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THE EXISTENCE

OF MULTIPLE POSITIVE SOLUTIONS

OF P-LAPLACIAN BOUNDARY VALUE PROBLEMS

Liu Yuji

(Communicated by Igor Bock )

ABSTRACT. In this paper, we establish sufficient conditions to guarantee the

existence of at least three or 2n− 1 positive solutions of nonlocal boundary value
problems consisting of the second-order differential equation with p-Laplacian

[φp(x′(t))]′ + f(t, x(t)) = 0, t ∈ (0, 1), (1)

and one of following boundary conditions

x(0) =

1Z

0

x(s) dh(s), φp(x′(1)) =

1Z

0

φp(x′(s)) dg(s), (2)

and

φp(x′(0)) =

1Z

0

φp(x′(s)) dh(s), x(1) =

1Z

0

x(s) dg(s). (3)

Examples are presented to illustrate the main results.
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1. Introduction

In this paper, we are concerned with the multiplicity of positive solutions to
the nonlocal boundary value problems (BVP for short) consisting of the one-
dimension p-Laplacian differential equation

[φp(x′(t))]′ + f(t, x(t)) = 0, t ∈ (0, 1), (1)
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associated with one of following boundary value conditions

x(0) =

1∫
0

x(s) dh(s), φp(x′(1)) =

1∫
0

φp(x′(s)) dg(s), (2)

and

φp(x′(0)) =

1∫
0

φp(x′(s)) dh(s), x(1) =

1∫
0

x(s) dg(s), (3)

where f : [0, 1] × R → R, h, g : [0, 1] → [0,+∞) are given functions and the
integrals in (2) or (3) are meant in the Riemann-Stieltjes sense. φp(s) = |s|p−2s,
(p > 1) is called p-Laplacian.

The study of nonlocal boundary value problems of this form was initiated
in the early 1960s by B i t s a d z e [4] and later studied by B i t s a d z e and
S a m a r s k i i [5], I l’ i n and M o i s e e v [11] and K a r a k o s t a s and T s a m a -
t o s [14]. This class of problems includes, as special cases, multi-point boundary
value problems, which were considered by many authors (see e.g., [2], [3], [9],
[10], [17]–[20] and the references therein and the recent book by A g a r w a l and
O ’R e g a n [1] and [7], [8]).

The boundary value problems consisting of equation (1) and different two-
point boundary value conditions have been studied extensively (see, for example,
[1], [6], [11], [12], [14], [17], [21]–[24]). When p = 2 and f(t, x) = a(t)g(x),
(1) becomes the following

x′′(t) + a(t)g(x(t)) = 0, t ∈ (0, 1). (4)

Recently, M a in [20] showed the existence of at least one positive solution to
(5) with the following boundary value conditions

x′(0) =
m−2∑
i=1

bix
′(ξi), x(1) =

m−2∑
i=1

aix(ηi) (5)

under the conditions that f is continuous, nonnegative and either super-linear or
sub-linear. We note that BVP (5) and (6) is a special case of BVP (1) and (3).
G u p t a in [9], using Leray-Schauder fixed point theorem, studied the existence
of solutions of the following BVP consisting of the equation x′′(t) = −f(t, x(t)),
t ∈ [0, 1], and boundary conditions

x(0) =
m∑

i=1

bix(ξi), x′(1) =
k∑

i=1

aix
′(ηi). (6)
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EXISTENCE OF SOLUTIONS OF P-LAPLACIAN BOUNDARY VALUE PROBLEMS

The existence of at least one solution of the following BVP consisting of the
equation x′′(t) = f(t, x(t)), t ∈ [0, 1], and of boundary value conditions

x(0) =
m∑

i=1

bix(ξi), x(1) =
k∑

i=1

aix(ηi) (7)

was studied by L i u and Y u in [18]. BVP (1) and (i) (i=2,3,4) contains BVP (5)
and (j) (j=6,7,8) as special cases, respectively. In a recent paper, G u p t a in
[10], using Schauder fixed point theorem, established the existence results of
solutions of BVP for the p-Laplacian differential equation

[φp(x′(t))]′ = f(t, x(t), x′(t)) + e(t), t ∈ [0, 1],

x(0) = 0, φp(x′(1)) =
k∑

i=1

aiφp(x′(ηi)).
(8)

In [2], the authors studied the existence of positive solutions of boundary value
problem (1) and (6). In [2], the operator A is defined by

Ax(t) = −
t∫

0

φq

⎛
⎝ s∫

0

f(τ, x(τ)) dτ

⎞
⎠+ t

m−2∑
i=1

biφq

(
ξi∫
0

f(τ, x(τ)) dτ

)

m−2∑
i=1

bi − 1

+
1

1 −
m−2∑
i=1

ai

⎡
⎣ 1∫

0

φq

⎛
⎝ s∫

0

f(τ, x(τ)) dτ

⎞
⎠ ds

−
m−2∑
i=1

ai

ξi∫
0

φq

⎛
⎝ s∫

0

f(τ, x(τ))dτ

⎞
⎠ ds

−

m−2∑
i=1

biφq

(
ξi∫
0

f(τ, x(τ)) dτ

)

m−2∑
i=1

bi − 1

(
1 −

m−2∑
i=1

aiξi

)⎤⎦

for x ∈ C[0, 1]. The authors claim that x(t) is a solution of (1) and (6) if and
only if x is a fixed point of the operator A. One can see that if Ax = x, then

x′(t) = −φq

⎛
⎝ t∫

0

f(τ, x(τ)) dτ

⎞
⎠+

m−2∑
i=1

biφq

(
ξi∫
0

f(τ, x(τ)) dτ

)

m−2∑
i=1

bi − 1
.

We find that [φp(x′(t))]′ �= −f(t, x(t)). The claim is false.
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In recent papers, L i u and G e [17], H e and G e [25] studied following
boundary value problems

{
[φp(u′(t))]′ + a(t)f(u(t)) = 0, 0 < t < 1,
u(0) −B0(u′(η)) = 0 = u′(1),

and

{
u′′(t) + a(t)f(u(t)) = 0, 0 < t < 1,
u(0) = 0 = u(1) − αu(η).

They proved the existence results for positive solutions by using fixed point the-
orems. In recent papers [26] and [27], the authors studied some similar two-point
or three-point boundary value problems by using Leggett-Williams fixed point
theorem or its generalized form. So it is interesting and valuable to establish
the existence criteria for multiple positive solutions of equation (1) subject to
different nonlocal boundary value conditions.

In very recent papers [28], [29], K a r a k o s t a s studied the existence of pos-
itive solutions for the Φ-Laplacian when Φ is a sup-multiplicative-like function

(Φ(x′))′ + p(t)f(t, x(g1(t)), . . . , x(gn(t))) = 0

subject to one of the boundary value conditions

x(0)−B0(x′(0)) = x(1) +B1(x′(1)) = 0,

x(0) −B0(x′(0)) = x′(1) = 0,

and

x′(0) = x(1) +B1(x′(1)) = 0

by using Krasnoselskii’s and Leggett-Williams fixed point theorems.
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Inspired and motivated by the works mentioned above, especially, by [9], [20],
our purpose here is to give some existence results for at least three positive
solutions to BVP (1) and (2) and BVP (1) and (3) by using Leggett-Williams
fixed-point theorem, which has been reported to be a successful technique for
dealing with the existence of multiple positive solutions of BVPs for second order
differential equations, however, there is no paper reported discussing the posi-
tive solutions of nonlocal boundary value problems for p-Laplacian equations by
using it since the presence of p-Laplacian causes some difficulty. The results in
this paper are new.

By a positive solution of BVP (1) and (i) (i=2,3) we mean a function x(t)
which is positive on (0, 1) and satisfies (1) and the boundary conditions (i)
(i=2,3) respectively. In the sequel, we suppose the following:

(H1) f is a real valued continuous function defined on [0, 1] × R, and satisfies
the inequality f(t, x) ≥ 0 when t ∈ [0, 1] and x ≥ 0, and f(t, 0) �≡ 0 on any
sub-interval of [0, 1].

(H2) g : [0, 1] → R is non-decreasing function with 0 = g(0) ≤ g(1) < 1 and
h : [0, 1] → R is a non-decreasing function with 0 = h(0) ≤ h(1) < 1 for all
t ∈ I.

2. Preliminary lemmas

To obtain positive solutions of BVP (1) and (i) (i=2,3,4), we first present the
following definitions, a fixed-point theorem in cones and preliminary lemmas.
The main results will be given in Section 3.

���������� 2.1� Let X be a real Banach space, a non-empty closed convex set
P ( �= {0}) ⊂ X is called a cone of X if it satisfies the following conditions:

(i) x ∈ P and λ ≥ 0 implies λx ∈ P .
(ii) x ∈ P and −x ∈ P implies x = 0.

Every cone P ⊂ X induces an ordering in X which is given by x ≤ y if and
only if y − x ∈ P .

���������� 2.2� A map ψ : P → [0,+∞) is called a concave functional map
provided ψ satisfies

ψ(tx+ (1 − t)y) ≥ tψ(x) + (1 − t)ψ(y)

for all x, y ∈ P and t ∈ [0, 1].

229



LIU YUJI

���������� 2.3� An operator is called completely continuous if it is continuous
and maps bounded sets into pre-compact sets.

���������� 2.4� Let 0 < a < b and r be given and let ψ be a nonnegative
continuous concave functional on the cone P . Define the convex set Pr and
P (ψ; a, b) by

Pr =
{
y ∈ P : ‖y‖ < r

}
, P (ψ; a, b) =

{
y ∈ P : a ≤ ψ(y), ‖y‖ < b

}
.

Next, we state the Leggett-Williams fixed-point theorem. The proof of this
theorem can be found in G u o and L a k s h m i k a n t h a m ’s book [8], D e i m -
l i n g ’s text [7].

�	��
�� 2.1 (Leggett-Williams Fixed-Point Theorem)� Let T : P c → P c be a
completely continuous operator and let ψ be a nonnegative continuous concave
functional on P such that ψ(y) ≤ ‖y‖ for all y ∈ P c. Suppose that there exist
0 < a < b < d ≤ c such that
(C1)

{
y ∈ P (ψ; b, d) : ψ(y) > b

} �= ∅ and ψ(Ty) > b for y ∈ P (ψ; b, d);
(C2) ‖Ty‖ < a for ‖y‖ ≤ a;
(C3) ψ(Ty) > b for y ∈ P (ψ; b, c) with ‖Ty‖ > d.
Then T has at least three fixed points y1, y2 and y3 such that ‖y1‖ < a, b < ψ(y2)
and ‖y3‖ > a with ψ(y3) < b.

Now, we give some preliminary lemmas. Suppose x(t) is a solution of equa-
tion (1) associated with condition (2), integrating (1) from t to 1, we get,
using (H2),

φp(x′(1))− φp(x′(t)) = −
1∫

t

f(s, x(s)) ds, (9)

then

φp(x′(1))

1∫
0

dg(s) −
1∫

0

φp(x′(t)) dg(s)

= −
1∫

0

1∫
s

f(τ, x(τ)) dτ dg(s)

= −g(s)
1∫

s

f(τ, x(τ)) dτ
∣∣∣1
0

+

1∫
0

g(s) d

⎛
⎝ 1∫

s

f(τ, x(τ)) dτ

⎞
⎠

= −
1∫

0

g(s)f(s, x(s)) ds.
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Using (2), we find

φp(x′(1)) =
1

1 − g(1)

1∫
0

g(s)f(s, x(s)) ds.

From (10), one gets

φp(x′(t)) =
1

1 − g(1)

1∫
0

g(s)f(s, x(s)) ds+

1∫
t

f(s, x(s)) ds,

i.e.

x′(t) = φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(s)f(s, x(s)) ds+

1∫
t

f(s, x(s)) ds

⎞
⎠ ,

where q satisfies 1/p+ 1/q = 1. So we have

x(t) − x(0) =

t∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds.

Similarly, we have

1∫
0

x(s) dh(s) − x(0)

1∫
0

dh(s)

=

1∫
0

t∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds dh(t)

= h(1)

1∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

−
1∫

0

h(t)φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
t

f(τ, x(τ)) dτ

⎞
⎠ dt.

231



LIU YUJI

It follows from (2) that

x(0) =
h(1)

1 − h(1)

1∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ds

− 1
1 − h(1)

1∫
0

h(s)φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ds.

Then

x(t) =

t∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

+
h(1)

1 − h(1)

1∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

− 1
1 − h(1)

1∫
0

h(s)φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds.

Let X be the set of all continuous functions on [0, 1] and be endowed with the
norm ‖x‖ = max

t∈[0,1]
|x(t)|, then X is a Banach space. We note that x(t) ≥ 1

2‖x‖
for t ∈ [1/2, 1] if x(t) is positive, concave and increasing on [0, 1]. To apply
Theorem 2.1, we define P1 by

P1 =
{
x ∈ X : x(t) ≥ 1

2‖x‖ for t ∈ [ 12 , 1],
x(t) is positive, increasing and concave on (0, 1)

}
.

We find that P1 is a cone in X. Define an operator A1 on cone P1 by

A1x(t) =

t∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

+
h(1)

1 − h(1)

1∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

− 1
1 − h(1)

1∫
0

h(s)φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

for every x ∈ P1. Define a functional ψ1 by ψ1(x) = min
t∈[1/2,1]

x(t) = x(1
2 ) for

x ∈ P1. Now we give some preliminary results.
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Denote

δ1 = 1
1−h(1)

1
2∫
0

(1 − h(s))φq

(
1

1−g(1)

1∫
1
2

g(τ) dτ + 1
2

)
ds,

m1 =
[

1
1−h(1)

1∫
0

(1 − h(s))φq

(
1

1−g(1)

1∫
0

g(τ) dτ + 1 − s

)
ds
]−1

.

P1, A1, ψ1, δ1 and m1 will be used in Theorems 3.3 and 3.4.

����
 2.2� Assume (H1) and (H2). Then the following results hold:

(i) A1P1 ⊂ P1.
(ii) A1 is completely continuous.
(iii) ψ1 is nonnegative and concave, ψ1(x) ≤ ‖x‖ for every x ∈ P1.

(iv) (A1x)(0) =
1∫
0

(A1x)(s) dh(s) and φp((A1x)′(1)) =
1∫
0

φp((A1x)′(s)) dg(s).

(v) x ∈ P1 is a fixed point of the operator A1 on P1 if and only if x(t) satisfies
equation (1) and conditions (2).

P r o o f. The proof is standard and the similar proof can be find in [8], [16], [24]
and [26] especially and is omitted. �

Similar to above discussion, we get, if x(t) is a solution of BVP (1) and (3),
that

x(t) =
1

1 − g(1)

1∫
0

g(s)φq

⎛
⎝ s∫

0

f(τ, x(τ)) dτ

+
1

1 − h(1)

1∫
0

(h(1) − h(τ))f(τ, x(τ)) dτ

⎞
⎠ ds

+

1∫
t

φq

⎛
⎝ s∫

0

f(τ, x(τ)) dτ +
1

1 − h(1)

1∫
0

(h(1) − h(τ))f(τ, x(τ)) dτ

⎞
⎠ ds.

To apply Theorem 2.1 we define a cone

P2 =
{
x ∈ X : x(t) ≥ 1

2‖x‖ for t ∈ [0, 1
2

]
,

x(t) is positive, decreasing, continuous and concave on (0, 1)
}
.

233



LIU YUJI

Define the operator A2 by

A2x(t) =
1

1 − g(1)

1∫
0

g(s)φq

⎛
⎝ s∫

0

f(τ, x(τ)) dτ

+
1

1 − h(1)

1∫
0

(h(1) − h(τ))f(τ, x(τ)) dτ

⎞
⎠ ds

+

1∫
t

φq

⎛
⎝ s∫

0

f(τ, x(τ)) dτ +
1

1 − h(1)

1∫
0

(h(1) − h(τ))f(τ, x(τ)) dτ

⎞
⎠ ds.

Define the functional ψ2(x) = min
t∈[0,1/2]

x(t) for x ∈ P2. Let

δ2 =
1

1 − g(1)

1∫
1/2

g(s)φq

⎛
⎝s+

1
1 − h(1)

1∫
0

(h(1) − h(τ)) dτ

⎞
⎠ ds

+

1∫
1/2

φq

⎛
⎝s+

1
1 − h(1)

1∫
0

(h(1) − h(τ)) dτ

⎞
⎠ ds,

m2 =
1

1 − g(1)

1∫
0

g(s)φq

⎛
⎝s+

1
1 − h(1)

1∫
0

(h(1) − h(τ)) dτ

⎞
⎠ ds

+

1∫
0

φq

⎛
⎝s+

1
1 − h(1)

1∫
0

(h(1) − h(τ)) dτ

⎞
⎠ ds.

P2, A2, ψ2, δ2 and m2 will be used in Theorems 3.5 and 3.6.

����
 2.3� Assume (H1) and (H2). Then the following results hold:

(i) A2P2 ⊂ P2.
(ii) A2 is completely continuous.
(iii) ψ2 is nonnegative and concave, ψ2(x) ≤ ‖x‖ for every x ∈ P2.

(iv) φp((A2x)′(0)) =
1∫
0

φp((A2x)′(s)) dh(s) and (A2x)(1) =
1∫
0

(A2x)(s) dg(s).

(v) x ∈ P2 is a fixed point of the operator A2 on P2 if and only if x(t) satisfies
equation (1) and conditions (3).

P r o o f. The proof is standard and the similar proof can be find in [8], [16], [24]
and [26] especially and is omitted. �
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3. Main results

In this section, we present the main results and their proofs.

�	��
�� 3.1� Assume (H1) and (H2). In addition, there exist constants 0 <
a < b < 2b ≤ c, b < m1δ1c such that

(D1) f(t, x) < φp(m1a) for t ∈ [0, 1] and x ∈ [0, a];

(D2) f(t, x) > φp(b/δ1) for t ∈ [ 12 , 1] and x ∈ [b, 2b];
(D3) f(t, x) < φp(m1c) for t ∈ [0, 1] and x ∈ [0, c].

Then BVP (1) and (2) has at least three positive solutions x1, x2 and x3 such
that

‖x1‖ < a, b < ψ1(x2) and ‖x3‖ > a with ψ1(x3) < b.

P r o o f. By Lemma 2.2(v), it suffices to show that conditions of Theorem 2.1
are satisfied. From the definition of ψ1, ψ1(x) ≤ ‖x‖ for all x ∈ P1. Now, if
x ∈ P1c, then ‖x‖ ≤ c and (D3) implies f(t, x(t)) ≤ φp(m1c) for all t ∈ [0, 1].
Consequently,

‖A1x‖ =

=

1∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

+
h(1)

1 − h(1)

1∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

− 1
1 − h(1)

1∫
0

h(s)φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

=
1

1 − h(1)

1∫
0

(1 − h(s))φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ds

<
1

1 − h(1)

1∫
0

(1 − h(s))φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)φp(m1c) dτ +

1∫
s

φp(m1c) dτ

⎞
⎠ ds
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=
m1c

1 − h(1)

1∫
0

(1 − h(s))φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ) dτ + 1 − s

⎞
⎠ ds

= c.

Hence, A1 : P1c → P1c. In the same way, if x ∈ P1a, then assumption (D1) yields
f(t, x(t)) ≤ m1a for t ∈ [0, 1]. As in the same argument above, we can obtain
that A1 : P1a → P1a. Therefore, condition (C2) of Theorem 2.1 is satisfied.

Check condition (C1) of Theorem 2.1. It is easy to see that
{
y ∈ P1(ψ1; b, 2b),

ψ1(y) > b
} �= ∅. If x ∈ P1(ψ1; b, 2b), then ψ1(x) = x

(
1
2

) ≥ b and ‖x‖ ≤ 2b. So

b ≤ x(t) ≤ 2b for t ∈ [12 , 1].
So, (D2) implies f(t, x) ≥ φp(b/δ1) for t ∈ [12 , 1] and x ∈ [b, 2b]. Then

ψ(A1x) = A1x
(

1
2

)

=

1
2∫

0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

+
h(1)

1 − h(1)

1∫
0

φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

− 1
1 − h(1)

1∫
0

h(s)φq

⎛
⎝ 1

1 − g(1)

1∫
0

g(τ)f(τ, x(τ)) dτ +

1∫
s

f(τ, x(τ)) dτ

⎞
⎠ ds

≥
1
2∫

0

φq

⎛
⎜⎝ 1

1 − g(1)

1∫
1
2

g(τ)f(τ, x(τ)) dτ +

1∫
1
2

f(τ, x(τ)) dτ

⎞
⎟⎠ ds

+
h(1)

1 − h(1)

1
2∫

0

φq

⎛
⎜⎝ 1

1 − g(1)

1∫
1
2

g(τ)f(τ, x(τ)) dτ +

1∫
1
2

f(τ, x(τ)) dτ

⎞
⎟⎠ ds
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− 1
1 − h(1)

1
2∫

0

h(s)φq

⎛
⎜⎝ 1

1 − g(1)

1∫
1
2

g(τ)f(τ, x(τ)) dτ

+

1∫
1
2

f(τ, x(τ)) dτ

⎞
⎟⎠ ds

=
1

1 − h(1)

1
2∫

0

(1 − h(s))φq

⎛
⎜⎝ 1

1 − g(1)

1∫
1
2

g(τ)f(τ, x(τ)) dτ

+

1∫
1
2

f(τ, x(τ)) dτ

⎞
⎟⎠ ds

>
1

1 − h(1)

1
2∫

0

(1 − h(s))φq

⎛
⎜⎝ 1

1 − g(1)

1∫
1
2

g(τ)φp

(
b
δ1

)
dτ +

1∫
1
2

φp

(
b
δ1

)
dτ

⎞
⎟⎠ ds

=
b/δ1

1 − h(1)

1
2∫

0

(1 − h(s))φq

⎛
⎜⎝ 1

1 − g(1)

1∫
1
2

g(τ) dτ +
1
2

⎞
⎟⎠ ds

= b,

i.e., ψ1(Ax) > b for x ∈ P1(ψ1; b, 2b). This shows that (C1) of Theorem 2.1
is satisfied. Finally, we show that (C3) of Theorem 2.1 also holds. Suppose
x ∈ P1(ψ1; b, c) with ‖Ax‖ > 2b. Since (A1x)′′(t) ≤ 0 and (A1x)′(t) ≥ 0 for
t ∈ [0, 1], we have A1x(t) ≥ t‖A1x‖, then

ψ1(A1x) = A1x
(

1
2

) ≥ 1
2
‖A1x‖ > b.

So condition (C3) of Theorem 2.1 is satisfied. Therefore an application of The-
orem 2.1 completes the proof. �

From Theorem 3.1, we see that when assumptions like (D1)–(D3) are appro-
priately imposed on f , we can obtain any number of positive solutions of (1)
and (2). To be more precise, we have the following conclusion.
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�	��
�� 3.2� Suppose (H1) and (H2) hold and there exist constants 0 < a1 <
b1 < 2b1 < a2 < b2 < 2b2 < · · · < an for n ∈ N, such that the following
conditions are satisfied:

(E1) f(t, x) < φp(m1ai) for t ∈ [0, 1] and x ∈ [0, ai] with i = 1, . . . , n.

(E2) f(t, x) > φp(bi/δ1) for t ∈ [12 , 1] and x ∈ [bi, 2bi] with i = 1, . . . , n.
Then BVP (1) and (2) has at least 2n− 1 positive periodic solutions.

P r o o f. When n = 1, it follows from condition (E1) that A1 : P1a1
→ P1,a1 ,

which means that A1 has at least one fixed point x1 ∈ P1a1
by the Schauder

fixed point theorem. When n = 2, it is clear that Theorem 3.1 holds with
c = a2. Then we can obtain at least three positive solutions x1, x2 and x3

satisfying ‖x1‖ ≤ a1, ψ1(x2) > b1, ‖x3‖ > a1 and ψ1(x3) < b1. Following this
way, we finish the proof by the induction method.

Similarly, we have the following theorems for existence of at least three posi-
tive solutions or 2n− 1 positive solutions of BVP (1) and (3), whose proofs are
similar to those of Theorem 3.3 and Theorem 3.4 and hence are omitted. �

�	��
�� 3.3� Assume (H1) and (H2). In addition, there exist constants 0 <
a < b < 2b ≤ c, b < m2δ2c such that

(G1) f(t, x) < φp(m2a) for t ∈ [0, 1] and x ∈ [0, a].

(G2) f(t, x) > φp(b/δ2) for t ∈ [12 , 1] and x ∈ [b, 2b].
(G3) f(t, x) < φp(m2c) for t ∈ [0, 1] and x ∈ [0, c].

Then BVP (1) and (3) has at least three positive solutions x1, x2 and x3 such
that

‖x1‖ < a, b < ψ2(x2) and ‖x3‖ > a with ψ2(x3) < b.

�	��
�� 3.4� Suppose (H1) and (H2) hold and there exist constants 0 < a1 <
b1 < 2b1 < a2 < b2 < 2b2 < · · · < an for n ∈ N, such that the following
conditions are satisfied:

(F1) f(t, x) < φp(m2ai) for t ∈ [0, 1] and x ∈ [0, ai] with i = 1, . . . , n.

(F2) f(t, x) > φp(bi/δ2) for t ∈ [12 , 1] and x ∈ [bi, 2bi] with i = 1, . . . , n.

Then BVP (1) and (3) has at least 2n− 1 positive periodic solutions.

Now, we present some examples to illustrate the main results.
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Example 3.1. Consider the following BVP

{
x′′(t) + f(x(t)) = 0, t ∈ (0, 1),
x(0) = 0, x′(1) = 1

2x
′(1

2

)
,

(10)

where

f(x) =

⎧⎨
⎩

x, 0 ≤ x ≤ 1,
8 + 7

3 (x− 4), 1 ≤ x ≤ 4,
8 + 16

x (x− 4), x ≥ 4.

We find that for h(t) ≡ 0 and

g(t) =
{

0, if 0 ≤ x < 1
2 ,

1
2 , if 1

2 ≤ x ≤ 1

the boundary value conditions in (10) reduce to (2). It is easy to check m1 = 1
and δ1 = 1/2. Choose a = 1, b = 4 and c = 24. Then a < b < 2b < c and
b < m1δ1c, furthermore,

f(x)

⎧⎨
⎩

≤ m1c = 24, 0 ≤ x ≤ 24,
≥ b/δ1 = 8, 4 ≤ x ≤ 8,
≤ m1a = 1, 0 ≤ x ≤ 1.

An application of Theorem 3.1 implies (10) has at least three positive solutions
x1, x2 and x3 such that ‖x1‖ ≤ 1, x

(
1
2

)
> 4, ‖x3‖ > 1 and x3(1

2 ) < 4.

Example 3.2. Consider the BVP problem

⎧⎨
⎩

(φ3(y′))
′ + f(y) = 0, t ∈ (0, 1),

u(0) =
1∫
0

s2u(s) ds, u′(1) =
1∫
0

s3u′(s) ds.
(11)

We observe that p = 3, q = 3/2, g(s) = 1
4s

4 and h(s) = 1
3s

3. It is easy to check
that

δ1 =
3
2

1/2∫
0

(1 − 1
3
s3)φ3/2

⎛
⎜⎝4

3

1∫
1/2

1
4
τ4 dτ +

1
2

⎞
⎟⎠ ds =

95
128

√
271
480

.
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m1 =

⎡
⎣3

2

1∫
0

(
1 − 1

3
s3
)
φ3/2

⎛
⎝4

3

1∫
0

1
4
τ4 dτ + 1 − s

⎞
⎠ ds

⎤
⎦
−1

>

⎡
⎣3

2

1∫
0

(
1 − 1

3
s3
)
φ3/2

⎛
⎝4

3

1∫
0

1
4
τ4 dτ + 1

⎞
⎠ ds

⎤
⎦
−1

=
2
√

15
11

.

Choose a = 1, b = 2, c = 60, we find a < b < 2b < c and b < m1δ1c. Hence if

f(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

≤ φ3

(
2
√

15
11

)
, 0 ≤ x ≤ 1,

≥ φ3

(
256
95

√
480
271

)
, 2 ≤ x ≤ 4,

≤ φ3

(
120

√
15

11

)
, 0 ≤ x ≤ 60,

then by application of Theorem 3.1, (11) has at least three positive solutions.
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