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Optical diffraction tomography (ODT) applied to measurement of optical microelements is limited by low dynamic range,

i.e., only objects with small deviations of refractive-index distribution can be measured. Therefore in this paper the limita-

tions and errors of ODT are investigated throughout extensive numerical experiments. It is shown that these errors can be re-

duced by introduction of additional numerical focusing in the tomographic reconstruction algorithm. Additionally, new

tomographic reconstruction algorithm using back propagation in reference medium for optical microelements measurement

with known design is proposed. This hybrid reconstruction algorithm allows significant extension of ODT applicability in

measurement of elements having large deviations of refractive-index distribution.

Keywords: optical diffraction tomography (ODT), propagation in inhomogeneous media, fiber optics characterization.
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Optical diffraction tomography (ODT) [1] is the method

for characterization of 3D distribution of material parame-

ters in an optical element. This includes refractive-index

and absorption or birefringence. However, there are limita-

tions of ODT applicability, only the elements having ho-

mogenous structures can be accurately characterized.

Therefore in the paper we study the errors of reconstruction

limiting the application of ODT to nonhomogeneous struc-

tures. We also show that using a priori knowledge about an

object structure, these errors can be reduced.

In the presented study we employ the standard ODT ex-

perimental configuration [2–4] shown in Fig. 1(b) where

the object angular orientation relative to the incident plane

wave is changed sequentially in the range from 0� to 360�.

For every rotation angle ö, the object projection images Pö

(integrated phase and integrated amplitude) [Fig. 1(a)] are

captured by means of interferometry [5] (including holog-

raphy [6]). In order to properly reconstruct an object inter-

nal structure, the captured projection images must well ap-

proximate object integrated phase and amplitude distribu-

tions. This condition is met if the object structure variations

are small comparing to the wavelength and light propagates

nearly along straight lines. It is much easier to fulfil the

above condition if the projection images are captured in the

system shown in Fig. 1(b). Here, the optical system images

the centre of an object in the detection plane. In such a

case, the captured projected image data are distorted by the

object internal refraction or diffraction only. Nevertheless,

the strong object internal refraction or diffraction meaning-

fully distorts the projected images giving incorrect recon-

struction.

Using a procedure described above, several experi-

ments for variable angular orientation of object are per-

formed producing a set of integrated amplitude and phase
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Fig. 1. Coordinate system with geometry defining object projection (a) and the scheme of a standard data acquisition system of ODT (b).



maps. Below, we will consider ODT in the application of

refractive-index distribution studies only. In such a case,

the measurements of integrated phase by means of interfer-

ometry are performed. To reconstruct the object internal

structure of refractive-index O(x,y), one of tomographic re-

construction algorithms such as filtered back projection al-

gorithm (FBP) [7] can be used
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is the Fourier transform of the projection Pö.

Using FBP algorithm, the two dimensional (2D) cross

sections (for one z value) of internal object structure are re-

constructed. By successive stacking of the reconstructed

2D distributions, a full three-dimensional structure of an

object is recovered.

Similar measurement scheme is applied in the tech-

nique known as photoelastic tomography for determination

of an object internal distribution of the birefringence [4,8].

The only difference is that the integrated projection images

of birefringence are measured using integrated photoelas-

ticity [4,7]. In this case, the same errors appear due to ob-

ject internal refraction and diffraction. Therefore the paper

analysis is equivalently valid for both diffraction and

photoelastic tomography.

There are many tomographic reconstruction algorithms

and all of them require linearization of the light interaction

with an object neglecting significant internal diffraction or

refraction. Several techniques are known for linearization

of this process including assumptions that optical radiation

propagates along straight lines, the inverse scattering ap-

proximations or Bouguer’s formula [1]. The algorithms of

computerized tomography [8] used in the case of the first

technique are, the mentioned above FBP algorithm or Abel

transform for axisymmetric objects [9]. The reconstruction

algorithms, that accounts for diffraction using the Born or

the Rytov weak-scattering approximations, are the filtered

back propagation algorithm [10] and recently developed

the distorted wave Born approximation algorithm (for

axisymmetric objects) [11]. Algorithms using third lineari-

zation technique are developed for axisymmetric objects,

however, extensions of the technique for arbitrary objects

are available using iterative techniques [12]. Nevertheless

these algorithms can be used if an object is characterized

by monotonic distribution of refractive-index only.

Major drawback of ODT applicability in measurement

of micro optical elements refractive-index structure is low

dynamic range, refractive-index structures with small vari-

ations can be measured only. This is due to the significant

errors produced by using the mentioned above simplifica-

tion in the reconstruction algorithms. The paper is devoted

to study such errors.

Section 2 of the paper is devoted to numerical analysis

of reconstruction errors received due to application of

tomographic reconstruction algorithm. In sec. 3, we show

that for the object having weak diverging or converging

properties the reconstruction error can be reduced by modi-

fication of the position of imaging plane. The hybrid recon-

struction algorithm allowing significant extension of ODT

applicability for the measurement of elements having high

variations of refractive-index is presented in sec. 4.

For presentation simplicity in the paper, the numerical

analyses are performed for axisymmetric structures. How-

ever, all presented methods can be applied for arbitrary ob-

jects. In the paper, two types of objects representing most

common micro-optical structures in fibers are considered:

• single phase variation structures, e.g., fibers with gradi-

ent and step-index core,

• periodic phase variation objects, e.g., photonic fibers with

the channels filled with gradient or step index media.

Often the term ‘reconstruction’ is used alone and refers

to ‘reconstruction of refractive-index distribution’.
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In the experimental tasks, where 3D transparent or semi-

transparent specimen is inspected optical diffraction to-

mography is widely used. Unfortunately, in ODT of

microelements, the features size of refractive-index distri-

bution is often of the order of several wavelengths. This

causes strong diffraction effects, and ultimately the objects

having small deviation of refractive-index can be measured

only. In ODT, two algorithms are the most widely used for

reconstruction of arbitrary 3D refractive-index object dis-

tributions. First, the algorithm uses assumption that optical

radiation propagates nearly along straight rays. Numeri-

cally it was shown that in this case the most accurate recon-

structions are obtained, if instead of scattered field the pro-

jection image of the object centre is measured [3]. The sec-

ond reconstruction algorithm that accounts for diffraction

using either Born or Rytov weak-scattering approximations

is the filtered back propagation algorithm [10]. The most

accurate reconstruction can be received by hybrid filtered

back propagation algorithm, in which prior to application

of filtered back propagation algorithm, an optical field scat-

tered at an object is numerically propagated back to the ob-

ject centre [13]. However, through numerical simulations

and experiments it was shown that both above mentioned

reconstruction algorithms give the results with comparable

accuracy. In Ref. 3, quantitative study of 3D reconstruction

precision was presented for step-index optical fiber only.

Therefore in this section we present the results of extensive

numerical experiments for both, step and gradient-index

optical fibers with refractive-index variations �n and with
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two diameters. In these numerical experiments, the effi-

cient wave propagation method [14] is applied. It gives the

results with comparable accuracy as for previously used

[15] rigorous finite-time domain method [16]. It was shown

numerically that reconstruction diffraction errors in both

tomography of single component dielectric tensor distribu-

tion and refractive-index distribution are the same for rela-

tively large deviations of dielectric tensor components.

Therefore our analysis presented here is valid for both ap-

plications.

To study the errors of refractive-index reconstruction,

the numerical tomographic experiments for axisymmetric

objects were performed [Fig. 1(b) and (2)]. In such an ex-

periment, a plane wave is illuminating inspected optical

structure and received scattered field imaged to the object

centre is used as input data for reconstruction. Both men-

tioned above reconstruction algorithms give the results of

comparable accuracy, therefore numerically more efficient

algorithm consisting of numerical refocusing (numerical

back propagation) to the object centre and tomographic re-

construction based on Abel transform was used.
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The numerical experiments for both step-index and gradi-

ent-index (parabolic distribution) optical fibers with two

diameters 2r0 = 10ë (ë = 0.6328 ìm) and 2r0 = 100ë (Fig. 2)

were performed. For gradient-index object, the FWHM

(the full width at half maximum) parameter was used as a

diameter. In all the numerical analyses, the index of refrac-

tion of cladding medium is nsurr = 1.46. The refractive-

index variations �n were taken in the range 0–0.1 with the

step 0.001. Reconstructed refractive-index distribution nrec

was compared quantitatively with the assumed object nob

via equation
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giving the refractive-index reconstruction error Änerr. In

Fig. 3, the exemplary reconstructions and the received er-

rors as a function of the refractive-index variation Än are

presented.

The errors obtained for step-index object are substan-

tially larger. This effect is related to significant errors at

object refractive-index discontinuity, what is especially ev-

ident for step-index object of small dimensions (width

10ë). Therefore in this case tomography can be used for

Än< 0.01 (approx.), and even then, the received result is an

estimate. For larger step-index object (width 100ë), the

technique can be used in the wider range, Än< 0.03

(approx.). Moreover, the largest errors are located in the

neighbourhood of discontinuity, giving good reconstruction

far from it [Fig. 3(a)]. For Än > 0.034, the object disconti-

nuities manifest in errors of phase unwrapping making im-

possible reconstruction of the refractive-index distribution

even at the object central part. This problem refers to low

value of intensity at the object discontinuity of imaged pro-

jections. Errors received for the gradient index object are

substantially smaller. Additionally, in this case there is no

error fluctuations, reconstruction errors are distributed

more evenly over the object [Fig. 3(b)]. The highest errors

are observed in the places where the object refractive-index

distribution has the second derivative maximum. Therefore

in gradient-index case maximum errors are located at r = 0

and r = r0. For example, for Än = 0.1 the error at the centre

equals 0.0032 (10ë) and 0.0034 (100ë), while the overall

statistical errors are approx. half of that, Änerr = 0.0021

(10ë) and Änerr = 0.0019 (100ë).
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Fig. 2. Exemplary distributions of refractive-index, step and gra-

dient-index.

Fig. 3. Exemplary refractive-index reconstruction for the step-index fiber with Än = 0.03 (a), exemplary refractive-index reconstruction for

gradient-index fiber with Än = 0.06 (b), and errors of tomographic reconstruction for fiber having step and gradient-index distributions (c).
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Next, the simulations for objects having more complex

axisymmetric distributions: cosine and periodical step in-

dex with total diameters 100ë were performed. Both distri-

butions have the period T = 28.57ë. In Figs. 4(a) and 4(b),

the object refractive-index distributions and corresponding

exemplary reconstructions are shown. The numerical ex-

periments were performed for various values of the param-

eter Än. The received reconstruction errors were computed

(Eq. 3) and plotted in Fig. 4(c). Errors for step-index object

are similar to the errors received in the previous analysis.

As for the step-index case the method can be applied for

the cases Än< 0.03 (approx.). In Fig. 4(b), it is visible that

reconstructions for cosine object are characterized by

smaller values and slightly distorted period when compared

with the original. The allowed refractive-index variations

for the gradient case are up to Än = 0.1 (approx.).
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It was proven, that the most accurate results are received if

prior to application of tomographic reconstruction the opti-

cal field is imaged to an object centre either via imaging

system or numerically [2,3]. For such configuration the

measured object integrated phase distribution is most simi-

lar to the theoretical object projection of a phase. However,

for some cases of practical interest, more accurate recon-

struction can by received if an optical field is imaged to a

plane different than the object centre. Such cases are met if

the measured optical structure has weak light converging or

diverging properties. To study this feature we have per-

formed tomographic simulation for the objects having

composite distributions, step-index with periodic step-

index variations (SIP) and gradient-index with periodic

step-index variations (GIP). These distributions are com-

posed from light converging refractive-index distributions,

step or gradient index and periodic step-index distribution

with Änp = 0.005. Application of such composed distribu-

tion allows us to study both reconstruction errors, global

and local ones. Global errors can be seen in Fig. 3(a) and

3(b), where it can be observed that the received reconstruc-

tion are mainly smaller than theoretical ones. The local er-

rors are shown in sec. 2.2 where the structures with slightly

distorted period are reconstructed comparing to the original

one. Both distributions SIP and GIP are shown in Figs. 5(a)

and 5(b) using a dotted line. In our experimental practice,

the best results of reconstruction were received if an optical

system is imaging the plane having minimal deviations of

intensity, ‘best focus’ plane [17]. The location of this plane

differs from the object centre in the analyzed case of the

converging and diverging objects. Therefore we propose

below the new reconstruction algorithm with the modified

focusing.

In such an algorithm, at first the complex optical field is

experimentally established via imaging system in the cen-

tral plane of a rotated object. Next, using free-space numer-

ical propagation algorithms the optical field is sequentially

imaged to the parallel planes inside the object area search-

ing for a plane with minimal deviation of intensity distribu-

tion (‘best focus’ plane). Finally, for this particular plane

the integrated phase is computed forming one data set for a

given angular object orientation. Repeating this procedure

for a number of angular object orientations gives the data

set necessary for reconstruction of internal refractive-index

structure.

The results of reconstruction using the modified focus-

ing for exemplary SIP and GIP distributions are shown in

Figs. 5(a) and 5(b) (solid line). For the step-index case, the

focus plane position was modified by defocus (distance

from object centre to new focus plane) equal to 3.23 ìm

(~0.1r0), while in the case of gradient object by 4.5 ìm

(~0.14r0). To visualize the positive effect of focusing modi-

fication in Figs. 5(c) and 5(d), the differences between

original and reconstructed distributions for both algorithms

using standard and modified focusing are plotted. As it is

mentioned in sec. 2, the reconstructed distributions of re-

fractive-index are slightly smaller than the original one.

Application of the focusing modification in the reconstruc-
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Fig. 4. Exemplary refractive-index reconstruction for periodic step-index object distribution for Än = 0.03 (a), exemplary refractive-index

reconstruction for cosine-index object distribution for Än = 0.1 (b), errors of tomographic reconstruction for objects with diameter 100ë

having periodic step-index and cosine-index distributions (c).



tion algorithm minimizes that difference (reduction of

global reconstruction error) and in addition the period of

reconstruction is more close to the original one (reduction

of local reconstruction error).

In order to prove more generally, that the focusing

modification gives substantial error reduction of object re-

fractive-index reconstruction, the series of simulations for

the mentioned above profiles SIP and GIP for variable Än

and Änp = 0.005 were performed. For each object both re-

construction algorithms were applied, the standard algo-

rithm (focusing at the object centre) and the algorithm with

proposed focusing modification (‘best focus’). In each

case, the reconstruction errors were computed using Eq. (3)

and they are presented in Fig. 6(a) (SIP) and Fig. 6(b)

(GIP). It is evident from both plots that for all simulations

the reconstruction errors received using standard focusing

method (‘dotted line’) are substantially larger then those re-

ceived by the ‘best focus’ method (‘dashed line’). For ex-

ample, for the object shown in Fig. 5(a), the reconstruction

using standard focusing gives the error Änerr = 0.0019 while

using the modified focus Änerr = 0.0014. Similarly, for an

exemplary object in Fig. 5(b), the application of modified

focus gives 14% reduction of the computed errors Änerr =

0.00091 (‘centre focus’) and Änerr = 0.00079 (‘best focus’).

If the errors would be calculated excluding refractive-index

discontinuities or there would be no discontinuities, the er-

ror reduction would be even higher. Additionally, for

step-index object, the cases for Än > 0.034 can be success-

fully reconstructed using modified focusing while it is not

possible applying standard method. In Figs. 6(a) and 6(b),

the values of applied focus modification are plotted using

solid line.
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Major disadvantage of optical diffraction tomography is

low dynamic range, i.e., the objects having small deviation

of refractive-index can be measured only. Fortunately,

large range of immersion fluids exists and allows us to

match the object refractive-index. Nevertheless, there are

many micro optical elements having considerable varia-

tions of internal refractive-index structure, fiber optics, grin

lenses, liquid-crystal devices, etc., that require higher dy-

namic range. In the recent papers [18], the new method for

dealing with these problems was presented, namely dis-

torted wave born approximation (DWBA) method. In these

papers, the DWBA algorithm is used to reconstruct ele-

ments with axisymmetric refractive-index distribution. In

most of the cases we have the knowledge about the ex-

pected refractive-index distribution in an optical structure

from its design. Due to fabrication errors, real structures

are somehow different from their design. Therefore the ob-

ject in practice is composed of both, overall known struc-

106 Opto-Electron. Rev. 15, no. 2, 2007 © 2007 SEP, Warsaw

Fig. 5. Reconstruction for SIP profile of refractive-index for Än = 0.03, Änp = 0.005 (2r0 = 100ë) (a), reconstruction for GIP profile for Än =

0.06, Änp = 0.005 (FWHM = 100ë) (b), error of reconstruction for object in Fig. 4(a) (c), and error of reconstruction for object in Fig. 4(b) (d).



ture (referred here as ‘design’) and variation from this

known structure (named as ‘design deviations’). Imple-

mentation of the knowledge about design in ODT can

highly extend its dynamic range, because the design devia-

tions are reconstructed only. In Ref. 18, the DWBA method

was used to reconstruct optical structure deviations from its

design, but the presented method works if both the design

and its deviations have axisymmetric distributions.

There are many microobjects which do not fulfil

axisymmetric requirement (waveguides, optical structures

imperfections). Therefore in this section the modification

of the standard reconstruction algorithm is proposed, in

which the knowledge about the optical structure design is

applied. Thanks to this modification, the design deviations

are reconstructed only and structures with high deviation of

refractive-index distribution can be measured. The pro-

posed algorithm is relatively fast and simple in implemen-

tation. It consists of two major stages, in the stage one, the

measured scattered optical field from an object is back

propagated through the optical medium of known design,

in the stage two, the standard tomographic algorithms are

applied [Eqs. (1) and (2)]. The first stage has to deliver ac-

curate projections of the design deviations Pö(dev) only.

Since the measured scattered optical field from optical

structure contains information about both, structure design

and its deviations, the information about design must be re-

moved in the stage one of the algorithm. This is accom-

plished in a few steps. First, the measured scattered field

from an optical structure is back propagated through the

structure design medium using the wave propagation

method. Next, this optical field is imaged to the object cen-

tre, since ODT in the object centre produces most correct

projection images (integrated phase distributions). Unfortu-

nately, if the structures have large gradients of refractive

index distributions, high nonlinearity occurs in the process

and nonlinearly distorted projection images of the design

deviations are received. However, we have found, that this

nonlinearity causes that the computed projections in the

second step is just nonlinearly magnified (magnification is

spatially variant) version of the actual projection of the ob-

ject design deviations Pö(dev).

This nonlinear magnification can be found by addi-

tional numerical procedure (step three). The procedure con-

sists of a few phases:

• plane wave is propagated in a structure which is a

slightly modified version of an object design,

• the obtained optical field is back propagated in object

design medium,

• the received optical field is imaged to the object centre

giving nonlinearly magnified projection images of in-

troduced deviations,

• by analysis of the theoretical projection and the re-

ceived magnified one through numerical process the fi-

nal nonlinear magnification is found through numerical

process,

• the determined nonlinear magnification is applied in the

stage one of the algorithm and final projection of object

design deviation is recovered Pö(dev).

Below, some implementation problems and thorough

numerical analysis of the errors of this algorithm applica-

tion are presented. Two composite optical element struc-

tures were chosen to study algorithm accuracy:

• step-index design (Än = 0.1) with periodic step-index

deviations representing fabrication errors (Änp = 0.01, T

= 28.57ë), Fig. 7(a) (dotted line),

• gradient-index design (Än = 0.2) with periodic

step-index deviations representing fabrication imperfec-

tions (Änp = 0.01, T = 28.57ë), Fig. 7(b) (dotted line).

The total refractive-index reconstructions are shown in

Figs. 7(a) and 7(b) (solid line), while in Figs. 7(c) and 7(d)

the reconstructions of periodic structure considered as

manufacturing imperfections are presented. In both cases,

the reconstructions are very close to the originals. How-

ever, an important issue must by pointed out. Close to the

structure design discontinuity, the substantial reconstruc-

tion error appears. This is evident in both cases in Figs.

7(c) and 7(d). This error comes from the fact that the opti-

cal field received from propagation through the design me-

dium is highly distorted by presence of very large refrac-

tive-index discontinuity. It is especially visible for the case

here examined, where the object has light converging prop-

erties. In such cases, the large intensity drop at the refrac-
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Fig. 6. Reconstruction errors Änerr received using standard and modified focusing for SIP objects (Änp = 0.005) (a) and the reconstruction

errors Änerr received using standard and modified focusing for GIP objects (Änp = 0.005) (b).



tive-index discontinuity is observed. Therefore the optical

structure design modulations at these places cannot be re-

covered.

As it can be seen in Fig. 7, for both optical structure de-

sign cases, the highest errors are located at the area of the

structure design discontinuity. Therefore exclusion of this

area from the error computations would give meaningful re-

duction of the computed errors. For example, exclusion of

20% area around design discontinuity for the case presented

in Fig. 7, gives following statistical error reduction, 17% re-

duction for step-index design and 21% for gradient-index

design. To get quantitative results of the received errors for

the presented reconstruction algorithm, the series of simula-

tions for the above mentioned structure designs (step-index

and gradient-index) with the variable Än in the range

(–0.21–0.21) and n0 = 1.46 were performed. In these simula-

tions, the analyzed object designs were distorted by periodic

step-index and cosine index distributions with Änp = 0.01

and the period T = 28.57ë. In all simulations, the statistical

errors Änerr (Eq. 3) were computed and the received results

are plotted in Fig. 8. From both plots it can be clearly seen

that the presented method gives accurate reconstructions.
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Fig. 7. Exemplary reconstructions received for the algorithm using back propagation in reference medium: reconstruction of the object

refractive-index (a), reconstruction of refractive-index deviation from step-index object design (c), reconstruction of the object

refractive-index (b), and reconstruction of refractive-index deviation from gradient-index object design (d).

Fig. 8. Errors of tomographic reconstruction using back propagation in known reference medium for: step-index (a) and gradient-index

object designs modulated by periodic step-index and cosine-index distributions with Änp = 0.01 (b).
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Optical diffraction tomography applied for 3D measure-

ment of refractive-index and birefringence distribution in

optical microelements suffers from low dynamic range and

high signal-to-noise ratio. These features caused by linea-

rization used in tomographic reconstruction algorithms

were studied by extensive numerical simulations for ele-

ments with various phase distributions. The limitations of

ODT applicability for step and gradient-index objects have

been determined. It was shown that for the objects having

light converging or diverging properties the modified fo-

cusing (numerical or optical) should by introduced in

tomographic reconstruction algorithm. This provides the

results with reduced errors. In order to extend the dynamic

range of ODT, new tomographic reconstruction algorithm

was proposed for measurement of optical elements with the

known design. This algorithm uses numerical back propa-

gation of the measured scattered optical field in element

design medium. It is shown that application of this algo-

rithm allows 3D measurement of optical microelements

having large deviation of refractive-index distribution.
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