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Investigation of limitations of optical diffraction tomography
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Optical diffraction tomography (ODT) applied to measurement of optical microelements is limited by low dynamic range,
i.e., only objects with small deviations of refractive-index distribution can be measured. Therefore in this paper the limita-
tions and errors of ODT are investigated throughout extensive numerical experiments. It is shown that these errors can be re-
duced by introduction of additional numerical focusing in the tomographic reconstruction algorithm. Additionally, new
tomographic reconstruction algorithm using back propagation in reference medium for optical microelements measurement
with known design is proposed. This hybrid reconstruction algorithm allows significant extension of ODT applicability in
measurement of elements having large deviations of refractive-index distribution.
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1. Introduction

Optical diffraction tomography (ODT) [1] is the method
for characterization of 3D distribution of material parame-
ters in an optical element. This includes refractive-index
and absorption or birefringence. However, there are limita-
tions of ODT applicability, only the elements having ho-
mogenous structures can be accurately characterized.
Therefore in the paper we study the errors of reconstruction
limiting the application of ODT to nonhomogeneous struc-
tures. We also show that using a priori knowledge about an
object structure, these errors can be reduced.

In the presented study we employ the standard ODT ex-
perimental configuration [2-4] shown in Fig. 1(b) where
the object angular orientation relative to the incident plane
wave is changed sequentially in the range from 0° to 360°.
For every rotation angle ¢, the object projection images P,
(integrated phase and integrated amplitude) [Fig. 1(a)] are
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captured by means of interferometry [5] (including holog-
raphy [6]). In order to properly reconstruct an object inter-
nal structure, the captured projection images must well ap-
proximate object integrated phase and amplitude distribu-
tions. This condition is met if the object structure variations
are small comparing to the wavelength and light propagates
nearly along straight lines. It is much easier to fulfil the
above condition if the projection images are captured in the
system shown in Fig. 1(b). Here, the optical system images
the centre of an object in the detection plane. In such a
case, the captured projected image data are distorted by the
object internal refraction or diffraction only. Nevertheless,
the strong object internal refraction or diffraction meaning-
fully distorts the projected images giving incorrect recon-
struction.

Using a procedure described above, several experi-
ments for variable angular orientation of object are per-
formed producing a set of integrated amplitude and phase
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Fig. 1. Coordinate system with geometry defining object projection (a) and the scheme of a standard data acquisition system of ODT (b).

“e-mail: t.kozacki@mchtr.pw.edu.pl

102

Opto-Electron. Rev. 15, no. 2, 2007



maps. Below, we will consider ODT in the application of
refractive-index distribution studies only. In such a case,
the measurements of integrated phase by means of interfer-
ometry are performed. To reconstruct the object internal
structure of refractive-index O(x,y), one of tomographic re-
construction algorithms such as filtered back projection al-
gorithm (FBP) [7] can be used

l V4
0(x,y) = —— [ dg
Q2m)~ % o
[ Ik, (K)explik(r cos @ + ysin @) Jdk
where
Byk) = [Py (&)expl-ikEdE, @)

is the Fourier transform of the projection P,

Using FBP algorithm, the two dimensional (2D) cross
sections (for one z value) of internal object structure are re-
constructed. By successive stacking of the reconstructed
2D distributions, a full three-dimensional structure of an
object is recovered.

Similar measurement scheme is applied in the tech-
nique known as photoelastic tomography for determination
of an object internal distribution of the birefringence [4,8].
The only difference is that the integrated projection images
of birefringence are measured using integrated photoelas-
ticity [4,7]. In this case, the same errors appear due to ob-
ject internal refraction and diffraction. Therefore the paper
analysis is equivalently valid for both diffraction and
photoelastic tomography.

There are many tomographic reconstruction algorithms
and all of them require linearization of the light interaction
with an object neglecting significant internal diffraction or
refraction. Several techniques are known for linearization
of this process including assumptions that optical radiation
propagates along straight lines, the inverse scattering ap-
proximations or Bouguer’s formula [1]. The algorithms of
computerized tomography [8] used in the case of the first
technique are, the mentioned above FBP algorithm or Abel
transform for axisymmetric objects [9]. The reconstruction
algorithms, that accounts for diffraction using the Born or
the Rytov weak-scattering approximations, are the filtered
back propagation algorithm [10] and recently developed
the distorted wave Born approximation algorithm (for
axisymmetric objects) [11]. Algorithms using third lineari-
zation technique are developed for axisymmetric objects,
however, extensions of the technique for arbitrary objects
are available using iterative techniques [12]. Nevertheless
these algorithms can be used if an object is characterized
by monotonic distribution of refractive-index only.

Major drawback of ODT applicability in measurement
of micro optical elements refractive-index structure is low
dynamic range, refractive-index structures with small vari-
ations can be measured only. This is due to the significant
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errors produced by using the mentioned above simplifica-

tion in the reconstruction algorithms. The paper is devoted

to study such errors.

Section 2 of the paper is devoted to numerical analysis
of reconstruction errors received due to application of
tomographic reconstruction algorithm. In sec. 3, we show
that for the object having weak diverging or converging
properties the reconstruction error can be reduced by modi-
fication of the position of imaging plane. The hybrid recon-
struction algorithm allowing significant extension of ODT
applicability for the measurement of elements having high
variations of refractive-index is presented in sec. 4.

For presentation simplicity in the paper, the numerical
analyses are performed for axisymmetric structures. How-
ever, all presented methods can be applied for arbitrary ob-
jects. In the paper, two types of objects representing most
common micro-optical structures in fibers are considered:
* single phase variation structures, e.g., fibers with gradi-

ent and step-index core,

e periodic phase variation objects, e.g., photonic fibers with
the channels filled with gradient or step index media.
Often the term ‘reconstruction’ is used alone and refers

to ‘reconstruction of refractive-index distribution’.

2. Reconstruction errors in optical diffraction
tomography

In the experimental tasks, where 3D transparent or semi-
transparent specimen is inspected optical diffraction to-
mography is widely used. Unfortunately, in ODT of
microelements, the features size of refractive-index distri-
bution is often of the order of several wavelengths. This
causes strong diffraction effects, and ultimately the objects
having small deviation of refractive-index can be measured
only. In ODT, two algorithms are the most widely used for
reconstruction of arbitrary 3D refractive-index object dis-
tributions. First, the algorithm uses assumption that optical
radiation propagates nearly along straight rays. Numeri-
cally it was shown that in this case the most accurate recon-
structions are obtained, if instead of scattered field the pro-
jection image of the object centre is measured [3]. The sec-
ond reconstruction algorithm that accounts for diffraction
using either Born or Rytov weak-scattering approximations
is the filtered back propagation algorithm [10]. The most
accurate reconstruction can be received by hybrid filtered
back propagation algorithm, in which prior to application
of filtered back propagation algorithm, an optical field scat-
tered at an object is numerically propagated back to the ob-
ject centre [13]. However, through numerical simulations
and experiments it was shown that both above mentioned
reconstruction algorithms give the results with comparable
accuracy. In Ref. 3, quantitative study of 3D reconstruction
precision was presented for step-index optical fiber only.
Therefore in this section we present the results of extensive
numerical experiments for both, step and gradient-index
optical fibers with refractive-index variations An and with
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two diameters. In these numerical experiments, the effi-
cient wave propagation method [14] is applied. It gives the
results with comparable accuracy as for previously used
[15] rigorous finite-time domain method [16]. It was shown
numerically that reconstruction diffraction errors in both
tomography of single component dielectric tensor distribu-
tion and refractive-index distribution are the same for rela-
tively large deviations of dielectric tensor components.
Therefore our analysis presented here is valid for both ap-
plications.

To study the errors of refractive-index reconstruction,
the numerical tomographic experiments for axisymmetric
objects were performed [Fig. 1(b) and (2)]. In such an ex-
periment, a plane wave is illuminating inspected optical
structure and received scattered field imaged to the object
centre is used as input data for reconstruction. Both men-
tioned above reconstruction algorithms give the results of
comparable accuracy, therefore numerically more efficient
algorithm consisting of numerical refocusing (numerical
back propagation) to the object centre and tomographic re-
construction based on Abel transform was used.

2.1. Error analysis for simple phase variation objects

The numerical experiments for both step-index and gradi-
ent-index (parabolic distribution) optical fibers with two
diameters 21y = 104 (4 =0.6328 um) and 21, = 1004 (Fig. 2)
were performed. For gradient-index object, the FWHM
(the full width at half maximum) parameter was used as a
diameter. In all the numerical analyses, the index of refrac-
tion of cladding medium is ng,, = 1.46. The refractive-
index variations A, were taken in the range 0-0.1 with the
step 0.001. Reconstructed refractive-index distribution 7,,,.
was compared quantitatively with the assumed object 7,
via equation

1
AI’!E}T = ﬁ z[noh (r) - nrgc (r)]2 b (3)

Irl<2r,

giving the refractive-index reconstruction error A,.,. In
Fig. 3, the exemplary reconstructions and the received er-
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Fig. 2. Exemplary distributions of refractive-index, step and gra-
dient-index.

rors as a function of the refractive-index variation A, are
presented.

The errors obtained for step-index object are substan-
tially larger. This effect is related to significant errors at
object refractive-index discontinuity, what is especially ev-
ident for step-index object of small dimensions (width
104). Therefore in this case tomography can be used for
A < 0.01 (approx.), and even then, the received result is an
estimate. For larger step-index object (width 1004), the
technique can be used in the wider range, A < 0.03
(approx.). Moreover, the largest errors are located in the
neighbourhood of discontinuity, giving good reconstruction
far from it [Fig. 3(a)]. For A, > 0.034, the object disconti-
nuities manifest in errors of phase unwrapping making im-
possible reconstruction of the refractive-index distribution
even at the object central part. This problem refers to low
value of intensity at the object discontinuity of imaged pro-
jections. Errors received for the gradient index object are
substantially smaller. Additionally, in this case there is no
error fluctuations, reconstruction errors are distributed
more evenly over the object [Fig. 3(b)]. The highest errors
are observed in the places where the object refractive-index
distribution has the second derivative maximum. Therefore
in gradient-index case maximum errors are located at = 0
and r = ry. For example, for A, = 0.1 the error at the centre
equals 0.0032 (104) and 0.0034 (1004), while the overall
statistical errors are approx. half of that, A, = 0.0021
(104) and A, = 0.0019 (1004).
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Fig. 3. Exemplary refractive-index reconstruction for the step-index fiber with 4,, = 0.03 (a), exemplary refractive-index reconstruction for
gradient-index fiber with 4,, = 0.06 (b), and errors of tomographic reconstruction for fiber having step and gradient-index distributions (c).
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2.2. Error analysis for periodic phase objects

Next, the simulations for objects having more complex
axisymmetric distributions: cosine and periodical step in-
dex with total diameters 1004 were performed. Both distri-
butions have the period T = 28.574. In Figs. 4(a) and 4(b),
the object refractive-index distributions and corresponding
exemplary reconstructions are shown. The numerical ex-
periments were performed for various values of the param-
eter 4,. The received reconstruction errors were computed
(Eq. 3) and plotted in Fig. 4(c). Errors for step-index object
are similar to the errors received in the previous analysis.
As for the step-index case the method can be applied for
the cases A < 0.03 (approx.). In Fig. 4(b), it is visible that
reconstructions for cosine object are characterized by
smaller values and slightly distorted period when compared
with the original. The allowed refractive-index variations
for the gradient case are up to A, = 0.1 (approx.).

3. Improving accuracy by selecting best focus
plane

It was proven, that the most accurate results are received if
prior to application of tomographic reconstruction the opti-
cal field is imaged to an object centre either via imaging
system or numerically [2,3]. For such configuration the
measured object integrated phase distribution is most simi-
lar to the theoretical object projection of a phase. However,
for some cases of practical interest, more accurate recon-
struction can by received if an optical field is imaged to a
plane different than the object centre. Such cases are met if
the measured optical structure has weak light converging or
diverging properties. To study this feature we have per-
formed tomographic simulation for the objects having
composite distributions, step-index with periodic step-
index variations (SIP) and gradient-index with periodic
step-index variations (GIP). These distributions are com-
posed from light converging refractive-index distributions,
step or gradient index and periodic step-index distribution
with A, = 0.005. Application of such composed distribu-
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tion allows us to study both reconstruction errors, global
and local ones. Global errors can be seen in Fig. 3(a) and
3(b), where it can be observed that the received reconstruc-
tion are mainly smaller than theoretical ones. The local er-
rors are shown in sec. 2.2 where the structures with slightly
distorted period are reconstructed comparing to the original
one. Both distributions SIP and GIP are shown in Figs. 5(a)
and 5(b) using a dotted line. In our experimental practice,
the best results of reconstruction were received if an optical
system is imaging the plane having minimal deviations of
intensity, ‘best focus’ plane [17]. The location of this plane
differs from the object centre in the analyzed case of the
converging and diverging objects. Therefore we propose
below the new reconstruction algorithm with the modified
focusing.

In such an algorithm, at first the complex optical field is
experimentally established via imaging system in the cen-
tral plane of a rotated object. Next, using free-space numer-
ical propagation algorithms the optical field is sequentially
imaged to the parallel planes inside the object area search-
ing for a plane with minimal deviation of intensity distribu-
tion (‘best focus’ plane). Finally, for this particular plane
the integrated phase is computed forming one data set for a
given angular object orientation. Repeating this procedure
for a number of angular object orientations gives the data
set necessary for reconstruction of internal refractive-index
structure.

The results of reconstruction using the modified focus-
ing for exemplary SIP and GIP distributions are shown in
Figs. 5(a) and 5(b) (solid line). For the step-index case, the
focus plane position was modified by defocus (distance
from object centre to new focus plane) equal to 3.23 pm
(~0.1rp), while in the case of gradient object by 4.5 um
(~0.14r1y). To visualize the positive effect of focusing modi-
fication in Figs. 5(c) and 5(d), the differences between
original and reconstructed distributions for both algorithms
using standard and modified focusing are plotted. As it is
mentioned in sec. 2, the reconstructed distributions of re-
fractive-index are slightly smaller than the original one.
Application of the focusing modification in the reconstruc-
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Fig. 4. Exemplary refractive-index reconstruction for periodic step-index object distribution for 4,, = 0.03 (a), exemplary refractive-index
reconstruction for cosine-index object distribution for 4,, = 0.1 (b), errors of tomographic reconstruction for objects with diameter 1004
having periodic step-index and cosine-index distributions (c).
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tion algorithm minimizes that difference (reduction of
global reconstruction error) and in addition the period of
reconstruction is more close to the original one (reduction
of local reconstruction error).

In order to prove more generally, that the focusing
modification gives substantial error reduction of object re-
fractive-index reconstruction, the series of simulations for
the mentioned above profiles SIP and GIP for variable 4,
and 4,,, = 0.005 were performed. For each object both re-
construction algorithms were applied, the standard algo-
rithm (focusing at the object centre) and the algorithm with
proposed focusing modification (‘best focus’). In each
case, the reconstruction errors were computed using Eq. (3)
and they are presented in Fig. 6(a) (SIP) and Fig. 6(b)
(GIP). It is evident from both plots that for all simulations
the reconstruction errors received using standard focusing
method (‘dotted line’) are substantially larger then those re-
ceived by the ‘best focus’ method (‘dashed line’). For ex-
ample, for the object shown in Fig. 5(a), the reconstruction
using standard focusing gives the error A, = 0.0019 while
using the modified focus A, = 0.0014. Similarly, for an
exemplary object in Fig. 5(b), the application of modified
focus gives 14% reduction of the computed errors A, =
0.00091 (‘centre focus’) and A, = 0.00079 (‘best focus’).
If the errors would be calculated excluding refractive-index
discontinuities or there would be no discontinuities, the er-
ror reduction would be even higher. Additionally, for
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step-index object, the cases for A, > 0.034 can be success-
fully reconstructed using modified focusing while it is not
possible applying standard method. In Figs. 6(a) and 6(b),
the values of applied focus modification are plotted using
solid line.

4. Algorithm using back propagation in
reference medium

Major disadvantage of optical diffraction tomography is
low dynamic range, i.e., the objects having small deviation
of refractive-index can be measured only. Fortunately,
large range of immersion fluids exists and allows us to
match the object refractive-index. Nevertheless, there are
many micro optical elements having considerable varia-
tions of internal refractive-index structure, fiber optics, grin
lenses, liquid-crystal devices, etc., that require higher dy-
namic range. In the recent papers [18], the new method for
dealing with these problems was presented, namely dis-
torted wave born approximation (DWBA) method. In these
papers, the DWBA algorithm is used to reconstruct ele-
ments with axisymmetric refractive-index distribution. In
most of the cases we have the knowledge about the ex-
pected refractive-index distribution in an optical structure
from its design. Due to fabrication errors, real structures
are somehow different from their design. Therefore the ob-
ject in practice is composed of both, overall known struc-
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Fig. 5. Reconstruction for SIP profile of refractive-index for A, = 0.03, A, = 0.005 (2rp = 1004) (a), reconstruction for GIP profile for A, =
0.06, Anp =0.005 (FWHM = 1004) (b), error of reconstruction for object in Fig. 4(a) (c¢), and error of reconstruction for object in Fig. 4(b) (d).
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Fig. 6. Reconstruction errors A, received using standard and modified focusing for SIP objects (A, = 0.005) (a) and the reconstruction
errors Ay, received using standard and modified focusing for GIP objects (A, = 0.005) (b).

ture (referred here as ‘design’) and variation from this
known structure (named as ‘design deviations’). Imple-
mentation of the knowledge about design in ODT can
highly extend its dynamic range, because the design devia-
tions are reconstructed only. In Ref. 18, the DWBA method
was used to reconstruct optical structure deviations from its
design, but the presented method works if both the design
and its deviations have axisymmetric distributions.

There are many microobjects which do not fulfil
axisymmetric requirement (waveguides, optical structures
imperfections). Therefore in this section the modification
of the standard reconstruction algorithm is proposed, in
which the knowledge about the optical structure design is
applied. Thanks to this modification, the design deviations
are reconstructed only and structures with high deviation of
refractive-index distribution can be measured. The pro-
posed algorithm is relatively fast and simple in implemen-
tation. It consists of two major stages, in the stage one, the
measured scattered optical field from an object is back
propagated through the optical medium of known design,
in the stage two, the standard tomographic algorithms are
applied [Egs. (1) and (2)]. The first stage has to deliver ac-
curate projections of the design deviations P, only.

Since the measured scattered optical field from optical
structure contains information about both, structure design
and its deviations, the information about design must be re-
moved in the stage one of the algorithm. This is accom-
plished in a few steps. First, the measured scattered field
from an optical structure is back propagated through the
structure design medium using the wave propagation
method. Next, this optical field is imaged to the object cen-
tre, since ODT in the object centre produces most correct
projection images (integrated phase distributions). Unfortu-
nately, if the structures have large gradients of refractive
index distributions, high nonlinearity occurs in the process
and nonlinearly distorted projection images of the design
deviations are received. However, we have found, that this
nonlinearity causes that the computed projections in the
second step is just nonlinearly magnified (magnification is
spatially variant) version of the actual projection of the ob-
ject design deviations P ge,).
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This nonlinear magnification can be found by addi-
tional numerical procedure (step three). The procedure con-
sists of a few phases:

e plane wave is propagated in a structure which is a
slightly modified version of an object design,

* the obtained optical field is back propagated in object
design medium,

e the received optical field is imaged to the object centre
giving nonlinearly magnified projection images of in-
troduced deviations,

e by analysis of the theoretical projection and the re-
ceived magnified one through numerical process the fi-
nal nonlinear magnification is found through numerical
process,

e the determined nonlinear magnification is applied in the
stage one of the algorithm and final projection of object
design deviation is recovered P
Below, some implementation problems and thorough

numerical analysis of the errors of this algorithm applica-

tion are presented. Two composite optical element struc-
tures were chosen to study algorithm accuracy:

e step-index design (A, = 0.1) with periodic step-index
deviations representing fabrication errors (A, = 0.01, T
= 28.574), Fig. 7(a) (dotted line),

e gradient-index design (A, = 0.2) with periodic
step-index deviations representing fabrication imperfec-
tions (A, = 0.01, T' = 28.571), Fig. 7(b) (dotted line).
The total refractive-index reconstructions are shown in

Figs. 7(a) and 7(b) (solid line), while in Figs. 7(c) and 7(d)

the reconstructions of periodic structure considered as

manufacturing imperfections are presented. In both cases,
the reconstructions are very close to the originals. How-
ever, an important issue must by pointed out. Close to the
structure design discontinuity, the substantial reconstruc-
tion error appears. This is evident in both cases in Figs.
7(c) and 7(d). This error comes from the fact that the opti-
cal field received from propagation through the design me-
dium is highly distorted by presence of very large refrac-
tive-index discontinuity. It is especially visible for the case
here examined, where the object has light converging prop-
erties. In such cases, the large intensity drop at the refrac-
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Fig. 7. Exemplary reconstructions received for the algorithm using back propagation in reference medium: reconstruction of the object
refractive-index (a), reconstruction of refractive-index deviation from step-index object design (c), reconstruction of the object
refractive-index (b), and reconstruction of refractive-index deviation from gradient-index object design (d).

tive-index discontinuity is observed. Therefore the optical
structure design modulations at these places cannot be re-
covered.

As it can be seen in Fig. 7, for both optical structure de-
sign cases, the highest errors are located at the area of the
structure design discontinuity. Therefore exclusion of this
area from the error computations would give meaningful re-
duction of the computed errors. For example, exclusion of
20% area around design discontinuity for the case presented
in Fig. 7, gives following statistical error reduction, 17% re-
duction for step-index design and 21% for gradient-index
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design. To get quantitative results of the received errors for
the presented reconstruction algorithm, the series of simula-
tions for the above mentioned structure designs (step-index
and gradient-index) with the variable A, in the range
(-0.21-0.21) and ny = 1.46 were performed. In these simula-
tions, the analyzed object designs were distorted by periodic
step-index and cosine index distributions with A, = 0.01
and the period T = 28.574. In all simulations, the statistical
errors A, (Eq. 3) were computed and the received results
are plotted in Fig. 8. From both plots it can be clearly seen
that the presented method gives accurate reconstructions.
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Fig. 8. Errors of tomographic reconstruction using back propagation in known reference medium for: step-index (a) and gradient-index
object designs modulated by periodic step-index and cosine-index distributions with A, = 0.01 (b).
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5. Conclusions

Optical diffraction tomography applied for 3D measure-
ment of refractive-index and birefringence distribution in
optical microelements suffers from low dynamic range and
high signal-to-noise ratio. These features caused by linea-
rization used in tomographic reconstruction algorithms
were studied by extensive numerical simulations for ele-
ments with various phase distributions. The limitations of
ODT applicability for step and gradient-index objects have
been determined. It was shown that for the objects having
light converging or diverging properties the modified fo-
cusing (numerical or optical) should by introduced in
tomographic reconstruction algorithm. This provides the
results with reduced errors. In order to extend the dynamic
range of ODT, new tomographic reconstruction algorithm
was proposed for measurement of optical elements with the
known design. This algorithm uses numerical back propa-
gation of the measured scattered optical field in element
design medium. It is shown that application of this algo-
rithm allows 3D measurement of optical microelements
having large deviation of refractive-index distribution.
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