
Improved vector quantization scheme for grayscale image compression

Y.−C. HU*1, W.−L. CHEN1, C.−C. LO2, and J.−C. CHUANG3

1Department of Computer Science and Information Management, Providence University, 200 Chung Chi Rd.,
Taichung 43301, Taiwan, R.O.C.

2Department of Computer Science and Information Engineering, Providence University, 200 Chung Chi Rd.,
Taichung 43301, Taiwan, R.O.C.

3Department of Computer Science & Communication Engineering, Providence University, 200 Chung−Chi Rd.,
Shalu, Taichung County 43301, Taiwan, R.O.C.

This paper proposes an improved image coding scheme based on vector quantization. It is well known that the image quality
of a VQ−compressed image is poor when a small−sized codebook is used. In order to solve this problem, the mean value of the
image block is taken as an alternative block encoding rule to improve the image quality in the proposed scheme. To cut down
the storage cost of compressed codes, a two−stage lossless coding approach including the linear prediction technique and the
Huffman coding technique is employed in the proposed scheme. The results show that the proposed scheme achieves better
image qualities than vector quantization while keeping low bit rates.

Keywords: image compression; vector quantization, LBG algorithm; linear prediction, Huffman coding.

1. Introduction

Vector quantization (VQ) was introduced by Linde, Buzo,
and Gray in 1980 [1–3]. It is a commonly used scheme for
a grayscale image compression. Besides, it can be applied to
the compression of speech. Basically, VQ consists of three
procedures: codebook design, image encoding, and image
decoding. The main goal of the codebook design procedure
is to generate a set of representative codewords. The set of
representative codewords is also called the codebook. The
codebook is then used in the image encoding/decoding pro−
cedures.

The LBG algorithm is the most popular algorithm for
designing the codebook of N codewords [1]. In the LBG
algorithm a set of training images is selected for a codebook
design. Each training image is divided into non−overlapped
image blocks of n � n pixels. Then, the initial codebook
consisting of N codewords is chosen. Several rounds of the
vector clustering process and the centroid updating process
are executed in order to design the codebook. In the vector
clustering process, each training vector is classified as
a group corresponding to its closest codeword in the current
codebook. In the centroid updating process, the mean vector
of training vectors in each group is calculated. These calcu−
lated mean vectors form the updated codebook.

Two possible termination conditions of the LBG algo−
rithm can be used. One condition is that the LBG algorithm
is terminated when the predefined number of rounds is

reached. The other is that the LBG algorithm is stopped
when the designed codebooks in two successive rounds tend
to be stable. The performance of the codebooks in two suc−
cessive rounds is stable when the relation distortion change
is less than or equal to the predefined threshold. The relation
distortion change for the ith round can be calculated by using
the following equation

RDC
D D

Di
i i

i
�

��1
. (1)

Here, Di and Di–1 denote the sum of the squared Euclid−
ean distance incurred in i

th and (i–1)th rounds of the LBG
algorithm, respectively.

In the image encoding procedure, the given grayscale
image is first divided into a set of non−overlapped image
blocks of n � n pixels. Each image block is sequentially pro−
cessed in the left−to−right and top−to−bottom order. The clo−
sest codeword in the codebook for each image block is sear−
ched and the corresponding index is stored. In the image
decoding procedure, the same codebook that was used in the
image encoding procedure is stored and used. In order to
rebuild each compressed block, the codeword in the code−
book corresponding to extracted index is employed to reco−
ver the compressed block.

In general, a great deal of a computational cost is con−
sumed in the LBG algorithm for a codebook design. Accor−
ding to the literature, some improved algorithms based on
the LBG algorithm have been proposed to cut down the
computational cost or to design a better codebook [4–7].
Besides, some fast codebook search algorithms for VQ have

Opto−Electron. Rev., 20, no. 2, 2012 Y.−C. Hu

OPTO−ELECTRONICS REVIEW 20(2), 187–193

DOI: 10.2478/s11772−012−0016−z

*e−mail: ychu@pu.edu.tw, wlchen@pu.edu.tw

been proposed to accelerate the image encoding procedure
of VQ without incurring any extra image distortion [8–11].

The index of each VQ−compressed block is stored in
log2 N bits with the codebook of N codewords. In other
words, the required bit rate of VQ is (log2 N)/nxn bpp. To
reduce the bit rate of VQ, some methods aiming to compress
losslessly the index table of a VQ−compressed image have
been proposed [12–15]. In addition, some methods sacrific−
ing the quality of a VQ−compressed image to reducing the
bit rate have also been proposed [16–21].

Based on the study of VQ, we observe that the image
quality of a VQ−compressed image is poor when the
codebook size is small. To solve this problem, an improved
image coding scheme based on VQ is proposed in this
paper. The rest of the paper is organized as follows. In
Sect. 2, the proposed scheme based on VQ is introduced. In
Sect. 3, the experimental results and discussions are pre−
sented. Finally, some conclusions are given in Sect. 4.

2. Proposed scheme

The aim/purpose of the proposed scheme is to improve the
image quality of the VQ scheme with a small−sized code−
book while keeping a low bit rate. To achieve this aim, the
encoding of an image block by its mean value of pixels
cooperates with the VQ scheme.

2.1. Image encoding procedure

Suppose the codebook CB = cw0, cw1, …, cwN–1of N
codewords was previously designed. The codebook CB is
sorted by the sum values of the codewords, so that neigh−
bouring codewords had high degree of similarity. The
flowchart of the proposed image encoding procedure is de−
picted in Fig. 1. The given grayscale image of W � H pixels
is divided into a set of non−overlapped image blocks of n � n
pixels. There are w � h image blocks to be processed where
w = W/n and h = H/n. Each image block can be viewed as
a k−dimensional vector where k = n � n.

In order to encode each image block x, two possible
encoding rules including the VQ scheme and the use of the
block mean value are tested. We need to determine the best
way to encode each image block. Firstly, the closest code−
word for x in the codebook is searched and its index idx is
stored. Besides, the squared Euclidean distance between x
and its closest codeword cwidx is stored in distvq.

Then, we need to find out the squared Euclidean dis−
tance when x is encoded by its block mean value. The mean
value x of the pixels in x is computed. Then, the squared
Euclidean distance distmean when x is encoded by its block
mean value is calculated by the following equation

dist
k

x xmean i
i

k
� �

�
�1

1

(). (2)

If distvq is less than or equal to distmean, x is encoded by
VQ and the index idx of the closest codeword in the

codebook is stored. Otherwise, x is encoded by its mean
value and the mean value mean is stored. To record the
block type of each image block, 1−bit indicator type is stored
according to the following rule

type
x VQ

x
�

0

1

if is encoded by

if is encoded by its block mean value

�
�
�

. (3)

When each image block is sequentially processed by the
above mentioned process, the block types and the com−
pressed codes consisting of the indices and the block mean
values are generated.

0 0 0 1 1 i12 i13 i12 118 120

0 0 1 1 0 i10 i11 116 117 i18

1 1 1 0 1 112 114 115 i19 124

1 1 0 0 1 113 114 i20 i21 125

0 1 0 1 1 i20 113 i20 124 125

(a) Block types (b) Compressed codes

Fig. 2. Image encoding example of proposed scheme.

Improved vector quantization scheme for grayscale image compression

188 Opto−Electron. Rev., 20, no. 2, 2012 © 2012 SEP, Warsaw

Fig. 1. Flowchart of proposed image encoding procedure.

Figure 2 shows an example of the encoded results of the
proposed scheme. To distinguish the index from the block
mean value, the index with the value j is represented by ij.
For example, i12 denotes the index of the 12th codeword in
the codebook.

In order to cut down the storage cost of the compressed
codes further, a two−stage lossless coding approach includ−
ing the linear prediction technique and the Huffman coding
technique are employed. Here, the block mean values and
the indices are processed separately, because they have dif−
ferent possible values.

We recall that the compressed code of each image block
x may be either the index or the block mean value x. Before
a lossless coding of the indices is executed, we need to
transform all the mean values in the compressed codes into
the indices, so that the linear prediction technique could be
started. Each block mean value in the compressed codes is
replaced by the corresponding index of the codeword that
has the closest sum values of pixels within it. An example of
such transformation using the compressed codes as it is
shown in Fig. 2(b) is listed in Fig. 3(a). The shaded indices
indicate that they are translated from the block mean values.

Similarly, in order to encode the mean values in the
compressed codes losslessly, we need to transform the indi−
ces found in the compressed codes into the mean values.
The transformation can be easily done by replacing each
index value by the block mean value of its corresponding
codeword in the codebook. An example of the index for the
mean value transformation using the compressed codes as it
is shown in Fig. 2(b) is listed in Fig. 3(b). The shaded mean
values indicate that they are translated from the indices.

i12 i13 i12 I19 i20 112 113 112 118 120

i10 i11 i17 I18 i18 108 109 116 117 117

i12 i15 i16 I19 i20 112 114 115 119 124

i14 i15 i20 I21 i21 113 114 124 125 125

i20 i14 i20 I20 i21 124 113 124 124 125

(a) Mean value to index
transformation

(b) Index to mean value
transformation

Fig. 3. Example of compressed codes transformation.

After the two−way transformation of the indices and
mean values has been done, the indices and the block mean
values are processed by the linear prediction technique.
Here, D denotes the data to be processed. Besides, L and U
denote the adjacent left and up neighbours of D, respec−
tively. Three prediction functions used in the proposed
scheme are listed in the following

f1(D) = L, (4)

f2(D) = U, (5)

f D L D3 2() ()� 	 . (6)

An example of the linear prediction technique for the
block mean values is described as follows. There are 11

indices and 14 block mean values found in the example
depicted in Fig. 2. For processing the block mean values by
the linear prediction technique, the index of the mean value
transformation is executed to generate Figure 3(b). Suppose
the linear prediction function mentioned in Eq. (4) is used.
The results of the linear prediction are listed in Fig. 4. There
are 14 prediction errors in this example. These prediction
errors can then be encoded by the Huffman coding tech−
nique to generate the compressed results.

6 2

7 1

4 2 1 5

1 1 0

–11 0 1

Fig. 4. Prediction errors of the mean values.

The compressed codes for the indices are generated after
encoding losslessly the indices by the linear prediction tech−
nique and the Huffman coding technique. Similarly, the
mean values are encoded by the two−stage lossless compres−
sion. The compressed result of the image consists of the
block types of w � h bits, the encoded indices, and the
encoded mean values.

2.2. Image decoding procedure

In order to rebuild the compressed image of W � H pixels,
the same codebook of N codewords that is used in the image
encoding procedure is stored. Besides, the prediction func−
tion and the Huffman coding tables for the indices and mean
values are needed to recover the image. The received com−
pressed codes consist of the block types of w � h bits, the en−
coded indices, and the encoded mean values. We need to re−
cover the indices and the mean values, so that w � h image
blocks could be reconstructed. The flowchart of the pro−
posed image decoding procedure is depicted in Fig. 5.

In order to recover the indices, the encoded indices are
first processed by the Huffman decoding procedure to ge−
nerate prediction errors. Then, these indices’ prediction
errors are processed by the reverse linear prediction proce−
dure to generate the indices. Similarly, the encoded mean
values are processed by the Huffman decoding procedure
and followed by the reverse linear prediction procedure.

After the indices and the mean values of all the image
blocks are recovered, each image block can be rebuilt by
performing the following process. First, the block type indi−
cator type is extracted. If the type is equal to (0)2, the index
of log2N bits is extracted and the corresponding codeword
in the codebook is used to rebuild the image block. If the
type is equal to (1)2, the 8−bit block mean value is extracted
and each pixel in the image block is replaced by the mean
value. The compressed image of the proposed scheme can
be reconstructed by recovering sequentially each image
block by the above−mentioned steps.

Opto−Electron. Rev., 20, no. 2, 2012 Y.−C. Hu 189

3. Experimental results

All the simulations were performed on the IBM compatible
PC with a Pentium IV 3G Hz CPU and 1G RAM. Four
grayscale images “Airplane”, “Boat”, “Goldhill” and
“Toys” of 512 � 512 pixels were used as the training images
for designing the VQ codebooks by using the accelerated
LBG algorithm [10]. In the simulations, the termination
threshold of the LBG algorithm was set to 0.001.

Six test images “Airplane”, “Girl”, “Goldhill”, “Lenna”,
“Peppers” and “Toys” of 512 � 512 pixels as shown in Fig.
6 are selected to evaluate the performance of the vector
quantization scheme and the proposed scheme. Three of
them are inside the training set of the codebook design. In
the codebook design procedure, each training image is divi−
ded into non−overlapped 4 � 4 image blocks. There are
16384 image blocks in each training image.

In the simulations, two image quality measurements are
used. The first measurement is the peak signal−to−noise−
−ratio (PSNR), which is defined as

PSNR
MSE

� �10
255

10

2
log . (7)

Here, MSE denotes the mean square error (MSE)
between the original and the reconstructed images of W × H.
Basically, PSNR is considered as an indication of an image

quality rather than a definitive measurement. However, it is
a commonly used measurement for evaluating the image
quality.

The second one is the structural similarity index mea−
surement (SSIM) [22]. SSIM was proposed by Wang et al.
in 2004 for the measuring of the perceptual similarity
between two images. It is designed to improve the tradi−
tional methods like PSNR and MSE, which have been pro−
ved to be inconsistent with the human eye perception. The
structural similarity index measurement of two signals x and
y is defined as

SSIM x y
c c

c

x y xy

x y x y

(,)
()()

()(
�

	 	

	 	 	 	

2 21 2

2 2
1

2 2

� � �

� � � � c2)
. (8)

Here, �x and �y denote the mean intensities of x and y,
respectively. Besides, � x and � y denote the standard devia−
tion of x and y, respectively. � xy denotes the covariance
coefficient which corresponds to the cosine of the angle
between the vectors x x� � and y y� � . In addition, c1 and c2

are two predefined constant values. In the simulations, the 8
� 8 square window is used and it moves pixel−by−pixel over
the entire image to calculate SSIM.

Improved vector quantization scheme for grayscale image compression

190 Opto−Electron. Rev., 20, no. 2, 2012 © 2012 SEP, Warsaw

Fig. 5. Flowchart of proposed image decoding procedure.

Fig. 6. Grayscale testing images.

The reconstructed image qualities of VQ using different
codebook sizes are shown in Table 1. It is shown, that the
image quality increases as the codebook size increases. The
average image qualities of 26.502 dB, 29.205 dB, and
31.167 dB are obtained by VQ with the codebooks of size
16, 64 and 256, respectively. When the size of the codebook
is less than or equal to 64, the average image quality of VQ
is smaller than 30 dB.

In addition to the PSNR measurement, the SSIM value
of each original image and its compressed image of VQ are
also listed. According to the suggestions in Ref. 22, c1 and
c2 used in Eq. (8) are set to (0.01 � 255)2 and (0.03 � 255)2,
respectively. It is shown, that the SSIM value increases as
the codebook size increases. The average SSIM values of
0.728, 0.819, and 0.871 are obtained by VQ with the code−
books of sizes 16, 64 and 256, respectively.

The PSNR values and the SSIM values of the proposed
scheme using different codebook sizes are listed in Table 2.
Similarly, the image quality increases as the codebook size

increases in the proposed scheme. The average image quali−
ties of 27.534 dB, 29.556 dB, and 31.321 dB are obtained
by the proposed scheme with the codebooks of size 16, 64,
and 256, respectively. The gains of the image quality com−
pared to the results of VQ are 1.032 dB, 0.351 dB, and 0.154
dB when the codebook sizes equal 16, 64, and 256, respec−
tively. The image quality gain of the proposed scheme
decreases as the codebook size increases. In addition to that,
the average SSIM values of 0.812, 0.846, and 0.882 were
obtained by the proposed scheme with the codebook sizes
16, 64, and 256, respectively.

Table 3 lists the results of the percentage of the image
blocks that are encoded by the block mean values in the pro−
posed scheme. It is shown that 85.180%, 67.855%, and
45.349% image blocks are encoded by the block mean val−
ues in the proposed scheme with the codebooks of size 16,
64, and 256, respectively. The total number of the image
blocks that are encoded by the mean values decreases as the
codebook size increases in the proposed scheme.

Opto−Electron. Rev., 20, no. 2, 2012 Y.−C. Hu 191

Table 1. Results of image qualities of VQ.

N
Images

16 32 64 128 256

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Airplane 25.983 0.765 27.800 0.812 29.315 0.863 30.648 0.891 31.450 0.906

Girl 27.414 0.707 28.412 0.755 29.413 0.793 30.429 0.835 31.245 0.863

Goldhill 26.277 0.671 27.692 0.717 28.892 0.772 29.780 0.802 30.587 0.832

Lenna 26.785 0.725 27.943 0.775 29.121 0.816 30.195 0.847 30.972 0.867

Pepper 26.783 0.730 28.245 0.784 29.476 0.826 30.289 0.843 31.145 0.867

Toys 25.772 0.770 27.449 0.795 29.014 0.845 30.428 0.869 31.604 0.890

Average 26.502 0.728 27.924 0.773 29.205 0.819 30.295 0.848 31.167 0.871

Table 2. Experimental results of image qualities of proposed scheme.

N
Images

16 32 64 128 256

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Airplane 26.759 0.837 28.290 0.861 29.502 0.880 30.755 0.899 31.515 0.911

Girl 28.607 0.785 29.096 0.797 29.728 0.814 30.612 0.846 31.357 0.870

Goldhill 27.725 0.774 28.459 0.766 29.339 0.798 30.099 0.819 30.787 0.841

Lenna 27.979 0.831 28.753 0.843 29.608 0.859 30.493 0.872 31.186 0.885

Pepper 27.956 0.838 28.998 0.851 29.943 0.863 30.718 0.874 31.372 0.884

Toys 26.177 0.805 27.825 0.828 29.218 0.863 30.610 0.882 31.709 0.898

Average 27.534 0.812 28.570 0.824 29.556 0.846 30.548 0.865 31.321 0.882

Table 3. Percentage of image blocks encoded by block mean values in proposed scheme.

N
Images

16 32 64 128 256

Airplane 86.761% 79.132% 66.742% 49.573% 36.938%

Girl 85.748% 78.534% 68.994% 50.586% 38.013%

Goldhill 84.808% 77.655% 66.467% 56.219% 44.373%

Lenna 87.036% 82.599% 74.213% 65.747% 55.914%

Pepper 87.836% 81.439% 73.969% 66.711% 54.340%

Toys 78.888% 66.986% 56.744% 60.138% 42.517%

Average 85.180% 77.724% 67.855% 58.162% 45.349%

Experimental results of the bit rates of VQ and the pro−
posed scheme with different lossless procession strategies
are listed in Table 4. Here, PM−0 and PM−HC denote the
proposed scheme without any post processing and with
Huffman coding, respectively. In addition, PM−TS1, PM−
−TS2, and PM−TS3 denote the proposed scheme with the
two−stage lossless coding using the linear prediction func−
tions f1(), f2(), and f3() defined in Eqs. (4) to (6), respec−
tively.

Table 4. Required bit rates of VQ scheme and proposed scheme
with different lossless processing strategies.

N
Images

16 32 64 128 256

VQ 0.250 0.3125 0.375 0.4375 0.500
PM−0 0.525 0.522 0.522 0.536 0.563
PM−HC 0.472 0.465 0.465 0.459 0.493
PM−TS1 0.365 0.361 0.363 0.379 0.403
PM−TS2 0.363 0.358 0.359 0.376 0.401
PM−TS3 0.355 0.351 0.354 0.372 0.398

According to the results, PM−0 required the highest bit
rates. The proposed scheme with Huffman coding, PM−HC,
slightly reduces the bit rates compared to PM−0. But, it pro−
vides worse performance than the proposed scheme with the
two−stage lossless compression. The proposed scheme with
two−stage lossless compression consumes less bit rates than
VQ when the codebook sizes are greater than or equal to 64.
According to the results, PM−TS3 achieves the best perfor−
mance. The average bit rates of 0.355 bpp, 0.354 bpp, and
0.398 bpp are needed in PM−TS3 with the codebooks of size
16, 64, and 256, respectively.

According to Tables 1 and 2, it is obvious that the pro−
posed scheme improves the image quality of the compres−
sed image when a small−sized codebook is used. The ave−
rage image qualities of 26.502 dB and 27.534 dB are
obtained by VQ and by the proposed scheme when the
codebook of size 16 is used, respectively.

Compressed images of VQ and those of the proposed
scheme with the codebook of 16 codewords are shown in
Figs. 7 and 8, respectively, for better understanding of the
visual difference between the compressed images of VQ
and the proposed scheme. According to the results in Fig. 7,
the false contour effect can be easily found in the VQ−com−
pressed images. For example, the clouds in the sky in Fig.
7(a) are visually different from the original image as it is
shown in Fig. 6(a). In fact, the false contour effect can be
found in the backgrounds of the VQ−compressed images. It
also appears in the objects of the VQ−compressed images
with continuous intensities. In other words, the visual quali−
ties of the VQ−compressed images are quite poor.

However, the false contour effect cannot be found in the
compressed images of the proposed scheme even when
a codebook of 16 codewords is used. Compared to the
results shown in Fig. 7, the visual qualities of the com−
pressed images of the proposed scheme are much better than
those of VQ−compressed images. In other words, the pro−

posed scheme not only improves the image qualities, but
also provides better visual qualities of the compressed ima−
ges compared to the VQ scheme.

4. Conclusions

The improved image compression scheme based on the VQ
scheme is proposed in this paper. In this scheme, the block
encoding using the block mean value cooperates with the
VQ scheme. Besides, a two−stage lossless compression
approach is designed to cut down the consumed bit rates.
According to the results, more than 1−dB image quality gain
is achieved in the proposed scheme when the codebook of
size 16 is used. Compared to the VQ scheme, the required
bit rates are less than those of the VQ scheme when the
codebook sizes are greater than or equal to 64. In addition to
that, the visual qualities of the compressed images by the
proposed scheme are much better than those of the VQ
scheme. Furthermore, the false contour effect cannot be
found in the compressed images of the proposed scheme.

Improved vector quantization scheme for grayscale image compression

192 Opto−Electron. Rev., 20, no. 2, 2012 © 2012 SEP, Warsaw

Fig. 7. Reconstructed images of VQ with codebook of 16 code−
words.

References

1. A.Y. Linde, A. Buzo, and R.M. Gray, “An algorithm for vec−
tor quantizer design”, IEEE T. Commun. 28, 84–95 (1980).

2. N.M. Nasrabadi and R.A. King, “Image coding using vector
quantization: a review”, IEEE. T. Commun. 36, 957–971
(1988).

3. A. Gersho and R.M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Publishers, Boston, 1992.

4. C.C. Chang and Y.C. Hu, “A fast codebook training algo−
rithm for vector quantization”, IEEE T. Consum. Electr. 44,
1201–1208 (1998).

5. P.Y. Tsai, Y.C. Hu, and H.L. Yeh, “Fast VQ codebook gen−
eration method using codeword stability check and finite
state concept”, Fundam. Inform. 87, 447–463 (2008).

6. J.Z.C. Lai, Y.C. Liaw, and J. Liu, “A fast VQ codebook gen−
eration algorithm using codeword displacement”, Pattern
Recogn. Lett. 41, 315–319 (2008).

7. C.W. Tsai, C.Y. Lee, M.C. Chiang, and C.S. Yang, “A fast
codebook generation algorithm via pattern reduction”, Pat−
tern Recogn. Lett. 30, 653–660 (2009).

8. Y.C. Hu and C.C. Chang, “An effective codebook search al−
gorithm for vector quantization”, Imaging Sci. J. 51,
221–234 (2003).

9. Z. Pan, K. Kotani, and T. Ohmi, “Improved the−law−of−co−
sines−based fast search method for vector quantization by up−
dating angular information”, Pattern Recogn. Lett. 27,
688–695 (2006).

10. Y.C. Hu, B.H. Su, and C.C. Tsou, “Fast VQ codebook search
algorithm for grayscale image coding”, Image Vision
Comput. 26, 657–666 (2008).

11. J.Z.C. Lai and Y.C. Liaw, “A novel encoding algorithm for
vector quantization using transformed codebook”, Pattern
Recogn. Lett. 42, 3065–3070 (2009).

12. C.H. Hsieh and J.C. Tsai, “Lossless compression of VQ in−
dex with search−order coding”, IEEE T.. Image Process. 5,
1579–1582 (1996).

13. Y.C. Hu and C.C. Chang, “Low complexity index−compres−
sed vector quantization for image compression”, IEEE T..
Consum. Electr. 45, 1225–1233 (1999).

14. T.C. Lu and C.C. Chang, “Data compressor for VQ index ta−
bles”, Fundam. Inform. 65, 353–371 (2005).

15. C.C. Chang, G.M. Chen, and Y.C. Hu, “A novel index cod−
ing scheme for vector quantization”, Fundam. Inform. 71,
215–227 (2006).

16. Y.C. Hu and C.C. Chang, “Variable rate vector quantization
scheme based on quadtree segmentation”, IEEE T. Consum.
Electr. 45, 310–317 (1999).

17. Y.C. Hu and C.C. Chang, “Image coding schemes based on
subsampling vector quantization”, Opt. Eng. 40, 108–114
(2001).

18. Y.C. Hu, C.C. Lin, and K.L, Chi, “Block prediction vector
quantization for grayscale image compression”, Fundam. In−
form. 78, 257–270 (2007).

19. Y.C. Hu, P.Y. Tsai, and C.C. Lo, “New bit reduction of vec−
tor quantization using block prediction and relatively ad−
dressing”, Fundam. Inform. 87, 313–329 (2008).

20. K. Sasazaki, S. Saga, J. Maeda, and Y. Suzuki, “Vector
quantization of images with variable block size”, Appl. Soft
Comput. 8, 634–645 (2008).

21. Y.C. Hu, J.C. Chuang, and C.C. Lo, “Efficient grayscale im−
age compression technique based on VQ”, Opto−Electron.
Rev. 19, 104–113 (2011).

22. Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli,
“Image quality assessment: from error visibility to structural
similarity”, IEEE T. Image Process. 13, 600–612 (2004).

Opto−Electron. Rev., 20, no. 2, 2012 Y.−C. Hu 193

Fig. 8. Reconstructed images of proposed scheme with codebook of
16 codewords.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 /POL ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

