 1) such that
(A,→, 1) is a weak implication algebra with the least element 0. Clearly, this
is equivalent to the identity 0 → x = 1. Bounded weak implication algebras
are known in the literature under the name bounded commutative BCK-algebras
(see e.g. [7]).

This motivates us to describe the generalization of weak implication algebras
which corresponds to our NMV-algebras.

���������� 13� An NMV-implication algebra is an algebra (A,→, 0, 1) of type
(2, 0, 0) that satisfies the following identities:

(NI1) x→ 1 = 1, 1 → x = x and 0 → x = 1,
(NI2) (x→ y) → y = (y → x) → x,
(NI3) x→ (y → 0) = y → (x→ 0),
(NI4) x→ ((((x→ y) → y) → z) → z) = 1,
(NI5) ((x→ y) → y) → y = x→ y.

Comparing the above axioms with those of (weak) implication algebras, (NI1)
includes (I0), (NI2) is precisely (I2) and (NI3) is another name for (WE) and
rises as a weakening of (I3) by replacing z by 0. Furthermore, (NI4) captures
(WA) and (NI5) is just (c) of Lemma 3.

Weak implication algebras are a particular case of NMV-implication ones.
Indeed, any weak implication algebra fulfils (NI4) and (NI5) since in weak im-
plication algebras we have x→ ((((x→ y) → y) → z) → z) = x→ (x∨y∨z) = 1
and ((x→ y) → y) → y = (x→ y) ∨ y = x→ y.

Let us note that from (NI1) we can easily infer x→ x = 1.

�	��
�� 14� Let (A,⊕,¬, 0) be an NMV-algebra. If we define x→ y := ¬x⊕y,
then (A,→, 0, 1) is an NMV-implication algebra.

Conversely, if (A,→, 0, 1) is an NMV-implication algebra and if we put x⊕ y
:= (x→ 0) → y and ¬x := x→ 0, then (A,⊕,¬, 0) is an NMV-algebra.

P r o o f. It is obvious at once that for each NMV-algebra (A,⊕,¬, 0), the opera-
tion → satisfies all the identities (NI1)–(NI5), so (A,→, 0, 1) is an NMV-implica-
tion algebra.

Conversely, assume that (A,→, 0, 1) is an NMV-implication algebra. First,
we note that for any x ∈ A we have (x → 0) → 0 = (0 → x) → x = 1 → x = x
by (NI2) and (NI1), and hence ¬x⊕ y = ((x→ 0) → 0) → y = x→ y.
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(MV2): x ⊕ y = (x → 0) → y = (x → 0) → ((y → 0) → 0) = (y → 0) →
((x→ 0) → 0) = (y → 0) → x = y ⊕ x.

(MV3): x⊕ 0 = (x→ 0) → 0 = x.
(MV4): ¬¬x = (x→ 0) → 0 = x.
(MV5): x⊕ 1 = (x→ 0) → 1 = 1.
(MV6): Using ¬x⊕ y = x → y we obtain ¬(¬x⊕ y) ⊕ y = (x→ y) → y =

(y → x) → x = ¬(¬y ⊕ x) ⊕ x by (NI2).
(WA): ¬x ⊕ (¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ z) = x → ((((x → y) → y)

→ z) → z) = 1 by (NI4).
(H): We have ¬x⊕ (x⊕y) = x→ ((x→ 0) → y) = x→ ((y → 0) → x),

hence it is enough to show that x → (y → x) = 1 for all x, y ∈ A.
This follows from (NI5), (NI2) and (NI1): x → (y → x) = ((x →
(y → x)) → (y → x)) → (y → x) = (((y → x) → x) → x) → (y →
x) = (y → x) → (y → x) = 1.

�
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