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A nonlinear wave interaction is considered as a technique to increase the rotation sensitivity of the ring laser. The gyroscopic

scale factor K is calculated in an active laser gyro with a dispersive medium. K is in reverse proportion to the group index

n* = n + �dn/d� of the medium. In a monolithically-integrated GaAs ring laser, the value K ~5000 is obtainable (radius

~1 cm) in a linear case. In the presence of a strong wave, the dynamic nonlinear anomalous dispersion can provide an in-

crease of K by 10–100 times in the vicinity of critical points where n* passes zero. An expression of K is derived for the non-

linear Sagnac effect. The nonlinear dispersion is discussed in terms of “slow/fast” light.
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The Sagnac effect in lasers [1–4] is a sensitivity of resonant

optical frequencies in a ring-type cavity to the rotation. It is

used for navigation-grade gyros based on ring lasers (active

optical gyros). As the rotation sensitivity is in proportion

with the size of the ring laser, the miniaturization of the la-

ser gyro leads to a decrease in the rotation sensitivity.

Semiconductor ring lasers (SRLs) are known in two ver-

sions, i.e., external-cavity type [5–7] and monolithically-

integrated type [8,9]. An SRL with fiber external ring has

been shown experimentally to have some rotation sensitiv-

ity [7]. As to the second type, there are not yet demonstra-

tion of such sensitivity as these lasers are quite small. We

consider here a principal possibility to increase the sensi-

tivity of small-size active laser gyros by usage of nonlinear

properties of a medium filling the ring cavity (the nonlinear

Sagnac effect). The semiconductor medium provides sig-

nificant nonlinearity, including a substantial effect of car-

rier density on the dielectric permittivity.

A possibility to enhance the Sagnac response �� by

nonlinear effects was predicted firstly by Kaplan and

Meystre [10] on the basis of the intensity-induced nonreci-

procity. What is considered here is another nonlinear effect

associated with mode interaction [11] and with intensity-

induced anomalous dispersion [12]. Comparison is dis-

cussed below.

Realizing that there is some discrepancy in the related

literature on the rotation sensitivity of the ring laser with a

dispersive medium in the cavity, we show the expression

for the frequency splitting �� of the counter-propagating

waves to be dependent on the rotation angular velocity �

and on parameters of the medium, it is the refractive index

n and the dispersion dn/d�.

�� 
��	�����������	����������������������

Most theoretical works on laser gyros relate to gas media

with n �1. As to media with n > 1, there are discrepancies

in the data. To illustrate the conflicting theoretical results

on ��, we can indicate the following reports. According to

Refs. 2, 3, 4, 13, and 14, it is predicted �� � 1/n. But it is

stated �� � 1/n2 in Ref. 15 and �� � n in Ref. 16. In Ref.

17, for a monolithically-integrated SRL it has been ob-

tained �� � 1/n*, where n* = n + �dn/d� is the group index

that is not equal to n if dn/d� � 0. Thus, the theoretical val-

ues for K = ���� (the scale factor or gyro-factor) using

formulas of different authors vary by ~50 times for

GaAs-based SRL. This is a quite intolerable situation that

should be cleared up. Also there is no common agreement

on the influence of the dispersion. It was considered in

Refs. 2, 3, 14, and 17, the dispersion is a parameter in-

volved in the effect. However, in the most frequently

quoted (Ref. 4), it is stated that the dispersion in the first

order does not influence the splitting ��.

We consider the ring cavity filled uniformly with a

dispersive medium. Other assumptions are, the Sagnac

splitting is small, �� << � (� is the optical frequency) and

rotation rate corresponds to a non-relativistic range. A gen-

eral consideration in Ref. 14 has led to an expression

���� = �(1/n)[(4�A/Lc) + �], (1)

where n is the mean value of the refractive index around

the ring and � is the mean value, around the ring, of the

difference between the two values of refractive index for

counter-propagating waves, A is the area of the ring, and L

118 Opto-Electron. Rev., 16, no. 2, 2008

OPTO-ELECTRONICS REVIEW 16(2), 118–123

DOI: 10.2478/s11772-007-0031-7

*e-mail: eliseev@chtm.unm.edu



is its perimeter. This expression (Eq. 30 of Ref. 14) is not

an ultimate formula because � depends on ��� It is an

equation that should be solved. For the uniform case, we

assume an approximation accounting for the second order

dispersion

� = ��dn/d� � (1/2)��
2d2n/d�

2 , (2)

and we obtain a solution of Eq. (1)
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From this, if an inequality

8�A�
2d2n/d�

2/(n*2Lc) < 1. (4)

is valid, it is easy to obtain the Sagnac response in the first

order approximation of dispersion

���� = 4�A/(L�n*), (5)

that is the same as obtained in Ref. 17. Here � is the wave-

length in vacuum. The inequality in Eq. (4) appears to be

valid for static dispersion in typical semiconductors like

GaAs and for moderate rotation rate. Therefore, in these

cases Eq. (5) seems to be sufficiently correct. However, in

the nonlinear case it could be necessary to take into account

a correction associated with second-order dispersion ac-

cording to Eq. (3). Notice that the latter is nonlinear in re-

spect to the rotation rate in contrast to linear Eq. (5).

Generally, the normal dispersion leads to a decrease in

the Sagnac splitting ��, according to Eq. (3), because it in-

creases the value of the group index n*. Most of semicon-

ductor lasers work in the range of normal dispersion as is

seen from the empirical rule n* > n for linear parameters

(in GaAs n = 3.618, n* = 4.77 at � = 880 nm). On the other

hand, in order to increase ��� the anomalous (negative) dis-

persion is desirable.

�� ������
���������������	�

Equation (1) is derived in the rotating frame, therefore, the

medium is assumed to be resting and there is no optical

drag. The derivation implies accurate calculation of the

phase velocity of light in the rotating frame accounting for

an influence of the dispersive medium. In contrast to this, if

the Sagnac effect is treated in the rest frame, the optical

drag coefficient �d can be introduced. Corresponding deri-

vations are shown in Refs. 4 and 17. As applied to the uni-

formly filled ring cavity, the result is

�� = 4A�n2(1 – �d)/(L�n*). (6)
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Fig. 1. Calculated spectra of perturbed refractive index (intensity-

induced part) in vicinity of a strong wave frequency at different

values of the factor �. The relaxation rate is taken � = 1010 s��. The

differential gain is assumed to be constant.

Fig. 2. Calculated spectra of perturbed refractive index (intensity-

induced part) in vicinity of a strong mode frequency at different

values of the factor �. The relaxation rate is taken � = 1010 s��. The

differential index is assumed to be constant.

Fig. 3. Calculated spectrum of the perturbed group index in a

vicinity of the strong wave frequency. The critical points Z1 and Z2

are shown where total group index passes zero value.



Considering a non-relativistic case, we expect identical

results in both frames with an accuracy of a relative magni-

tude of the order of �/c, where � is the linear velocity of ro-

tation. Comparison with Eq. (5) gives

�d = 1 – 1/n2. (7)

This is a primary expression for the optical drag coeffi-

cient as derived by Fresnel in 1818 using a theory of elastic

ether. According to Eq. (7), the quantity �d is not much

sensitive to dispersion as it is an averaged value for both

opposite directions of light propagation.
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In a strong electromagnetic field, the optical parameters of

a nonlinear medium are perturbed in some vicinity of the

frequency of the strong field. For a localized index pertur-

bation, both signs of the dispersion will appear, positive

(“normal” one) and negative (“anomalous” one). Thus, we

are interested in a nonlinear mechanism of a perturbation of

optical parameters of a medium in a narrow frequency

range. We consider below the nonlinear mode (wave) inter-

action treated in Ref. 11 for the theoretical explanation of

the experimentally observed asymmetric suppression of

spectral modes in the semiconductor laser. It provides per-

turbations of the group index in vicinity of a strong wave

frequency. This perturbation can be treated in terms of

“fast/slow” light, as it is shown recently [12,17]. The spec-

tral range �� of the perturbation is determined by the rate

of the relaxation. The main contribution into a giant non-

linearity comes from the influence of free carriers on the

refractive index of semiconductors. An estimate of the in-

dex variation �n is

�n �|dn/dN| �N, (8)

where �N is the variation of the carrier density, and dn/dN

is the differential index that is about –3.6�10�21 cm3 in

bulky-GaAs lasers [18]. Taking �N ~3�1018 cm3 we get an

estimate of �n ~10�2. This appears to be sufficient to cause

nonlinear phenomena like self-focusing, mode coupling,

bistability, etc. A direct influence of �n on �� is rather

small. However, an influence of dispersion can be substan-

tial, if the index variation �n is localized in a narrow spec-

tral domain. A magnitude of the variation of the dispersion

dn/d� can be estimated as |�n/���� Taking �� as ~1011 s��

we obtain an upper estimate ~3.6×10�13 Hz�1 for the dis-

persion. It seems to be substantially large, namely we esti-

mate the term |�dn/d�� ~122 that is much larger than linear

refractive index 3.618. It is seen that the nonlinear group

index can vary in a wide range including zero points and

negative values. It follows from an alternate variation of

the dispersion term around the strong wave frequency in a

narrow spectral range. Therefore the dynamic dispersion

can provide a negative (anomalous) sign of the total disper-

sion.

��  �	
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The nonlinear wave interaction occurs due to a formation

of the dynamic grating in the nonlinear medium. The grat-

ing of the carrier density appears in accordance with the in-

terference pattern of waves. It can produce substantial per-

turbation of the complex permittivity, so waves are sub-

jected to a nonlinear scattering with a photon exchange be-

tween them. This mechanism was shown to be involved in

asymmetric suppression of spectral modes in semiconduc-

tor lasers [11], in splitting of lines in the mode-beating

spectra of semiconductor lasers, and also in the multi-wave

mixing and other nonlinear phenomena in semiconductors.

The mechanism has been shown to provide optical pertur-
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Fig. 4. Perturbed group index in vicinity of the critical point Z2

(curve 1). Curve 2 is plotted for the same numerical parameters

except the intensity of the strong wave that is assumed to be higher

by 5%.

Fig. 5. Factor K/K0 of the rotation sensitivity improvement by the

use of the nonlinear Sagnac effect in the probe wave in function of

its detuning from the strong wave frequency. The position of the

critical point Z2 is shown by an arrow.



bations leading to the slow or fast light phenomena [12]. In

Ref. 19, the same mechanism was calculated for the light

slowing in optical amplifiers.

The nonlinear component �n of the refractive index at

the frequency � can be expressed as [12]

�n = C|E0|
2(� + x)/[�(1 + x2)], (9)

where C = –B(N – N0)(d	''/dN)/(2n), N is the carrier den-

sity, N0 is N at the inversion threshold, 	'' is the imaginary

part of the dielectric constant, E0 is the field amplitude of

the strong wave, � is the total rate of relaxation of the pop-

ulation at working levels, B is the stimulated recombination

coefficient (in units of m2/V2s), � is the linewidth enhance-

ment factor, and x = 2
(�s – �)/� is the normalized detun-

ing with respect to a strong wave frequency �s. As it is

shown in Fig. 1, the perturbed index gets a bump in vicinity

of �s that grows along with an increase in the parameter �.

These calculations are performed assuming the parameters

N, d	''/dN, � and the strong wave intensity to be constant. It

is important to mention that an increase in the factor � by a

decrease in the differential gain and of the parameter

d	''/dN (for example, by detuning into the wing of the gain

spectrum) does not give a rise of �n. This is shown in Fig.

2 where an assumption is used of a constant differential in-

dex. In that case, there is no increase of �n with an increase

of �.

The peak value of �n is rather small in the real range of

intensities, but the dynamic dispersion appears not to be

small because the perturbation is localized in a narrow

spectral range. The total group index is

n* = n*lin – (2
�C|E0|
2/�2)(1 – 2�x – x2)/(1 + x2)2, (10)

where n*lin is the linear component of the group index. As

applied to GaAs, the quantity of Eq. (9) has zero points at a

sufficient optical power (>10 kW/cm2). At these critical

points, a formal group velocity of the probe wave goes to

infinity. The perturbed group index is shown in Figs. 3 and

4. The total value passes zero value in the points Z1 and Z2.

The first is very close to the strong wave frequency and it is

not suitable for usage. Another one, Z2 seems to be useful

as it is detuned from �s by about 11 GHz.
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Taking the first-order term of the nonlinear dispersion, we

obtain from Eq. (9) the following expression for the nonlin-

ear Sagnac effect
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Formally, one can expect an infinite response in the critical

points. Actually, the improvement is limited by instability

of strong wave intensity. The critical point is not suitable

for practical use. The value of K passes infinity and

changes a sign. Therefore, an exact critical point corre-

sponds to a strong instability of the Sagnac response. The

operation point should be distanced somewhat from the

critical point. The position of the critical point Z2 is shown

in Fig. 4 corresponding to the same numerical parameters

as in Fig. 3 and taking � = 3. It is shown there by the dotted

line a shift produced by 5% increase in the strong wave in-

tensity. The sensitivity of the position of Z2 to the intensity

leads to a strict requirement on the stabilization of the opti-

cal power in the ring laser. The calculated ratio K/K0,

where K0 is the gyroscopic scale factor in the linear case, is

shown in Fig. 5 for the same numerical parameters. By our

estimation, it is possible to increase K by 10–100 times

with no change of the ring size.

Two types of semiconductor ring lasers (SRLs) are

known [1–5], the external cavity version and the monolithi-

cally-integrated version. In GaAs, the background (linear)

parameters are dn/d� = 3.41×10�15 Hz�� and d2n/d�
2 =

4.76×10�29 Hz�% (� = 880 nm). The inequality in Eq. (4) is

fulfilled for linear parameters of GaAs and Eq. (5) is valid

to calculate the initial gyro scale factor in absence of non-

linear enhancement. Taking the radius R = 1 cm for a

monolithically integrated circular ring cavity, we obtain an

estimate of K0 �5000, that seems to be not sufficient for

navigation applications. Therefore, the nonlinear enhance-

ment could be desirable.

Consider quantitatively the illustrative case of group

velocity variation in the vicinity of the strong wave fre-

quency �s = 340.672 THz (wavelength is ~880 nm). This is

illustrated in Fig. 3. The perturbed group index n* changes

a sign. There are ranges of slow light (large n*). Points of

n* = 0 are labelled Z1 and Z2. The group velocity goes to

infinity and one can expect enhanced rotation sensitivity in

these points. The point Z1 is very close to �s and the func-

tion n*(�) appears to be very steep. The inequality in Eq.

(4) is not valid there. This means that the Sagnac splitting

becomes a nonlinear function of the rotation rate. Estima-

tion indicates that there is no substantial improvement in

the rotation sensing because of the influence of high-order

dispersion terms. The point Z2 is shifted by ~11 GHz from

�s. In the vicinity of this point, the inequality in Eq. (4) is

fulfilled and Eq. (5) is valid.

$� %��������	
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The nonlinear wave interaction produces a substantial vari-

ation of the group velocity vg = c/n* in vicinity of the

strong wave frequency, whereas variations of phase veloc-

ity are quite small. There is a possibility to obtain slow

(vg << c) or fast (“superluminal”, vg > c) light, depending

on detuning of the probe wave from the strong wave fre-

quency. There are questions of interpretation of varied

group index as it is seen in Fig. 3. The answers are as fol-
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lows. First, this is the case of propagation of two interact-

ing waves, and the total optical energy is carried by the

strong wave in the positive direction. Second, the negative

group velocity is in the range where the probe wave is sup-

pressed by the strong one. Therefore the strong wave gen-

erates photons at the frequency of probe wave but propa-

gating in the opposite direction (this is the way to suppress

the positive flux of photons). These photons correspond to

wave packets propagating in the opposite direction, i.e., to

waves having a negative group velocity. The critical points

are on edges of this frequency range. At these points the

wave packets do not exist because frequency components

propagate in opposite directions.

$��� &����������	�!����������	�	
�	���������	����

The considered approach to a nonlinear enhancement of the

Sagnac splitting �� is applicable to an active gyro scheme

and it is quite different from the induced non-reciprocity

approach, proposed in Ref. 10 mainly for the passive

scheme. Here we considered the strong wave only as a

source of the nonlinear perturbation with an induced anom-

alous dispersion. The Sagnac effect is calculated for a fre-

quency within the anomalous dispersion domain, being dis-

tant from the frequency of the strong wave. The mecha-

nism of the wave interaction includes generally all dynamic

gratings, appearing in the nonlinear medium by an interfer-

ence of the interacting waves. In principle, it includes the

grating produced by counter-propagating waves, namely,

the standing waves. As it was indicated in Ref. 10, in the

semiconductor medium with a nonlinearity provided by

mobile carriers, the short-distance variations of carrier den-

sity are suppressed by the carrier diffusion. Therefore,

these short-distance variations are not important.

In general, the wave interaction via the differential in-

dex is sensitive to the diffusion smoothening of the spatial

variations of the carrier density. If the period of these varia-

tions is produced by mode beating, the spatial component

has characteristic length 2
/�k, where �k is the difference

of wave numbers (in a medium), k = 2
n/�. The criterion

of effective smoothening is

(1/2
)�kLD & 1, (12)

where LD is the diffusion length of excess carriers. Let us

estimate this criterion in two important cases taking the fol-

lowing parameters � = 880 nm, LD = 1 'm, n = 3.6, and the

cavity length L = 500 'm:

• variation is produced by a standing wave. In this case

�k = 2k = 4
n/�. The left side of Eq. (11) is 2nLD/� =

8.2. This is an indication of a smoothening of �� varia-

tion and of a suppression of the non-reciprocity effect.

The intensity-induced non-reciprocity [10] is based on

the standing wave effect. According to Ref. 20, it is

suppressed in proportion with a factor of exp(� 4k2LD
2).

We obtain k2LD
2 ~660. This means that the induced

non-reciprocity is totally washed out.

• variation is produced by co-propagating waves, for ex-

ample, by adjacent longitudinal modes of the laser. In

this case �k = 
/nL, and left side of Eq. (10) is LD/(2nL)

= 2.7×10–4. This indicates there is no smoothening.

Therefore, within the typical range of intermode fre-

quency spacing the diffusion effect can be neglected.

The considered nonlinear effect is based on the wave

interaction via a long-period interference pattern, therefore

it has no relation to the induced non-reciprocity. It is re-

lated to the concept of a fast light as the anomalous disper-

sion reduces the group index (even to zero and to negative

values).

$��� &������'�
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The enhanced frequency splitting can be achieved in

some modes of the ring cavity that fall into the detuning

range in respect of a strong mode. The detuning is dis-

cussed above. Therefore, the cavity length should be

chosen in a manner favourable to an existence and an ex-

citation of such modes. Actually the nonlinear Sagnac re-

sponse can be observed simultaneously with a normal

one (in the strong modes). In other words, the spectrum

of mode beating would contain both the regular Sagnac

beating signal (from the strong modes) and a signal at

enhanced beating frequency (from detuned modes). The

difference of these beating frequencies can be also used

as a measure of the rotation rate.

The resonant-like enhancement near a critical point pro-

duces a strict requirement to the power stability of the

strong mode because fluctuations of the critical frequency

would be associated with some additional noise. Probably

this type of noise (instability of the gyro-factor K) is the

most serious difficulty for practical applications of the non-

linear effect.

(� )�	�
����	�

The gyroscopic scale factor in semiconductor ring lasers is

shown to be sensitive to both the refractive index and its

dispersion. Expressions are given for the Sagnac splitting

�� accounting for one or two orders of the dispersion. With

the linear optical parameters of GaAs the factor K can be as

large as ~5000, and it can be, in principle, increased by

10–100 times using the nonlinear negative dispersion.

Equation (9) is given for an enhanced nonlinear Sagnac ef-

fect. The enhancement is based on the anomalous induced

dispersion (as a result of nonlinear mode interaction) and

has no relation to the nonlinear non-reciprocity. The mode

interaction is shown to provide a substantial perturbation of

the group velocity of the probe wave in vicinity of the

strong wave frequency, including a generation of “fast” and

“slow” light.
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