

DOI: 10.2478/s12175-007-0018-3 Math. Slovaca **57** (2007), No. 3, 219–224

SOME RESULTS ON Q-GROUPS

M. R. Darafsheh — H. Sharifi

(Communicated by Pavol Zlatoš)

ABSTRACT. A finite group G whose irreducible characters are rational valued is called a \mathbb{Q} -group. In this paper we will be concerned with the structure of a finite \mathbb{Q} -group that contains a strongly embedded subgroup and the structure of a finite \mathbb{Q} -group satisfying the property that none of its sections is isomorphic to \mathbb{S}_4 .

©2007 Mathematical Institute Slovak Academy of Sciences

1. Introduction

Let G be a finite group and χ be an irreducible complex character of G. The field generated by all $\chi(x)$, $x \in G$ is denoted by $\mathbb{Q}(\chi)$. By definition a complex character χ is called rational if $\mathbb{Q}(\chi) = \mathbb{Q}$, where \mathbb{Q} denotes the field of rational numbers, and a finite group G is called a rational group or a \mathbb{Q} -group if every irreducible complex character of G is rational. Finite \mathbb{Q} -groups have been studied extensively, but classifying finite \mathbb{Q} -groups still remains an open research problem. It is easy to prove that a finite group G is a \mathbb{Q} -group if and only if for any $x \in G$ of order m the elements x and x^n are conjugate whenever n and m are relatively prime. Therefore the symmetric group \mathbb{S}_n is an example of a \mathbb{Q} -group. Other examples of \mathbb{Q} -groups are the Weyl groups of the complex Lie algebras, see [2]. By [5] the prime divisors of the order of a finite solvable \mathbb{Q} -group can only be 2, 3 or 5. It is shown in [4] that the only non-abelian simple \mathbb{Q} -groups are the groups $SP_6(2)$ and $O_8^+(2)$. In [1, pp. 59-62] solvable \mathbb{Q} -groups with certain Sylow 2-subgroups are classified. It is shown that if a Sylow 2-subgroup of a \mathbb{Q} -group G is abelian, then G is a supersolvable $\{2,3\}$ -group. It is also shown that

if G is a solvable non-nilpotent \mathbb{Q} -group with a Sylow 2-subgroup isomorphic to the quaternion group Q_8 , then $G = E(3^n) : Q_8$ or $G = E(5^n) : Q_8$ where : denotes the semi-direct product of groups and $E(p^n)$ is an elementary abelian group of order p^n .

In [3] we described the structure of all Frobenius \mathbb{Q} -groups. In this note we first find all of \mathbb{Q} -groups that contain strongly embedded subgroups and using this, we classify \mathbb{Q} -groups that no section of them is isomorphic to the symmetric group on four letters, i.e. \mathbb{S}_4 . All groups considered in this paper are finite and all characters are complex. The semi-direct product and central product of groups H and K is denoted by H: K and $H \circ K$, respectively. Also, if p is a prime number, $E(p^n)$ denotes the elementary abelian p-group of order p^n . Finally, we write Q_8 for the quaternion group of order 8. Our main result is the following.

MAIN THEOREM. If G is a finite \mathbb{Q} -group in which no section of it is isomorphic to the symmetric group of degree four, then either $G \simeq P : \mathbb{Z}_2$ or $G \simeq E(p^n) : \mathbb{Q}_8$, where $n \in \mathbb{N}$, p = 3 or 5 and P is the Sylow 3-subgroup of G.

2. Q-groups with strongly embedded subgroups

First we will recall the following concept which is taken from ([8, Vol. 2, p. 391]).

DEFINITION 1. A subgroup H of a finite group G is said to be *strongly embedded* in G if the following two conditions are satisfied:

- (1) H is a proper subgroup of even order,
- (2) For any element $x \in G H$, the order of $H \cap H^x$ is odd.

In the following we will find the structure of a Sylow 2-subgroup of a Q-group having a strongly embedded subgroup.

Lemma 1. Let G be a finite \mathbb{Q} -group having a strongly embedded subgroup. Then a Sylow 2-subgroup of G is isomorphic to \mathbb{Z}_2 or Q_8 .

Proof. By [8, Vol. 2, p. 391] every Sylow 2-subgroup of G contains exactly one element of order 2. Thus a Sylow 2-subgroup P of G is either a cyclic group or a generalized quaternion group Q_{2^n} . If a Sylow 2-subgroup of G is the cyclic group \mathbb{Z}_{2^n} of order 2^n , then n = 1, because by [7], Z(P) is elementary abelian and hence $P \cong \mathbb{Z}_2$. Otherwise, $P = Q_{2^n}$ that is,

$$P = \langle a, b \mid a^{2^{n-1}} = 1, b^2 = a^{2^{n-2}}, bab^{-1} = a^{-1} \rangle.$$

SOME RESULTS ON Q-GROUPS

From what we mentioned in the introduction we deduce that G is a \mathbb{Q} -group if and only if $\frac{N_G(\langle x \rangle)}{C_G(\langle x \rangle)}$ is isomorphic to $\operatorname{Aut}(\langle x \rangle)$ for any arbitrary element x of G. Hence $[N_G(\langle a \rangle): C_G(\langle a \rangle)] = \varphi(O(a)) = 2^{n-2}$ where $N_G(\langle a \rangle)$ and $C_G(\langle a \rangle)$ denote the normalizer and centralizer of a in G, respectively. Therefore $|N_G(\langle a \rangle)| = 2^{n-2}|C_G(\langle a \rangle)| \geq 2^{n-2}O(a) = 2^{2n-3}$. But Q_{2^n} is a Sylow 2-subgroup of G. Therefore $2n-3 \leq n$, it follows that n=3 and $P=Q_8$. \square

Now we can use [6] to determine the structure of finite \mathbb{Q} -groups having a strongly embedded subgroup.

THEOREM 1. Let G be a finite \mathbb{Q} -group with a strongly embedded subgroup. Then G is isomorphic to one of the following groups:

- (a) $G \cong G' : \mathbb{Z}_2$, where G' is a 3-group.
- (b) $G \cong E(p^n) : Q_8$, where p = 3 or 5.

Proof. By Lemma 1 a Sylow 2-subgroup P of G is isomorphic to \mathbb{Z}_2 or Q_8 . If $P \cong \mathbb{Z}_2$, then by [6] case (a) holds. If $P \cong Q_8$, then by [7, p. 35], case (b) holds. \square

3. \mathbb{Q} -groups with strongly closed subgroups

In this section we will obtain the structure of \mathbb{Q} -groups with no section isomorphic to \mathbb{S}_4 . First we recall the following concept.

DEFINITION 2. Let P be a p-subgroup of a group G. A subgroup T of P is said to be $strongly \ closed \ subgroup$ of G if for any element t of T and any element g of G, $t^g \in P$ implies that $t^g \in T$. Also T is said to be a $weakly \ closed \ subgroup$, if for any $g \in G$, $T^g \subset P$ implies that $T^g = T$.

It is easy to see that a strongly closed subgroup is weakly closed.

Before stating the next theorem, we will mention some well-known results. The proofs can be found in [8, Vol. 2, p. 601]. Glauberman proved the following theorem.

THEOREM A. ([8, Vol. 2, p. 601]) Let G be a group in which no section is isomorphic to the symmetric group of degree four. Then G contains a strongly closed abelian 2-subgroup.

DEFINITION 3. Let G be a p-group. For each natural number n we define $\Omega_n(G) = \langle x \mid x \in G, \ x^{p^n} = 1 \rangle$.

If G is an abelian p-group, then $\Omega_1(G)$ is the set of elements of order at most p. But, if G is not abelian, the statement is not necessarily true, it may happen that $\Omega_1(G)$ contains an element of order larger than p, for example consider $G = D_8$, the dihedral group of order 8.

THEOREM B. ([8, Vol. 2, p. 590]) Let S be a strongly closed 2-subgroup of G, and let H be the subgroup of G generated by all the conjugates of $\Omega_1(S)$. Let I(S) denote the set of all involutions of S. Then we have one of the following two cases:

- (1) $H \subset \langle C_G(\langle s \rangle) \mid s \in I(S) \rangle$.
- (2) The group H contains a strongly embedded subgroup.

Let us fix the notation of Theorem B and let T be a Sylow 2-subgroup of G such that $S \subset T$. Since $H \subseteq G$, we have $T \cap H \in \operatorname{Syl}_2(H)$. So, for any $g \in G$, there is an element h of H such that $\Omega_1(S)^{gh} \subset T \cap H$. Since S is strongly closed, we get $\Omega_1(S)^{gh} \subset S$. This implies that $\Omega_1(S)^{gh} = \Omega_1(S)$. It follows that $H = \langle \Omega_1(S)^H \rangle$. Thus for the proof of Theorem B it is enough to assume G = H as indicated in [8].

Goldschmidt proved the following theorem ([8, Vol. 2, p. 586]).

THEOREM C. Let S be a strongly closed abelian 2-subgroup of a group G such that $S \neq \{1\}$. Let K be the normal subgroup of G generated by all the conjugates of S, and set $\overline{K} = \frac{K}{O(K)}$. Then,

(1) \overline{K} is the central product of a semi-simple group and an abelian 2-group, and each component of \overline{K} is a quasi-simple group associated with one of the simple groups in the following list:

$$PSL(2,2^n)$$
, $PSU(3,2^n)$, $Sz(2^n)$, $PSL(2,q)$ $(q \equiv \pm 3 \pmod{8})$, J_1 , or The simple group of Ree type.

(2) $S = O_2(K)\Omega_1(T)$ for some $T \in Syl_2(K)$.

Now we state and prove our main theorem.

SOME RESULTS ON Q-GROUPS

MAIN THEOREM. Let G be a finite \mathbb{Q} -group such that no section of it is isomorphic to the symmetric group \mathbb{S}_4 . Then we have one of the following cases:

- (1) $G \simeq G' : \mathbb{Z}_2$, where G' is a 3-group.
- (2) $G \simeq E(p^n) : \mathbb{Q}_8$ where n is a non-negative integer and p = 3 or 5.

Proof. By Theorem A, G contains a strongly closed abelian 2-subgroup S. On the other hand by Theorem B, if H is a subgroup of G generated by all the conjugates of $\Omega_1(S)$, then either $H \subset \langle C_G(\langle s \rangle) \mid s \in I(S) \rangle$ or H contains a strongly embedded subgroup. But, we may suppose that G = H. To prove this theorem, it is enough to show that $G \neq \langle C_G(\langle s \rangle) \mid s \in I(S) \rangle$. Suppose $G = \langle C_G(\langle s \rangle) \mid s \in I(S) \rangle$, then since S is abelian, $\Omega_1(S) = I(S) \cup \{1\}$ implying $\Omega_1(S) \subset S$. Thus, by Theorem C, $G = \langle \Omega(S)^g \mid g \in G \rangle = \langle C_G(\langle s \rangle) \mid s \in I(S) \rangle$ implying that $G \subseteq K$, therefore $G = K = \langle S^g \mid g \in G \rangle$. Let $\overline{G} = \frac{G}{O(\overline{G})} \simeq A \circ B$, where A is semi-simple, B is an abelian 2-group and \circ denotes the central product. By $[8, \operatorname{Vol} 1, \operatorname{p.} 137]$, $A \cap B = Z(A) \cap B$ and $Z(A \circ B) = Z(A) \circ Z(B) = Z(A) \circ B$. Since the quotient group of a \mathbb{Q} -group is a \mathbb{Q} -group, \overline{C} is a \mathbb{Q} -group. But

$$\frac{\overline{G}}{Z(\overline{G})} \simeq \frac{A \circ B}{Z(A \circ B)} \simeq \frac{\frac{A \circ B}{B}}{\frac{Z(A) \circ B}{B}} \simeq \frac{\frac{A}{A \cap B}}{\frac{Z(A)}{Z(A) \cap B}} \simeq \frac{A}{Z(A)}$$

and $\frac{A}{Z(A)}$ is a direct product of non-abelian simple groups listed in Theorem C. We see that none of them is a \mathbb{Q} -group. By [4] the only non-abelian simple rational \mathbb{Q} -groups are $SP_6(2)$ and $O_8^+(2)$. But $\frac{\overline{G}}{Z(\overline{G})}$ is a \mathbb{Q} -group and therefore we reached a contradiction. Therefore G contains a strongly embedded subgroup. Therefore by Theorem 1 the conclusion follows.

Acknowledgement. The authors would like to thank the referee for his/her valuable suggestions which improved this paper.

REFERENCES

- BERKOVICH, YA. G.—ZHMUD, E.: Characters of Finite Groups, Part 1. Transl. Math. Monographs 172, Amer. Math. Soc., Providence, RI, 1997.
- [2] CONWAY, J. H.—CURTIS, R. T.—NORTON, S. P.—PARKER, R. A.—WILSON, R. A.: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [3] DARAFSHEH, M. R.—SHARIFI, H.: Frobenius Q-groups, Arch. Math. (Basel) 83 (2004), 102–105.
- [4] FEIT, W.—SEITZ, G. M.: On finite rational groups and related topics, Illinois J. Math. 33 (1988), 103–131.
- [5] GOW, R.: Groups whose characters are rational-valued, J. Algebra 40 (1976), 280–299.

M. R. DARAFSHEH — H. SHARIFI

- [6] HAYASHI, M.: On a generalization of F. M. Markel's Theorem, Hokaido Math. J. 4 (1975), 278–280.
- [7] KLETZING, D.: Structure and Representations of Q-Groups, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.
- [8] SUZUKI, M.: Group Theory, Vols. 1, 2, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1982.

Received 28. 2. 2005 Revised 19. 9. 2005 Department of Mathematics Statistics and Computer Sciences Faculty of Science University of Tehran Tehran IRAN

 $E\text{-}mail: \ darafsheh@ut.ac.ir} \\ hsharifi@khayam.ut.ac.ir$