

DOI: 10.2478/s12175-007-0003-x Math. Slovaca **57** (2007), No. 2, 119–128

ON BF-ALGEBRAS

Andrzej Walendziak

(Communicated by Anatolij Dvurečenskij)

ABSTRACT. In this paper we introduce the notion of BF-algebras, which is a generalization of B-algebras. We also introduce the notions of an ideal and a normal ideal in BF-algebras. We investigate the properties and characterizations of them.

© 2007 Mathematical Institute Slovak Academy of Sciences

1. Introduction

The concept of B-algebras was introduced by J. Neggers and H. S. Kim [6]. They defined a B-algebra as an algebra (A; *, 0) of type (2, 0) (i.e., a nonempty set A with a binary operation * and a constant 0) satisfying the following axioms:

- (B1) x * x = 0,
- (B2) x * 0 = x,
- (B) (x*y)*z = x*[z*(0*y)].

In [4], Y. B. Jun, E. H. Roh, and H. S. Kim introduced BH-algebras, which are a generalization of BCK/BCI/B-algebras. An algebra (A; *, 0) of type (2, 0) is a BH-algebra if it obeys (B1), (B2), and

(BH) x * y = 0 and y * x = 0 imply x = y.

Recently, Ch. B. Kim and H. S. Kim [5] defined a BG-algebra as an algebra (A; *, 0) of type (2, 0) satisfying (B1), (B2), and

(BG) x = (x * y) * (0 * y).

For other generalizations of B-algebras see [11] (BZ-algebras) and [8] (β -algebras). Here we define $BF/BF_1/BF_2$ -algebras. We introduce the notions of an

²⁰⁰⁰ Mathematics Subject Classification: Primary 06F35.

 $^{{\}tt Keywords:}\ BF/BF_1/BF_2\text{-algebra},\ BH\text{-algebra},\ BG\text{-algebra},\ {\tt ideal},\ {\tt normal}$ ideal, subalgebra, quotientBF-algebra.

ideal and a normal ideal in BF-algebras. We then consider the properties and characterizations of them.

2. BF-algebras

DEFINITION 2.1. A BF-algebra is an algebra (A; *, 0) of type (2, 0) satisfying (B1), (B2), and the following axiom:

(BF)
$$0*(x*y) = y*x$$
.

Remark 2.2. If (A; *, 0) is a *B*-algebra, then it satisfies (BF), (BG), and (BH). For a proof see [9, Proposition 1.5(b)] and [1, Proposition 2.2(ii), Lemma 3.5(i)].

Example 2.3. Let \mathbb{R} be the set of real numbers and let $\mathbf{A} = (\mathbb{R}; *, 0)$ be the algebra with the operation * defined by

$$x * y = \begin{cases} x & \text{if } y = 0, \\ y & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then **A** is a BF-algebra.

Example 2.4. Let $A=[0;+\infty)$ (= $\{x\in\mathbb{R}:x\geq 0\}$). Define the binary operation * on A as follows:

$$x * y = |x - y|$$
 for all $x, y \in A$.

Then (A; *, 0) is a BF-algebra.

PROPOSITION 2.5. If A = (A; *, 0) is a BF-algebra, then

- (a) $0*(0*x) = x \text{ for all } x \in A;$
- (b) if 0 * x = 0 * y, then x = y for any $x, y \in A$;
- (c) if x * y = 0, then y * x = 0 for any $x, y \in A$.

Proof. Let **A** be a *BF*-algebra and $x \in A$. By (BF) and (B2) we obtain 0 * (0 * x) = x * 0 = x, that is, (a) holds. Also (b) follows from (a). Let now $x, y \in A$ and x * y = 0. Then 0 = 0 * 0 = 0 * (x * y) = y * x. This gives (c). \square

PROPOSITION 2.6. Any BF-algebra (A; *, 0) that satisfies the identity (x * z) * (y * z) = x * y is a B-algebra.

Proof. This follows immediately from Proposition 2.5(a) and [10, Theorem 2.2]. \Box

DEFINITION 2.7. A BF-algebra is called a BF_1 -algebra (resp. a BF_2 -algebra) if it obeys (BG) (resp. (BH)).

Every *B*-algebra is a BF_1/BF_2 -algebra (see Remark 2.2). The *BF*-algebra (\mathbb{R} ; *, 0) given in Example 2.3 is not a BF_1 -algebra, since $(1*2)*(0*2)=2\neq 1$. Example 2.4 is a BF_2 -algebra which is not a BF_1 -algebra.

PROPOSITION 2.8. An algebra $\mathbf{A} = (A; *, 0)$ of type (2, 0) is a BF_1 -algebra if and only if it obeys the laws (B1), (BF), and (BG).

Proof. Suppose that (B1), (BF), and (BG) are valid in **A**. Let $x \in A$. Substituting y = x, (BG) becomes x = (x*x)*(0*x). Hence applying (B1) and (BF) we conclude that x = 0*(0*x) = x*0. Consequently, (B2) holds. Therefore **A** is a BF_1 -algebra. The converse is obvious.

PROPOSITION 2.9. Let $\mathbf{A} = (A; *, 0)$ be an algebra of type (2, 0). Then \mathbf{A} is a BF_2 -algebra if and only if \mathbf{A} satisfies (B2), (BF), and the following axiom: (BH') $x * y = 0 \iff x = y$.

Proof. Let **A** be a BF_2 -algebra. By definition, (B2) and (BF) are valid in **A**. Suppose that x * y = 0 for $x, y \in A$. Proposition 2.5(c) yields y * x = 0. From (BH) we see that x = y. If x = y, then x * y = 0 by (B1). Thus (BH') holds in **A**.

Let now **A** satisfies (B2), (BF), and (BH'). (BH') implies (B1) and (BH). Therefore **A** is a BF_2 -algebra.

Theorem 2.10. In a BF-algebra **A** the following statements are equivalent:

- (a) **A** is a BF_1 -algebra;
- (b) $x = [x * (0 * y)] * y \text{ for all } x, y \in A;$
- (c) x = y * [(0 * x) * (0 * y)] for all $x, y \in A$.

Proof.

- (a) \Longrightarrow (b): Let **A** be a BF_1 -algebra and $x, y \in A$. To obtain (b), substitute 0 * y for y in (BG) and then use Proposition 2.5(a).
- (b) \implies (c): We conclude from (b) that 0 * x = [(0 * x) * (0 * y)] * y. Hence 0 * (0 * x) = y * [(0 * x) * (0 * y)] by (BF). But 0 * (0 * x) = x, and we have (c).
 - (c) \implies (a): Let (c) hold. (BF) clearly forces

$$0 * x = [(0 * x) * (0 * y)] * y.$$
(1)

Using (1) with x = 0 * a and y = 0 * b we have

$$0 * (0 * a) = [(0 * (0 * a)) * (0 * (0 * b))] * (0 * b).$$

Hence applying Proposition 2.5(a) we deduce that a = (a * b) * (0 * b). Consequently, **A** is a BF_1 -algebra.

THEOREM 2.11. Let $\mathbf{A} = (A; *, 0)$ be a BF_1 -algebra. Then:

- (a) \mathbf{A} is a BG-algebra;
- (b) For $x, y \in A$, x * y = 0 implies x = y;
- (c) The right cancellation law holds in **A**, i.e., if x * y = z * y, then x = z for any $x, y, z \in A$;
- (d) The left cancellation law holds in **A**, i.e., if y * x = y * z, then x = z for any $x, y, z \in A$.

Proof.

- (a) is a direct consequence of the definitions.
- (b): Let $x, y \in A$ and x * y = 0. By (BG), x = (x * y) * (0 * y) = 0 * (0 * y). From Proposition 2.5(a) we conclude that x = y.
- (c) is obvious, since the right cancellation law holds in every BG-algebra (see [5, Lemma 2.4]).
 - (d) follows from (c) and (BF). \Box

PROPOSITION 2.12. Every BF_1 -algebra is a BF_2 -algebra. Every BF_2 -algebra satisfying the axiom (BG) is a BF_1 -algebra.

Proof. The first statement is a consequence of Theorem 2.11(b). The second part of Proposition 2.12 follows from the definitions. \Box

THEOREM 2.13. Let $\mathbf{A} = (A; *, 0)$ be a BF_1 -algebra. Then (A; *) is a quasi-group.

Proof. Let $\mathbf{A} = (A; *, 0)$ be a BF_1 -algebra and $x, y \in A$. We take $z_1 = x*(0*y)$ and $z_2 = (0*x)*(0*y)$. By Theorem 2.10, we have $x = z_1*y$ and $x = y*z_2$. Now, Theorem 2.11 implies that (A; *) is a quasigroup.

The interrelationships between some classes of algebras mentioned before are visualized in Figure 1. (An arrow indicates proper inclusion, that is, if \mathcal{X} and \mathcal{Y} are classes of algebras, then $\mathcal{X} \to \mathcal{Y}$ means $\mathcal{X} \subset \mathcal{Y}$.) The implications (a) and (d) follow easily from the definitions. By [5, Proposition 2.8], we get (e). The implications (b) and (c) follow from Theorem 2.11 and Proposition 2.12, respectively.

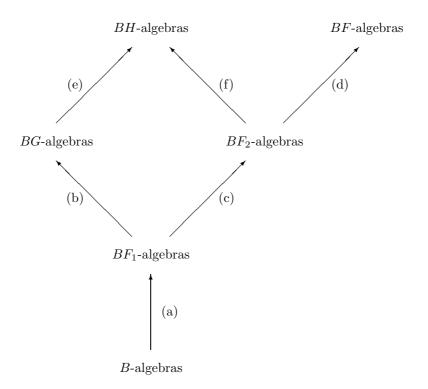


Figure 1

3. Ideals in BF-algebras

In BF-algebras (similarly as in BCK/BCI/BH-algebras; see [3], [2], and [4]), we define the notion of an ideal.

From now on, **A** always denotes a BF-algebra (A; *, 0).

DEFINITION 3.1. A subset I of A is called an *ideal* of A if it satisfies:

- $(I_1) \ 0 \in I,$
- (I₂) $x * y \in I$ and $y \in I$ imply $x \in I$ for any $x, y \in A$.

We say that an ideal I of \mathbf{A} is normal if for any $x, y, z \in A$, $x * y \in I$ implies $(z * x) * (z * y) \in I$.

An ideal I of **A** is said to be *proper* if $I \neq A$.

Obviously, $\{0\}$ and A are ideals of \mathbf{A} . A is normal, but $\{0\}$ is not normal in general. (See the example below.)

Example 3.2. Let $A = \{0, 1, 2, 3\}$ and * be defined by the following table:

Then $I = \{0\}$ is not a normal ideal in the *BF*-algebra (A; *, 0). Indeed, $1*3 = 0 \in I$, but $(2*1)*(2*3) = 3*2 = 2 \notin I$.

Lemma 3.3. Let I be a normal ideal of a BF-algebra **A** and $x, y \in A$. Then:

- (a) $x \in I \implies 0 * x \in I$,
- (b) $x * y \in I \implies y * x \in I$.

Proof.

- (a): Let $x \in I$. Then $x = x * 0 \in I$. Since I is normal, $(0 * x) * (0 * 0) \in I$. Hence $0 * x \in I$.
 - (b): Let $x * y \in I$. By (a), $0 * (x * y) \in I$. Applying (BF) we have $y * x \in I$. \square

DEFINITION 3.4. A nonempty subset N of A is called a *subalgebra* of \mathbf{A} if $x * y \in N$ for any $x, y \in N$.

It is easy to see that if N is a subalgebra of **A**, then $0 \in N$.

Lemma 3.5. Let N be a subalgebra of **A** and let $x, y \in A$. If $x * y \in N$, then $y * x \in N$.

Proof. Let $x*y \in N$. By (BF), y*x = 0*(x*y). Since $0 \in N$ and $x*y \in N$, we see that $0*(x*y) \in N$. Consequently, $y*x \in N$.

Example 3.6. Let $A = \{0, 1, 2, 3\}$. We define the binary operation * on A as follows:

Then $\mathbf{A} = (A; *, 0)$ is a BF-algebra. The set $N = \{0, 1\}$ is a subalgebra of \mathbf{A} . N is not an ideal, since $2 * 1 = 1 \in N$, but $2 \notin N$. It is easy to see that the set $I = \{0, 2, 3\}$ is an ideal of \mathbf{A} , but it is not a subalgebra.

PROPOSITION 3.7. If I is a normal ideal of A, then I is a subalgebra of A satisfying the following condition:

(NI) if $x \in A$ and $y \in I$, then $x * (x * y) \in I$.

Proof. Let $x \in A$ and $y \in I$. Lemma 3.3(a) shows that $0 * y \in I$. Since I is normal, we conclude that $(x*0)*(x*y) \in I$, i.e., $x*(x*y) \in I$. Thus (NI) holds. Let now $x, y \in I$. Therefore $x*(x*y) \in I$. By Lemma 3.3(b), $(x*y)*x \in I$. From the definition of ideal we have $x*y \in I$. Thus I is a subalgebra satisfying (NI).

Remark 3.8. The converse of Proposition 3.7 does not hold. Indeed, the subalgebra $\{0,1\}$ of the BF-algebra \mathbf{A} (see Example 3.6) satisfies (NI), but it is not an ideal.

In [7], J. Neggers and H. S. Kim introduced the notion of a normal subalgebra of a B-algebra. Let $\mathbf{A} = (A; *, 0)$ be a B-algebra and N be a subalgebra of \mathbf{A} . N is said to be a normal subalgebra if

(NS) $(x*a)*(y*b) \in N$ for any x*y, $a*b \in N$.

Remark 3.9. In [9], it is proved that if N is a subalgebra of \mathbf{A} , then N is normal if and only if N satisfies (NI).

In B-algebras the following result holds:

PROPOSITION 3.10. Let **A** be a B-algebra and let $N \subseteq A$. Then N is a normal subalgebra of **A** if and only if N is a normal ideal.

Proof. Let N be a normal subalgebra of \mathbf{A} . Clearly, $0 \in N$. Suppose that $x * y \in N$ and $y \in N$. Then $0 * y \in N$. Since N is a subalgebra, we have $(x * y) * (0 * y) \in N$. But (x * y) * (0 * y) = x, because every B-algebra satisfies (BG) (see Remark 2.2). Therefore $x \in N$, and thus N is an ideal. Let now $x, y, z \in A$ and $x * y \in N$. By (NS), $(z * x) * (z * y) \in N$. Consequently, N is normal. The converse follows from Proposition 3.7 and Remark 3.9.

DEFINITION 3.11. Let $\mathbf{A} = (A, *, 0_A)$ and $\mathbf{B} = (B, *, 0_B)$ be BF-algebras. A mapping $\varphi \colon A \to B$ is called a homomorphism from \mathbf{A} into \mathbf{B} if $\varphi(x * y) = \varphi(x) * \varphi(y)$ for any $x, y \in A$.

Observe that $\varphi(0_A) = 0_B$. Indeed, $\varphi(0_A) = \varphi(0_A * 0_A) = \varphi(0_A) * \varphi(0_A) = 0_B$. We denote by ker φ the subset $\{x \in A : \varphi(x) = 0_B\}$ of A (it is the kernel of the homomorphism φ).

LEMMA 3.12. Let $\varphi: A \to B$ be a homomorphism from **A** into **B**. Then $\ker \varphi$ is an ideal of **A**.

Proof. Obviously, $0_A \in \ker \varphi$, that is, (I_1) holds. Let $x * y \in \ker \varphi$ and $y \in \ker \varphi$. Then $0_B = \varphi(x * y) = \varphi(x) * \varphi(y) = \varphi(x) * 0_B = \varphi(x)$. Consequently, $x \in \ker \varphi$. Therefore, (I_2) is satisfied. Thus I is an ideal of \mathbf{A} .

The next example shows that the kernel of a homomorphism is not always a normal ideal. Let **A** be the algebra given in Example 3.2. Clearly, $id_A: A \to A$ is a homomorphism and the ideal $ker(id_A) = \{0\}$ is not normal.

The example below will demonstrate that there is a homomorphism φ of BF-algebras with $\ker \varphi = \{0\}$ which it is not one-to-one.

Example 3.13. Let $\mathbf{A} = (A; *, 0)$ be the BF-algebra, where $A = \{0, 1, 2\}$ and * is given by the table

$$\begin{array}{c|ccccc}
* & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 2 \\
1 & 1 & 0 & 0 \\
2 & 2 & 0 & 0
\end{array}$$

Let $\varphi \colon A \to A$ be defined by $\varphi(0) = 0$ and $\varphi(1) = \varphi(2) = 1$. It is obvious that φ is not one-to-one, but $\ker \varphi = \{0\}$.

PROPOSITION 3.14. Let **A** and **B** be BF_2 -algebras and let $\varphi: A \to B$ be a homomorphism from **A** into **B**. Then:

- (a) $\ker \varphi$ is a normal ideal;
- (b) φ is one-to-one if and only if $\ker \varphi = \{0_A\}$.

Proof.

- (a): By Lemma 3.12, $\ker \varphi$ is an ideal of **A**. Let $x, y, z \in A$ and $x * y \in \ker \varphi$. Then $0_B = \varphi(x * y) = \varphi(x) * \varphi(y)$. From (BH') it follows that $\varphi(x) = \varphi(y)$. Consequently, $\varphi((z * x) * (z * y)) = (\varphi(z) * \varphi(x)) * (\varphi(z) * \varphi(x)) = 0_B$, and hence $(z * x) * (z * y) \in \ker \varphi$.
- (b): Obviously, if φ is one-to-one, then $\ker \varphi = \{0_A\}$. On the other hand, suppose that $x, y \in A$ and $\varphi(x) = \varphi(y)$. Then $\varphi(x * y) = \varphi(x) * \varphi(y) = \varphi(x) * \varphi(x) = 0_B$. Hence $x * y \in \ker \varphi = \{0_A\}$, and so $x * y = 0_A$. By (BH'), x = y. Therefore, φ is one-to-one.

Next we construct quotient BF-algebras via normal ideals. Let $\mathbf{A} = (A; *, 0)$ be a BF-algebra and I be a normal ideal of \mathbf{A} . For any $x, y \in A$, we define

$$x \sim_I y \iff x * y \in I.$$

By (I_1) , $x * x = 0 \in I$, that is, $x \sim_I x$ for any $x \in A$. This means that \sim_I is reflexive. From Lemma 3.3(b) we deduce that \sim_I is symmetric. To prove that

 \sim_I is transitive, let $x \sim_I y$ and $y \sim_I z$. Then $x * y \in I$ and $y * z \in I$. Since I is normal,

$$(z*x)*(z*y) \in I. \tag{2}$$

We have

$$z * y \in I, \tag{3}$$

because $y*z \in I$. Hence, we conclude from (2) and (3) that $z*x \in I$, and thus that $x*z \in I$, so that finally $x \sim_I z$ as well. Consequently, \sim_I is an equivalence relation on A.

THEOREM 3.15. Let I be a normal ideal of a BF-algebra **A**. Then \sim_I is a congruence relation of **A**.

Proof. Let $x, y, z, t \in A$. Suppose that $x \sim_I y$ and $z \sim_I t$. Then $x * y \in I$ and $z * t \in I$. Since I is normal, (2) holds, and hence $[0 * (z * x)] * [0 * (z * y)] \in I$. From (BF) we deduce that $(x * z) * (y * z) \in I$. Thus

$$x * z \sim_I y * z. \tag{4}$$

As $z * t \in I$ we have $(y * z) * (y * t) \in I$. Therefore

$$y * z \sim_I y * t. \tag{5}$$

From (4) and (5) we conclude that $x*z \sim_I y*t$. Consequently, \sim_I is a congruence relation of **A**.

Let I be a normal ideal of **A**. For $x \in A$, we write x/I for the congruence class containing x, that is, $x/I = \{y \in A : x \sim_I y\}$. We note that

$$x \sim_I y$$
 if and only if $x/I = y/I$.

Denote $A/I = \{x/I : x \in A\}$ and set x/I *' y/I = x * y/I. The operation *' is well-defined, since \sim_I is a congruence relation of \mathbf{A} . It is easy to see that $\mathbf{A}/I = (A/I, *', 0/I)$ is a BF-algebra. The algebra \mathbf{A}/I is called the *quotient* BF-algebra of \mathbf{A} modulo I. There is a natural map φ_I , called the *quotient* map, from \mathbf{A} onto \mathbf{A}/I defined by

$$\varphi_I(x) = x/I$$
 for all $x \in A$.

Clearly, φ_I is a homomorphism of **A** onto \mathbf{A}/I . Observe that $\ker(\varphi_I) = I$. Indeed,

$$x/I = 0/I \iff x \sim_I 0 \iff x * 0 \in I \iff x \in I.$$

THEOREM 3.16. Let A and B be BF_2 -algebras and let $\varphi: A \to B$ be a homomorphism from A onto B. Then $A/\ker \varphi$ is isomorphic to B.

Proof. By Proposition 3.14(a), $I = \ker \varphi$ is a normal ideal of \mathbf{A} . Define a mapping $\psi \colon A/I \to B$ by $\psi(x/I) = \varphi(x)$ for all $x \in I$. Let x/I = y/I. Then $x \sim_I y$, that is, $x*y \in I$. Hence $\varphi(x)*\varphi(y) = 0_B$. By (BH') we have $\varphi(x) = \varphi(y)$. Consequently, $\psi(x/I) = \psi(y/I)$. This means that ψ is well defined. It is easy to see that ψ is a homomorphism from \mathbf{A}/I onto \mathbf{B} . Observe that $\ker \psi = \{0_A/I\}$. Indeed, $x/I \in \ker \psi \iff \psi(x/I) = 0_B \iff \varphi(x) = 0_B \iff x \in I \iff x/I = 0_A/I$. From Proposition 3.14(b) it follows that ψ is one-to-one. Thus ψ is an isomorphism from \mathbf{A}/I onto \mathbf{B} .

Acknowledgement. The author thanks the referee for his remarks which were incorporated into this revised version.

REFERENCES

- [1] CHO, J. R.—KIM, H. S.: On B-algebras and quasigroups, Quasigroups Related Systems 7 (2001), 1–6.
- [2] HUANG, Y.: Irreducible ideals in BCI-algebras, Demonstratio Math. 37 (2004), 1-8.
- [3] ISEKI, K.—TANAKA, S.: Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351–366.
- [4] JUN, Y. B.—ROH, E. H.—KIM, H. S.: On BH-algebras, Sci. Math. Jpn. 1 (1998), 347–354.
- [5] KIM, Ch. B.—KIM, H. S.: On BG-algebras, Mat. Vesnik (To appear).
- [6] NEGGERS, J.—KIM, H. S.: On B-algebras, Mat. Vesnik 54 (2002), 21–29.
- [7] NEGGERS, J.—KIM, H. S.: A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 207–214.
- [8] NEGGERS, J.—KIM, H. S.: On β-algebras, Math. Slovaca **52** (2002), 517–530.
- [9] WALENDZIAK, A.: A note on normal subalgebras in B-algebras, Sci. Math. Jpn. 62 (2005), 49-53.
- [10] WALENDZIAK, A.: Some axiomatizations of B-algebras, Math. Slovaca 56 (2006), 301–306.
- [11] ZHANG, X.—YE, R.: BZ-algebra and group, J. Math. Phys. Sci. 29 (1995), 223–233.

Received 18.4.2005 Revised 7.6.2005 Insitute of Mathematics and Physics University of Podlasie PL-08110 Siedlee POLAND E-mail: walent@interia.pl