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In order to improve the recognition accuracy of the unimodal biometric system and to address the problem of the small sam−
ples recognition, a multimodal biometric recognition approach based on feature fusion level and curve tensor is proposed in
this paper. The curve tensor approach is an extension of the tensor analysis method based on curvelet coefficients space. We
use two kinds of biometrics: palmprint recognition and face recognition. All image features are extracted by using the curve
tensor algorithm and then the normalized features are combined at the feature fusion level by using several fusion strategies.
The k−nearest neighbour (KNN) classifier is used to determine the final biometric classification. The experimental results
demonstrate that the proposed approach outperforms the unimodal solution and the proposed nearly Gaussian fusion (NGF)
strategy has a better performance than other fusion rules.
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1. Introduction

Biometric techniques are the future of personal identifica−
tion and have received a lot of attention and interest in
recent years [1–4]. Jenkins et al. proposed a method that
obtained 100% accuracy in automatic face recognition [2].
Unfortunately, 20 training samples of every class were used
in their experiments. However, the small samples biometric
recognition causes a research difficulty in real−world appli−
cations [1,5–11]. Usually, 2–3 training samples of each
class are used in the experiments. Little work has been done
to address the small samples problem. In real−world applica−
tions, it is very difficult to get a satisfactory recognition
accuracy with the existing methods that only use the unimo−
dal biometric and small samples [9,11–13]. A multimodal
biometric fusion technique is a novel solution to address the
problem [1,5–13]. The supplementary information between
different biometrics might improve the recognition per−
formance by using small samples.

“There are four levels of fusion: pixel level, feature
level, score level, and decision level” [8,10,11]. To data,
most research on the multimodal biometric fusion tech−
niques was based on score level and decision level [9–12].
Hong et al. achieved improvements by integrating finger−
print and face biometric [5], while Jain et al. combined three
biometrics: face, fingerprint, and hand geometry [6–8].
Compared to the abundance of research work related to
a fusion at the score level, a fusion at the feature level is
a relatively understudied problem because of the difficulties
in practice.

Recently, some work has been carried out at the feature
level. There are two approaches to the feature level fusion.
In the first one, the features were extracted, then concatena−
tion took place and, finally, dimensionality reduction was
used. Ross et al. discussed fusion of face and hand modali−
ties at the feature level [10]. Preliminary results are encou−
raging and help to highlight the pros and cons of the per−
forming fusion at the feature level. Zhang et al. proposed
a geometry preserving projections (GPP) method at the fea−
ture level for face and palmprint fusion, but, unfortunately,
4 samples of each class were used as the training samples in
their experiments [11]. Ross and Zhang methods belong to
the first approach. In the second one, features were ex−
tracted, then dimensionality reduction was done, and fi−
nally, feature concatenation was performed. Zhou et al. pre−
sented a new approach that utilized and integrated informa−
tion from side face and gait at the feature level by using
principal component analysis (PCA) and multiple discrimi−
nant analysis (MDA) [12]. The experimental results demon−
strated that the synthetic features encoding both face and
gait information carry more discriminating power than the
individual biometrics features and the feature level fusion
strategy outperformed the score level strategy. Yao et al.
presented a weighting strategy for conducting the feature
fusion of palmprint and face based on classical 2D−Gabor
transform and PCA method [13]. Zhou and Yao methods
belong to the second approach.

Recently, multilinear algebra (algebra of higher−order
tensors) has been applied for analysing the multifactor
structure of image ensembles [14]. A novel face representa−
tion algorithm called “tensorface” has been proposed by
Vasilescu and Terzopoulos [15]. Tensorface represents the
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set of face images by a higher−order tensor and extends sin−
gular value decomposition (SVD) to the higher−order tensor
data. In this way, the multiple factors related to expression,
illumination, and pose can be separated from different
dimensions of the tensor. Ye’s 2DLDA and Yan’s DATER
are the tensor extensions of the popular vector−based linear
discriminant analysis (LDA) algorithm [14]. Zhang's tensor
linear laplacian discrimination (TLLD) algorithm is an
extension of LLD [14]. He's tensor subspace analysis me−
thod, the combination of tensor and locality preserving pro−
jection (LPP), also preserving local neighbour structures of
tensor samples [16]. The tensor methods perform well, par−
ticularly when the number of samples is relatively small
which is the case when the vector−based methods often suf−
fer from a singularity problem [16]. In addition, Tensor
PCA, Tensor MFA and Tensor LDA are the extensions of
principal component analysis (PCA), marginal fisher ana−
lysis (MFA) and linear discriminant analysis (LDA), res−
pectively [17,18].

Unfortunately, the general tensor−based methods are lin−
ear. “If the manifold is highly nonlinear, they may fail to
discover the intrinsic geometrical structure” [14,16–18].
Thus, it is important to address the nonlinear problem of the
tensor−based methods. The nonlinear approximation theory
(NAT) has been developed in recent years. Several NAT−
−based approaches have been proposed, such as ridgelet,
curvelet, contourlet, NSCT, etc. [19–22]. These approaches
have better nonlinear approximation capabilities than classi−
cal wavelet transform [19–22]. Especially, a curvelet trans−
form has better performance in extracting biometric features
than a wavelet one [19, 21]. Thus, a curvelet transform pro−
vides a better solution for addressing the nonlinear problem
of the tensor−based methods.

In this paper, we present a novel curve tensor−based
multimodal biometric recognition approach that operates at
the feature fusion level. Our method belongs to the second
approach. The curve tensor algorithm is used for more accu−
rate recognition results. Here, we use two kinds of bio−
metrics: palmprint feature and face feature.

This paper is organized as follows. Section 1 gives
a brief review of the current multimodal recognition tech−
niques and tensor−based methods. Section 2 describes the
second−generation curvelet transform. Section 3 gives out
the curve tensor algorithm. The experimental results and
performance evaluation on several well−known databases
are given in Sect. 4. The experimental results are discussed
in Sect. 5. The last section summarizes the paper and the
conclusions are drawn finally.

2. Second-generation curvelet transform

Curvelet transform is a new multiscale representation,
suited for objects which are smooth and away from disconti−
nuities across curves. Curvelet differs from wavelet and it
takes the form of basic elements which exhibit a very high
directional sensitivity and are highly anisotropic [19,20]. In
this section, we briefly review the implementation of the

second−generation curvelet which is simpler, faster, and less
redundant [19–21,23–25].

Assume that we work throughout in two dimensions,
i.e., R2. Denote x as the spatial variable, denote � as the fre−
quency domain variable and with r and � as the polar coor−
dinates in the frequency domain [19–21].We define a pair of
windows W(r) and V(t), called the “radial window” and
“angular window”. The frequency window Uj is defined in
the Fourier domain by [19,20]
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where � �j 2 is the integer part of j/2.
We can define the “mother” curvelet as � j x( ), and its
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The curvelet transform and the curvelet transform in the
frequency domain are defined as follows
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Figure 1 shows curvelet spatial domain and frequency
domain.
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Fig. 1. Curvelet spatial domain and frequency domain.
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Figure 2 shows the basic digital tiling. The shaded
region represents such a typical wedge [20].

Then, the discrete curvelet transform is defined as fol−
lows

c j l k f U S i b dj
l

( , , ) � ( ) � ( )exp( , )� � �� � � �
�

1
, (6)

where b k kj j� � �� �( , )1 2
22 2

In this paper, we use the fast discrete curvelet transform
(FDCT) via wrapping mechanism [19,20,22].

3. Multimodal biometric recognition based on
curve tensor

Figure 3 displays the multimodal biometric recognition pro−
cedure.

The whole mechanism of the approach is detailed as fol−
lows.

3.1. Pre-processing and image normalization

Let Tpalm and Tface represent the palm and face image sample
sets separately. Firstly, we extract a region of interesting
(ROI) of the palm images. Please refer to Ref. 25 for details.
Then, we use the AdaBoost−based method to realize the face
detection [26]. At last, the grey level of all testing and train−
ing images should be scaled to 0,1, and the size should be
normalized to d×d pixels. Here d = 40.

3.2. Curvelet decomposition and coefficients
combination

In this stage, all images (Tpalm and Tface ) are decomposed by
using a digital curvelet transform. In this paper, we use two
scales of decomposition for curvelet transform. Assume that
Tpalm and Tface represent a sample of Tpalm and Tface, respec−
tively. Tpalm and Tface are decomposed by curvelet transform
into curvelet coefficients, i.e., Cpalm and Cface. Assume that
C

palm
j l, and C

face
j l, represent the j th scale and l th orientation

of the coefficients Cpalm and Cface, where j = {1,2}. While l =
1, k1 0� , and k2 1� when j = 1. While l = {1, 2,3,4,5,6,7,8},
0 71
 
k and1 82
 
k when j = 2.

In order to reduce the computational cost and redundant
information, we resize the coefficients C

palm
l2 , and C

face
l2 , to

a matrix with the same size of C
palm
1 1, and C

face
1 1, by a bilinear

interpolation [27,28]. Then, we combine C
palm

l1, and C
palm

l2 , ,

C
face

l1, and C
face

l2 , as follows

Feature fusion of palmprint and face via tensor analysis and curvelet transform

140 Opto−Electron. Rev., 20, no. 2, 2012 © 2012 SEP, Warsaw

Fig. 2. Sheared wedges obeying parabolic scaling.

Fig. 3. Schematic of multimodal biometric recognition.
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where Z palm is the palm feature matrix and Z face is the face
feature matrix.

3.3. Tensor analysis based on combined curvelet
coefficients space

Tensors are multilinear mappings over a set of vector
spaces. A tensor is a higher order generalization of a vector
(first order tensor) and a matrix (second order tensor)
[14–17]. In this stage, tensor analysis is used to detect the
intrinsic geometrical structure of tensor space (data mani−
fold, consist of the curvelet coefficients Zpalm and Zface ).
Curve tensor considers a coefficient matrix as the second or−
der tensor in R Rn n1 2� , where Rn1 and Rn2 are two vector
spaces [14–16]. Obviously, the combined curvelet coeffi−
cients space is generally a sub−manifold embedded in
R Rn n1 2� .

Assume that Zi represents the combined curvelet coeffi−
cients of a size of n n1 2� . Given a set of data points
Z Z Z m1 2, ,� in R Rn n1 2� , we need to find two transform
matrices P of a size of n s1 1� , Q of a size of n s2 2� that
maps these m set of points L L Lm1 2, ,� � R Rs s1 2�
( , )s n s n1 1 2 2� � , where L P Z Qi

T
i� . Here, Li is the ten−

sor projection that represents Zi .
Usually, we use the classical PCA, LDA, LPP, LLD, and

other methods to address the linear dimensionality reduc−
tion problem [16–18,29–31]. Here, we use LPP−based
method to reduce dimensionality [29]. After performing the
tensor analysis method, L palm and L face (curve tensor fea−
tures) will be obtained. The tensor dimensionality reduction
algorithm is described in detail as follows:

• optimal linear embedding
We can set up the nearest neighbour graph � to model the
local geometrical structure of the curvelet coefficients sub−
manifold [14,16,17,29]. Let B be the weight matrix of �.
Assume that the label information is available (supervised
learning), a possible definition of B is as follows

B Z Z a Z Z
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, otherwise.
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where a is the suitable constant. The function

exp( / )� �Z Z ai j
2 22

is the heat kernel which is intimately related to the mani−
fold structure. � is the Frobenius norm of matrix, i.e.,

D dijji
� �� 2 .

A reasonable transformation respecting the graph struc−
ture can be obtained by solving the following optimization
problem [14–17]
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where P and Q are the transformation matrices.
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To preserve the graph structure, we should maximize the
global variance on the manifold. The weighted variance of L
can be estimated as follows
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At last, we may solve the following optimization prob−
lem

arg min
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• iterative algorithm
The optimal P should be the generalized eigenvectors of
( , )H B HQ Q Q� . The optimal Q should be the generalized
eigenvectors of ( , )H B HP P P� . We can calculate P and Q
iteratively [32]. Let P = I. I is the identity matrix, then Q and
P can be calculated iteratively by solving the following ge−
neralized eigenvector problems [16,32]

( )H B Q H QP P P� � 	 , (17)

( )H B P H PQ Q Q� � 	 . (18)

The matrices HP and HQ are all positive semi−definite
and symmetric ones.

Table 1 shows the computation of P and Q by using the
iterative algorithm.

Table 1. Procedure of the curve tensor method.

Input: samples data (Z1, Z2 ..., Zm), tensor projection dimension u, v

Output: transformation matrices P and Q, curve tensor feature Li

• Curvelet decomposition and combination;

• Construct the weight matrix B;

• Let P = I, N refers to the iterative number (N 
 5);

• For i = 1,… N

Calculate HP, BP and (HP – BP) by using P;

Calculate Q, the generalized eigenvectors of  (HP – BP, HP);

Calculate HQ, BQ and (HQ – BQ) by using Q;

Calculate P, the generalized eigenvectors of  (HQ – BQ, HQ);

And

• Let P = [p1, p2 ..., pu], Q = [q1, q2 ..., qv];

• Let Li = PTZiQ;

• Output P, Q, and L.

If the manifold is highly nonlinear, the general ten−
sor−based methods may fail to discover the intrinsic geomet−
rical  structure.  Curvelet  is  an  approximately  true  “2−D”
sparse representation for 2−D signals like images and can
efficiently capture the intrinsic geometrical structures in
natural images. Thus, curve tensor method is helpful to
address the nonlinear problem.

3.4. Feature level fusion strategies

We reshape L palm and L face into the form of feature vec−
tors and carry on a feature vector normalization. Then, we
normalize L palm and L face by using Z−Score formula [8,9]

L
L

norm palm
palm palm

palm
� �
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�
, (19)

L
L

norm palm
face face

face
� �
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�
, (20)

where 
 palm and 
 face are the mean value of L palm and
L face ,� palm , and� face are the variance value of L palm and
L face .

The previous works mainly deal with the score level and
decision level fusion [5–9]. The information obtained by the
feature level fusion methods is more abundant than the
score level and decision level fusion methods [10,12]. So,
we pay more attention to the feature level fusion in this
paper.

A palmprint feature vector and its corresponding face
feature vector are fused by using the general feature fusion
strategies

direct fusion [11,12]:
L L Lnorm fuse norm palm norm face� � �� [ ], (21)

weighting fusion [13]
L L Lnorm fuse norm palm norm face� � �� �[ ]� , (22)

where � is the weight and the computation of � has been
introduced in Ref. 13.

Here, we propose the feature level fusion strategy and
we call it nearly Gaussian fusion (NGF)

nearly Gaussian fusion:
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where �rpalm and �rface are the width of Gaussian radial
basis. Here, we choose the �rpalm and �rpalm just like the
kernel parameters of the support vector machine (SVM).

At last, the fused sample set Tnorm−fuse will be obtained.
The KNN classifier is used to determine the final classifica−
tion. Here, we use Euclidean distance. In order to compare
the performance of the multimodal methods and unimodal
methods more clearly, we do not use any support vector
machine (SVM). KNN classifier and Euclidean distance
measurement are used in the experiments.
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4. Experimental results

A comparative study between the unimodal methods and
the multimodal methods will be presented in this section.
The Palm−Tensor LPP, Palm−Wavelet, Face−Tensor LPP,
and Face−Wavelet methods are four basic unimodal bio−
metrics recognition methods. We use the Tensor LPP
method instead of the classical PCA, LDA, MFA, LLD, and
LPP methods in the experiments since the Tensor LPP
method has a better performance than the other methods
[16]. Daubechies 2 wavelets are used in the Wavelet−based
methods. The “direct fusion” [12], “weighting fusion” [13],
and “NGF fusion” rules are used as three fusion strategies in
this study. The experiments are performed on the several
well−known databases: PolyU palmprint database, CMU−
−PIE, and ORL face databases.

4.1. Experimental results on PolyU and CMU-PIE
databases

We use a PolyU palmprint database provided by the Hong
Kong Polytechnic University [33,34]. The palmprint subset
used in the experiments contains 68 individuals. For each indi−
vidual, 10 images of a size of 120×120 pixels are used in the
experiments. The PIE face database provided by the Carnegie
Mellon University (CMU) contains 68 individuals. The face
images were captured by 13 synchronized cameras and 21
flashes under varying illumination, different pose and expres−
sion [16,18]. Each individual has 10 images (Pose C05, C07,
C09, C27, C29) which are used in our experiments. At last, all
the images are normalized to 40×40 pixels.

For PolyU and PIE databases, 68 palmprint classes and
68 face classes (10 images/class) are used in the experi−
ments. The image samples are shown in Fig.4.

We randomly select 	(= 2, 3) images of each class for
the training set (small samples). The rest of the images is

considered as the testing set. The training samples are used
to learn the tensor subspace. The testing samples are then
projected into the low−dimensional representation subspace.
For a convenient comparison, we also give out the experi−
mental results by using 	(= 5, 6, 7, 8) training samples. In
order to reduce the random error, we give more objective
evaluation of the algorithm. For each 	, we have 20 times
random selection of the training set and take the average
accuracy as the final results.

The KNN classifier is used to determine the final classi−
fication. Here, we use a Euclidean distance. The experimen−
tal results on PolyU and PIE databases are shown in Tables
2 and 3. The highest item among each column is bold
printed.

In Table 2, we can see that the performance of the
multimodal methods is far better than the one of the uni−
modal methods. Especially, PIEPalm−CurveTensor−fusion
(NGF) always outperforms other 10 methods and with the
best recognition accuracy of 90.99% (2Train), 93.07%
(3Train) and 99.71% (5Train), respectively. In Table 3,
100% accuracy has been obtained while using more training
samples (6,7,8Train).
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Table 2. Recognition accuracy on PolyU and PIE databases (2,3,5Train).

Databases/Methods
Recognition accuracy (%)

2Train(Dim) 3Train(Dim) 5Train(Dim)

PIE−Wavelet−KNN 43.38(144) 57.56(144) 80.00(49)

Palm−Wavelet−KNN 81.43(144) 85.50(144) 94.50(49)

PIEPalm−Wavelet−fusion(Direct) 84.56(144, 144) 88.03(144, 144) 97.50(49, 49)

PIE−TensorLPP−KNN 58.46(21×21) 75.21(18×18) 80.00(18×18)

Palm−TensorLPP−KNN 82.17(10×10) 88.24(16×16) 94.41(12×12)

PIEPalm−TensorLPP−fusion(Direct) 89.71(17×17, 16×16) 90.76(18×18, 16×16) 97.06(18×18, 12×12)

PIE−CurveTensor−KNN 61.40(28×28) 74.37(27×27) 81.18(26×26)

Palm−CurveTensor−KNN 82.35(26×26) 89.08(16×16) 94.71(18×18)

PIEPalm−CurveTensor−fusion(Direct) 90.63(28×28, 26×26) 91.18(18×18, 12×12) 99.41(18×18,18×18)

PIEPalm−CurveTensor−fusion(Weighting) 90.99(28×28, 26×26) 92.33(18×18, 12×12) 99.41(18×18,18×18)

PIEPalm−CurveTensor−fusion(NGF) 90.99(28×28, 26×26) 93.07(18×18, 12×12) 99.71(18×18,18×18)

Fig. 4. Image samples from PolyU and CMU−PIE databases.



4.2. Experimental results on PolyU and ORL
databases

The Cambridge University ORL face database is composed of
400 images of ten different patterns for each of 40 individuals.
Some images were captured at different times and have differ−

ent variations including expression (open or closed eyes, smil−
ing or non−smiling) and facial details (glasses or no glasses).
All images are at greyscale and of a size of 112×92 pixels. For
PolyU and ORL databases, 40 palmprint classes and 40 face
classes (10 images/class) are used in the experiments. The im−
age samples from ORL database are shown in Fig. 5.
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Table 3. Recognition accuracy on PolyU and PIE databases (6,7,8Train).

Databases/Methods
Recognition accuracy (%)

6Train(Dim) 7Train(Dim) 8Train(Dim)

PIE−Wavelet−KNN 86.03(144) 87.75(144) 88.24(144)

Palm−Wavelet−KNN 95.22(144) 97.06(144) 98.53(144)

PIEPalm−Wavelet−fusion(Direct) 97.43(144, 144) 98.04(144, 144) 99.26(144, 144)

PIE−TensorLPP−KNN 89.34(9×9) 97.06(18×18) 97.06(18×18)

Palm−TensorLPP−KNN 96.32(9×9) 99.02(16×16) 100.00(12×12)

PIEPalm−TensorLPP−fusion(Direct) 98.90(9×9, 9×9) 100.00(18×18, 16×16) 100.00(18×18, 12×12)

PIE−CurveTensor−KNN 94.85(14×14) 97.06(15×15) 97.06(20×20)

Palm−CurveTensor−KNN 96.32(16×16) 99.02(16×16) 100.00(21×21)

PIEPalm−CurveTensor−fusion (Direct) 100.00(14×14, 16×16) 100.00(15×15, 16×16) 100.00(17×17,18×18)

PIEPalm−CurveTensor−fusion(Weighting) 100.00(14×14, 16×16) 100.00(15×15, 16×16) 100.00(17×17,18×18)

PIEPalm−CurveTensor−fusion(NGF) 100.00(14×14, 16×16) 100.00(15×15, 16×16) 100.00(17×17,18×18)

Table 4. Recognition accuracy on PolyU and ORL databases(2,3,5Train).

Databases/Methods
Recognition rates (%)

2Train(Dim) 3Train(Dim) 5Train(Dim)

ORL−Wavelet−KNN 78.75(49) 81.43(49) 89.00(49)

Palm−Wavelet−KNN 80.94(49) 85.00(49) 94.50(49)

ORLPalm−Wavelet−fusion(Direct) 94.06(49, 49) 95.36(49, 49) 99.50(49, 49)

ORL−TensorLPP−KNN 83.44(12×12) 87.50(22×22) 93.00(22×22)

Palm−TensorLPP−KNN 84.38(17×17) 87.86(24×24) 94.50(12×12)

ORLPalm−TensorLPP−fusion(Direct) 94.37(12×12, 17×17) 96.43(22×22,24×24) 97.50(22×22, 12×12)

ORL−CurveTensor−KNN 87.81(21×21) 89.29(20×20) 94.50(15×15)

Palm−CurveTensor−KNN 84.69(18×18) 88.21(18×18) 95.00(16×16)

ORLPalm−CurveTensor−fusion(Direct) 95.63(21×21, 18×18) 97.14(20×20, 18×18) 100.00(15×15, 16×16)

ORLPalm−CurveTensor−fusion(Weighting) 95.94(21×21,18×18) 97.50(20×20, 18×18) 100.00(15×15, 16×16)

ORLPalm−CurveTensor−fusion(NGF) 96.56(21×21, 18×18) 97.86(20×20, 18×18) 100.00(15×15, 16×16)

Table 5. Recognition accuracy on PolyU and ORL databases (6,7,8Train).

Databases/Methods
Recognition rates (%)

6Train(Dim) 7Train(Dim) 8Train(Dim)

ORL−Wavelet−KNN 97.50(49) 98.33(49) 98.75(49)

Palm−Wavelet−KNN 96.25(49) 96.67(49) 97.50(49)

ORLPalm−Wavelet−fusion(Direct) 100.00(49, 49) 100.00(49, 49) 100.00(49, 49)

ORL−TensorLPP−KNN 97.50(15×15) 98.33(21×21) 97.50(20×20)

Palm−TensorLPP−KNN 97.50(19×19) 99.17(20×20) 100.00(14×14)

ORLPalm−TensorLPP−fusion(Direct) 100.00(12×12, 17×17) 100.00(22×22,24×24) 100.00(22×22, 12×12)

ORL−CurveTensor−KNN 97.50(18×18) 98.33(15×15) 98.75(16×16)

Palm−CurveTensor−KNN 98.12(20×20) 99.17(19×19) 100.00(18×18)

ORLPalm−CurveTensor−fusion(Direct) 100.00(18×18, 20×20) 100.00(15×15, 19×19) 100.00(16×16, 18×18)

ORLPalm−CurveTensor−fusion(Weighting) 100.00(18×18,20×20) 100.00(15×15, 19×19) 100.00(16×16, 18×18)

ORLPalm−CurveTensor−fusion(NGF) 100.00(18×18, 20×20) 100.00(15×15, 19×19) 100.00(16×16, 18×18)



The experimental results on PolyU and ORL databases
are shown in Tables 4 and 5. The highest item among each
column is bold printed.

In Tables 4 and 5, ORLPalm−CurveTensor−fusion
(NGF) achieves the best recognition accuracy of 96.56%
(2Train), 97.86%(3Train) and 100% (5,6,7,8Train). It is
found that curve tensor outperforms the other methods with
different numbers of training samples (2,3,5,6,7,8) per indi−
vidual, and nearly Gaussian fusion (NGF) strategy outper−
forms the other strategies, i.e., direct fusion and weighting
fusion.

4.3. Relationship between �rpalm , �rface and
recognition accuracy

The relationship between the kernel parameters �rpalm ,
�rface and the recognition accuracy is shown in Fig. 6

(3Train, PolyU & ORL databases). Here, �rpalm � [ , ]110 and
�rface � [ , ]110 . When �rpalm 
 3 and �rpalm 
 3, the recog−
nition accuracy is very low. With the increment of �rpalm
and �rface , the recognition accuracy reaches its maximum.
We find out that there are several points of extrema and that
the best recognition accuracy will be obtained according to
these points. Then, the recognition accuracy will be des−
cended.
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Fig. 5. Image samples from ORL database.

Table 6. Computational cost using PolyU and PIE databases (2Train).

Databases/Methods
Computational time(s)

Feature extraction Feature fusion Classfication

PIE−Wavelet−KNN 5.8456 / 0.0099

Palm−Wavelet−KNN 5.8941 / 0.0097

PIEPalm−Wavelet−fusion 11.7397 0.0974 0.0124

PIE−TensorLPP−KNN 5.8670 / 0.0787

Palm−TensorLPP−KNN 5.9006 / 0.0809

PIEPalm−TensorLPP−fusion 11.7676 0.4665 0.1472

PIE−CurveTensor−KNN 16.7421 / 0.0792

Palm−CurveTensor−KNN 16.4312 / 0.0780

PIEPalm−CurveTensor−fusion(NGF) 33.2733 0.4816 0.1498

Table 7. Computational cost using PolyU and ORL databases (2Train).

Databases/Methods
Computational time(s)

Feature extraction Feature fusion Classfication

ORL−Wavelet−KNN 3.2876 / 0.0066

Palm−Wavelet−KNN 3.1983 / 0.0061

ORLPalm−Wavelet−fusion 6.4859 0.0531 0.0095

ORL−TensorLPP−KNN 2.9189 / 0.0331

Palm−TensorLPP−KNN 2.8929 / 0.0323

ORLPalm−TensorLPP−fusion 5.8118 0.1782 0.0543

ORL−CurveTensor−KNN 8.6013 / 0.0317

Palm−CurveTensor−KNN 8.5611 / 0.0309

ORLPalm−CurveTensor−fusion(NGF) 17.1624 0.1795 0.0689

Fig. 6. Relationship between �rpalm , �rface and recognition accu−
racy.



4.4. Computational cost using unimodal and
multimodal methods

Tables 6 and 7 show the computational cost using the uni−
modal and multimodal methods. Since we use the KNN
classifier in the experiments, thus, we give the computa−
tional cost of the feature extraction, the feature fusion and
the classification. In the experiments we use the same data
as in Sect. 4.1 and Sect. 4.2. All of the algorithms are imple−
mented in MATLAB 7.12 and executed on the same com−
puter (Intel Core i5−2300 2.8GHz CPU, 2048M RAM). All
of the experiments are completed in the same environment.

In Tables 6 and 7, the multimodal methods are slower
than the unimodal methods. In addition to that, the feature
fusion time is needed in the multimodal methods. It is found
that the wavelet−based methods acquire the best perfor−
mance. Although our method needs more computational
time, it obtains better accuracy than the unimodal methods
and other multimodal methods.

5. Discussions

� While the previous works mainly deal with subspace
just like PCA, LLD, LDA, MFA and their extension of
tensor, we now pay more attention to the combination of
frequency domain and tensor subspace. Curve tensor is
an extension of the tensor analysis method based on
curvelet coefficients space. It is helpful to address the
nonlinear problem. The experimental results demonstra−
te that it is a robust and reliable multimodal biometric
recognition approach.

� The experimental results also show that the proposed
“nearly Gaussian fusion” (NGF) strategy has better per−
formance than other fusion rules. In the future, we plan
to design a fusion rule based on a human vision percep−
tion and the preliminary results are promising.

6. Conclusions

In order to address the problem of the small samples recog−
nition, in this paper we present the feature level biometric
fusion approach based on curve tensor. Experimental results
on PolyU, CMU−PIE and ORL databases demonstrate the
effectiveness and robustness of our methods.

In conclusion, the curve tensor approach is a novel
attempt to apply tensor analysis and curvelet transform to
multimodal biometrics and can also be applied to other
problems such as target recognition, SAR image processing,
medical image processing etc.
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