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Abstract: Hydrobiological research of high mountain streams in the High Tatras was carried out in 2009-2010. We evaluated
the influence of windstorm on caddisfly assemblages. To assess the influence of windstorm we focused on river morphology
using the RHS method and evaluation of TAM, TOM and BOM (CPOM, FPOM, UFPOM) amount in seven streams.
Site 1 was a control and the other six were disturbed by the windstorm in different ways. The most remarkable differences
compared to the control site was in feeding structure at sites most affected by erosion. In these streams there was a
noticeable dominance of predators from the family Rhyacophilidae (mainly Rhyacophila tristis; sites 3, 4, 5, 6) and a
remarkable decrease of passive filter feeders (site 4, 5). Using Spearman coefficient we confirmed a positive correlation
between the proportion of predators and amount of TAM caused by erosion of steep deforested slopes of windstorm affected
sites. In contrast, we did not observe such an increase in the proportion of predators at site 7, which was affected by both
windstorm and subsequently by fire. This might be explained by the shallow vee valley with no observed erosion, where
this site is situated. We also found a negative correlation between predators and evenness, indicating unstable community
structure clearing succesion in the streams disturbed by erosion, and a negative correlation between passive filter feeders
and UFPOM. We found out that overhanging tree boughs and LWD had an influence on species composition. RHS was a

useful tool in characterising the influence of hydromorphology on caddisfly assemblages.
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Introduction

The windstorm in the High Tatras in 2004 was one
of the most devastating in the history of this high-
mountain ecosystem. Its intensity was likely condi-
tioned by global climate change (Korent 2005), which
can influence the Earth’s environment in a significant
way. Despite an expected increase in frequency and in-
tensity of windstorm activity (Hopkinson et al. 2008),
little is known about the influence of such extreme
events on stream biota.

In this article we focus on caddisflies, because
they are: (1) well-suited to reflect the intensity of
different stressors on aquatic ecosystems (Hering et
al. 2009), particularly hydromorphological degradation
(e.g., Statzner et al. 2001; Lorenz et al. 2004) and
(2) recommended as flagship indicators for the assess-
ment of climate change in mountain areas (Ciamporova-
Zatovicova et al. 2010).

Historical information on Trichoptera in the Tatra
Mountains comes from the faunistical research from
the turn of the 19*" and 20" century (Mocsary 1899
and others), which was later summarized in a detailed
study of Mayer (1939). Further, fragmented data ap-
peared in the second half of 20*" century after the
establishment of the Tatra National Park (TANAP),
mainly focused on hydrobiological research (e.g., Krno
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et al. 1985, 1986; Bulankova et al. 2001; Sporka et
al. 2002; Krno 2006). Results of Polish trichopterolog-
ical research in the Tatra Mountains are reviewed by
Szczesny (1986). The most detailed information about
the occurrence and vertical distribution of Trichoptera
species in the TANAP area comes from Chvojka (1992).

The first results of the effect of deforestation and
altered temperature regime of streams caused by wind-
storm in given area were published by Lanczos et al.
(2011) and Sustek (2011) who dealt with stoneflies and
ripicol Carabidae, respectively.

The main objective of our study was to charac-
terize the caddisfly assemblage of six streams impacted
by windstorm and one near-natural stream in the High
Tatra Mountains. Specific objectives were to: (1) as-
sess the structure of caddisfly assemblages, (2) compare
the assemblage structure in near natural stream with
streams affected by windstorm and (3) evaluate the in-
fluence of altered river morphology due to windstorm
on caddisflies.

Material and methods

Study area

The study area was located in the High Tatras, Slovakia.
The most important physiographical and chemical parame-
ters of the sites are given in Table 1 and 2. The map, pic-
tures and hydromorphological characteristic of study sites
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Table 1. Physiographical characteristics of selected sites in the High Tatra Mts.

Site  Stream
number name

Velky Sum
Poprad
Biely Vah

N O Ul W N

Longitude
WGS84 E

20°6'26.83"
20°4/41.93"
20°0'58.28"

Batizovsky potok 20°8/39.44"
Velicky potok

Hromadna Voda
Slavkovsky potok 20°11/42.48"

20°10’30.49”
20°10’18.95"

Latitude  Altitude

WGS84 N

49°7'44.95"
49°7'12.49"”
49°7'18.95"
49°7'11.84"
49°7'22.13"
49°7'20.88"
49°7'58.77"

(m)

1253
1232
1232
1044
1001
1021
1047

Stream Forest area Proportion of Length of stream Slope

order (km?) forest area damaged by (%)
(Strahler, damaged by windstorm

1964) windstorm (%) (m)
3 0.940 0.00 0 31.7
4 4.286 6.39 458 10.2
3 1.157 37.18 1448 14.3
3 1.620 45.48 1728 19.0
3 1.617 28.06 1131 15.8
3 2.264 40.46 1706 18.4
3 1.109 24.11 762 23.1

Table 2. Values of transported, benthic in/organic mater and conductivity at sampling sites (site 1 — control site).

Site Date
1 13.5.2009
1.10.2009
9 18.5.2010
22.9.2010
3 20.5.2010
24.9.2010
4 18.5.2010
24.9.2010
5 19.5.2010
21.9.2010
6 13.5.2009
1.10.2009
- 13.5.2009
1.10.2009

CPOM AFDM

(gm™2)

1.223
7.468

2.251
1.306

2.039
6.892

1.143
7.088

0.348
3.638

66.899
6.449

4.329
2.344

FPOM AFDM
(gm—2)

14.316
17.820

31.386
20.747

3.214
14.685

10.779
51.749

4.096
10.798

253.229
36.844

40.600
3.384

UFPOM AFDM TAM TOM AFDM Conductivity
(g m~2) (mg L™1) (mg L™1) (uS ecm~1)
266 00 by 25
s 00 T 26.5
. 00 5o 21.0
70 oo e 16.0
e oo 2 19.0
T3 Yor e 27.0
510 00 32 20

Explanations: CPOM — coarse particulate organic matter, FPOM - fine particulate organic matter, UFPOM — ultra fine particulate
organic matter, TAM — transported inorganic matter, TOM — transported organic mater.
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Fig. 1. Proportion of inorganic substrate types occuring in the study sites at 9. spot-checks, method described in AQEM Consortium

(2002).

are given in Buldnkova et al. (2013), where comparison
among these sites is explained.

Data sampling

Macroinvertebrate samples were collected between late
March 2009 and October 2010 using the standard AQEM

method (AQEM Consortium, 2002). Spring and autumn
sampling provided quantitative samples (exact dates of
quantitative sampling are in Table 2). Macroinvertebrate
samples were collected within and located at spot-check 9
of our RHS survey (a 50 m section of the stream). All present
dominant microhabitats (with coverage at least 5%) (Fig. 1),
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Table 3. Dominance values (%) of caddisfly taxa collected at seven sampling sites (spring and autumn samples only).

Taxon/site 1
Apataniidae 15.7
Apatania carpathica Schmid, 1954 13.0
Apatania fimbriata (Pictet, 1834) 2.8
Glossosomatidae 0.0
Glossosoma conformis Neboiss, 1963 0.0
Goeridae 1.9
Lithaz niger (Hagen, 1859) 1.9
Limnephilidae 68.5
Acrophylax sowas Szczesny, 2007 0.0
Allogamus auricollis (Pictet, 1834) 0.9
Allogamus uncatus (Brauer, 1857) 0.0
Chaetopteryz fusca Brauer, 1857 0.0
Drusus annulatus (Stephens, 1837) 1.9
Drusus biguttatus (Pictet, 1834) 3.7
Drusus discolor (Rambur, 1842) 19.4
Drusus monticola McLachlan, 1876 0.0
Drusus spp. juv. 0.9
Ecclisopteryz dalecarlica Kolenati, 1848 0.0
Ecclisopteryx madida (McLachlan, 1867) 0.0
Halesus rubricollis (Pictet, 1834) 1.9
Limnephilidae (juv.) 39.8
Potamophylaz cingulatus depilis Szczesny, 1994 0.0
Potamophylaz sp. juv. 0.0
Philopotamidae 1.9
Philopotamus ludificatus McLachlan, 1878 0.0
Philopotamus montanus (Donovan, 1813) 0.0
Philopotamus sp. juv. 1.9
Rhyacophilidae 12.0
Rhyacophila fasciata Hagen, 1859 0.0
Rhyacophila glareosa McLachlan, 1867 9.3
Rhyacophila philopotamoides McLachlan, 1879 0.0
Rhyacophila polonica McLachlan, 1879 0.0
Rhyacophila sp. juv. 1.9
Rhyacophila tristis Pictet, 1834 0.9
Rhyacophila vulgaris Pictet, 1834 0.0
Sericostomatidae 0.0
Sericostoma personatum/flavicorne 0.0
Sericostomatidae (juv.) 0.0

were assessed within 20 units, each representing an area of
25 x 25 cm, sampled by a 500 pm hand-net “jabbing*. Qual-
itative samples of larvae and adults of aquatic insects were
taken from all sites. Samples were preserved in 4% formalde-
hyde. Organisms were sorted under a stereo microscope (10
magnification), then stored in 70% ethanol. They were iden-
tified to the lowest taxonomic level, species level when pos-
sible according to Waringer & Graf (1997) and Lechthaler
& Stockinger (2005). Sample collection procedure of TOM,
TAM — BOM and evaluation of LWD is given in Buldnkova
et al. (2013).

Data analysis

Only the quantitative samples of caddisfly assemblages and
data for TAM, TOM and BOM from the spring and autumn
were calculated and further statistically evaluated. Similar-
ity of the sites on the basis of caddisflies was evaluated us-
ing Past software, version 0.45 (Hammer & Harper 2001) by
method of paired group, correlation. Feeding type propor-
tion, number of taxa, diversity (Shannon — Wiener index and
Margalef index) and evenness at the sites were calculated us-
ing Asterics software, version 3.3 (Vogl 2011). Abundance
(ind.m™?) was also calculated at each site. Correlation be-
tween selected proportions of feeding types, evenness and
selected environmental factors was made using Spearman
correlation test in Statistica software, version 7 (2004), P =

2 3 4 5 6 7
0.0 0.0 0.0 0.0 2.4 33.1
0.0 0.0 0.0 0.0 2.4 22.8
0.0 0.0 0.0 0.0 0.0 10.3
3.8 0.4 1.2 2.0 2.1 0.0
3.8 0.4 1.2 2.0 2.1 0.0
0.0 0.8 0.2 0.0 1.7 6.2
0.0 0.8 0.2 0.0 1.7 6.2

71.1 48.4 38.0 35.6 38.7 49.7
0.4 0.8 0.0 0.0 0.0 0.0
2.1 15.2 0.0 1.2 3.1 6.9
0.4 0.8 0.0 0.0 3.4 4.1
0.4 0.0 0.0 0.0 0.0 0.0

25.1 13.6 0.0 0.0 5.1 4.8
3.4 1.6 1.0 1.6 0.0 1.4
5.5 6.8 2.9 4.0 4.5 0.7
3.4 2.8 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.2 0.0 0.0
0.9 0.0 1.4 14.6 14.4 0.0
3.0 0.0 0.0 0.0 0.7 0.0

25.5 6.8 32.7 13.0 5.5 31.0
0.9 0.0 0.0 0.0 1.7 0.7
0.0 0.0 0.0 0.0 0.3 0.0
3.0 10.4 2.7 0.8 7.9 0.0
0.0 7.2 2.2 0.0 7.5 0.0
0.0 0.0 0.0 0.0 0.3 0.0
3.0 3.2 0.4 0.8 0.0 0.0

22.1 40.0 57.6 59.1 44.2 11.0
0.0 0.8 0.6 0.0 0.0 0.0
0.0 2.4 1.2 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.0 2.1
0.0 0.4 0.0 0.4 1.7 0.0

16.6 24.4 51.4 52.2 40.4 5.5
5.5 12.0 4.3 6.1 2.1 3.4
0.0 0.0 0.4 2.4 3.1 0.0
0.0 0.0 0.4 2.4 0.0 0.0
0.0 0.0 0.0 0.0 3.1 0.0

0.05. The influence of hydromorphological factors on caddis-
fly assemblages was tested using Canonical Correspondence
Analysis (CCA) (Monte Carlo permutation test, 499 per-
mutations, P = 0.05) in CANOCO software, version 4.56
(ter Braak & Smilauer 1997).

Results

At the seven study sites we found 2,310 caddisfly lar-
vae belonging to 31 taxa. The 1,353 larvae from the
spring and autumn quantitative samples belonged to 25
species (Table 3). Limnephilidae individuals prevailed
at both site 2 (71.1%) and the control site (68.5%). In
the most affected sites the family Rhyacophilidae (es-
pecially species Rhyacophila tristis) dominated (site 5
- 59.1%, site 4 — 57.6%, site 6 — 44.2%).

On the basis of species composition we can divide
the study streams as follows (Fig. 2):

1. Group A: includes the control site and, surpris-
ingly site 7, which was affected not only by windstorm
but also by a subsequent fire. These separate from the
streams clustered in group B by occurrence of species
from the family Apataniidae (mainly Apatania carpa-
thica, less A. fimbriata), the absence of the family Glos-



504

A

0.6
0.5
0.4
0.3
0.2
0.1+

Similarity

Site

Fig. 2. Tree diagram of similarity of seven sites on the basis of
taxonomic composition of caddisflies. Paired group, correlation,
spring and summer sampling.

sosomatidae and fewer species of the family Rhyacophil-
idae (especially species Rhyacophila tristis).

2. Group B: streams variously affected by wind-
storm; they can be divided into subgroups:

a) site 2: the least affected site with greatest val-
ues of width, depth and discharge (4" order stream)
is the most outstanding from other streams because of
fewer Rhyacophilidae species, typical species is Drusus
annulatus.

b) sites 3-6: these were characterised with higher
proportion of predators of the family Rhyacophili-
dae; however sites 4-6 are even more closely linked
together with the pronounced dominance of Rhya-
cophila tristis, the occurrence of species Ecclisopteryz

Proportion of feeding type(%)

D. KALANINOVA et al.

madida (at site 5 also E. dalecarlica, which is even
from 10 % epipotamal species (Schmedtje & Colling
1996)) and occurrence of the family Sericostomati-
dae.

Values of selected metrics of abundance and species
richness are given in Table 4. Site 1 had average even-
ness, diversity and the lowest abundance. One of the
most impacted sites — site 4 had the highest abundance
(392 ind. m~2) and together with site 5 had the lowest
diversity (both Shannon-Wiener and Margalef index)
as well as evenness. Together with site 7 they reached
also the lowest number of taxa (13). The highest num-
ber of taxa (18) was recorded at impacted site 6. The
highest diversity was recorded at site 6 (Margalef index
= 2.995) as well as at site 3 (Shannon-Wiener index =
2.276), where the presence of not only mountain but
also submountain species (e.g., Allogamus auricollis at
site 3 or Potamophylaz spp. at site 6) was typical.

The proportion of feeding types is shown in Fig. 3.
The most erosion impacted sites had the highest pro-
portion of predators (represented mainly by species
Rhyacophila tristis), especially site 4 (55.3%) and
5 (53.8%) and the lowest proportion of passive fil-
ter feeders (3.8% and 2.8%, respectively). The high-
est proportion of grazers/scrapers (represented mainly
by species Drusus annulatus) occurred in the largest
stream Poprad — site 2 (37.7%), followed by site 7
(28.6%). The control site had, together with sites 4
and 5, the lowest proportion of grazers/scrapers (19.5%,
15.1% and 24.1%, respectively). Site 1 had the highest
proportion of shredders (22.1%). The higher proportion
of “not available” data (= data of species with unknown
feeding ecology) at site 1 and 7 is represented mainly by

I no data available
B Grazers and Scrapers
[ Shredders

I Gatherers/Collectors
I Passive filter feeders
Il Fredators

Fig. 3. The proportion of feeding types of caddisflies at all the sites according to ASTERICS, 3.3.

Table 4. Metrics of abundance and caddisfly species richness.

Metric/site 1 2
Abundance (ind.m~?2) 86.4 188
Number of taxa 14 16
Diversity (Shannon-Wiener-Index) 1.891 2.111
Diversity (Margalef Index) 2,777 2.747
Evenness 0.717 0.761

3 4 5 6 7
200 392 197.6 233.6 116
17 13 13 18 13

2.276 1.333 1.611 2.151 2.054
2.898 1.937 2.178 2.995 2.411
0.803 0.520 0.628 0.744 0.801
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Table 5. Spearman correlation between selected proportion of feeding types and environmental parameters (P < 0.05).

Pred/known sp. Pred/all Pf/sp.
Pred/known sp. 0.750 0.107
Pred/all —0.107
Pff/sp.
Evenness

TAM average
UFPOM average

Evenness TAM average UFPOM average
-0.786 0.445 —0.143
—-0.500 0.815 0.179

0.286 -0.074 -0.786
—0.259 —0.286
0.445

Explanations: Pred — predators, Pff — passive filter feeders, all — all the larvae, sp. — the larvae determinable to species level, known
sp. — the larvae determinable to species level with known feeding ecology, TAM — transported inorganic matter, UFPOM — ultra fine

particulate organic matter, statistically significant values are in bold.
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Fig. 4. Relation of caddisfly species to the selected hydromorphological features (CCA) (black circle: sample, green triangle: species,
LWD: large woody debris, O-boughs: overhanging boughs, Acr sow: Acrophylaz sowai, All aur: Allogamus auricollis, All unc: Alloga-
mus uncatus, Apa car: Apatania carpathica, Apa fim: Apatania fimbriata, Cha fus: Chaetopteryx fusca, Dru ann: Drusus annulatus,
Dru big: Drusus biguttatus, Dru dis: Drusus discolor, Dru mon: Drusus montanus, Ecc dal: Ecclisopteryz dalecarlica, Ecc mad:
Ecclisopteryx madida, Glo con: Glossosoma conformis, Hal rub: Halesus rubricollis, Lit nig: Lithax niger, Phi lud: Philopotamus
ludificatus, Phi mon: Philopotamus montanus, Pot ¢ d: Potamophylaz cingulatus depilis, Rhy fas: Rhyacophila fasciata, Rhy gla:

Rhyacophila glareosa, Rhy phi: Rhyacophila philopotamoides, Rhy p
Rhyacophila vulgaris, Ser p f: Sericostoma personatum/flavicorne)

the species Apatania carpathica, occuring extensively
just at these two sites.

We recorded a positive correlation between the pro-
portion of predator species to all the larvae and TAM
in streams (0.815), a negative correlation between the
proportion of predators to all the species which have
known feeding ecology and evenness (—0.786) and a neg-
ative correlation between the proportion of passive filter
feeders to all the species and UFPOM (-0.786) (Ta-
ble 5).

Within the group of five tested hydromorphological
parameters by CCA (Fig. 4) (shading of channel, over-
hanging boughs, exposed bankside roots, fallen trees,

ol: Rhyacophila polonica, Rhy tri: Rhyacophila tristis, Rhy vul:

LWD), overhanging boughs were statistically significant
(F = 2.166; P = 0.046). Importance of LWD was repre-
sented by high value of P = 0.560 (F' = 1.982). Eigenval-
ues of axes 1 and 2 of the CCA are 0.341 and 0.362, re-
spectively, and explained 58.5% of the overall variance
of the species data (Table 6). According to these two
factors we can divide the sites and species composition
into three groups. In the first group we recorded a pos-
itive correlation between LWD and recorded species of
genera FEcclisopteryx, Philopotamus, Sericostoma and
most species of the genus Rhyacophila at sites 3, 4,
5 and 6. The second group showed a positive corre-
lation with overhanging boughs especially at site 2 and
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Table 6. Summary table of CCA based on quantitative insect data — eigenvalues and percent of variance of the first four ordination

axes.

Axes 1 2
Eigenvalues 0.341 0.362
Species-environment correlations 0.888 0.000
Cumulative percentage variance:

of species data 28.4 58.5
of species-environment relation 100.0 0.0

Sum of all eigenvalues
Sum of all canonical eigenvalues

consisted mainly of species Chaetopteryz fusca, Halesus
rubricollis, Glossosoma conformis and species of genus
Drusus. The third group consisted of the species typical
mainly for the site 7 (Rhyacophila polonica), but also
the control site 1 (Apatania fimbriata and A. carpathi-
ca).

Discussion

Species composition

Trichoptera assemblages in seven assessed streams of
the High Tatras were represented mainly by the fami-
lies Rhyacophilidae (especially Rhyacophila tristis) and
Limnephilidae (mainly Drusus spp.). However, the fam-
ily Limnephilidae was prevalent at the least disturbed
and more shaded sites (1 and 2), whereas the family
Rhyacophilidae dominated the most disturbed defor-
ested sites (4, 5 and 6). Similarly Arscott et al. (2003)
observed substantially higher abundance of Limne-
philidae species in the forested floodplain and a greater
abundance of Rhyacophila spp. in the open-gravel flood-
plain of headwater streams.

Our results resemble the species composition in
the streams of the montane zone described by the
most detailed work related to caddisflies of the TANAP
(Chvojka 1992). Nevertheless, we did not record species
Chacetopterygopsis maclachlani Stein, 1874 and Psilo-
pteryz psorosa Kolenati, 1860, which the author states
as common in these habitats. However, his results were
based on the collection of imagoes only. We also did
not confirm the High Tatra endemic Allogamus star-
machi Szczesny, 1967 and the Carpathian endemic
Chaetopteryz polonica Dziedzielewicz, 1889, which oc-
cur in streams or lakes mostly at higher altitudes than
our sites. The other reason of not recording of above
mentioned species and also expectable species Melam-
pophylaz nepos (McLachlan, 1880) could be the fact
that not all the larvae of given genera are determinable
to species level.

In contrast to Chvojka (1992) we recorded rela-
tively high proportion of Apatania carpathica (espe-
cially at site 1 and 7), whereas the author refers to
the very rare occurrence of this species (only a few
imagoes at one site in the Belianske Tatry). We also
found the species Allogamus auricollis, Ecclisopteryx
madida, Glossosoma conformis, Chaetopteryr fusca
and Philopotamus montanus, which are according
to him spread distributed under 1000 m altitude.
Species recorded from the lowest parts of the TANAP

3 4 Total inertia
0.204 0.153 1.203
0.000 0.000
75.5 88.2

0.0 0.0
1.203
0.341

also appeared in our disturbed sites; namely FEc-
clisopteryz dalecarlica (site 5), Serricostoma flavi-
corne/ personatum (sites 4, 5) and Carpathian endemic
Potamophylaz cingulatus depilis (so far refered for the
TANAP only in the species level as Potamophylax cin-
gulatus) (sites 2, 6 and 7). This could be caused by the
shift of these species upstream due to increase of tem-
perature in these streams (unpublished data). We also
recorded Carpathian endemic Acrophylaz sowai (sites 2
and 3) known from the High and the Low Tatras in Slo-
vakia (Luka$ & Chvojka 2011), which Chvojka (1992)
listed as A. vernalis Dziedzielewicz, 1912.

Metrics

Velky Sum as a control site had among all the sites
average evenness as well as diversity. We can assume,
that this site is ecologically balanced, where no obvi-
ous changes are occurring. The six disturbed sites were
affected in various ways in comparison to site 1.

Deforestation can severely affect species composi-
tion of Trichoptera assemblages (Chakona et al. 2009).
Generally, taxonomic diversity decreases with distur-
bance (Stone & Wallace 1998). Higher sediment in-
put due to erosion (Webster et al. 1992) can decrease
species richness, density or biomass (Larsen et al. 2009;
Couceiro et al. 2011; Angradi 1999). However, changed
environmental conditions due to deforestation such as
increased insolation, primary productivity and altered
thermal regimes (Swift, 1983) create habitats similar to
downstream reaches and so enable colonization of sev-
eral taxa from these reaches (Stone & Wallace 1998).
Moreover, sheet wash from the disturbed soil enriched
with nutrients can increase abundance of macroinver-
tebrates (Hernandez et al. 2005). In our study we ob-
served the highest divergence in diversity and evenness
at the most impacted sites: the lowest values of these
indexes at sites 4 and 5 (the likely explanation is an in-
crease of predatory species of the family Rhyacophilidae
at the expense of other species) and the highest diver-
sity at site 3 and 6 (connected likely with shift of species
from the lower reaches).

Our results suggest that erosion, resulting in an
increase of suspended sediment concentrations, signif-
icanly affects feeding activity of benthic invertebrates
(Aldridge et al. 1987; Cline et al. 1982; Graham 1990;
Krno 2000). We found out a positive correlation be-
tween proportion of predators to all the larvae with
known feeding ecology and TAM, what is related to
increased erosion in disturbed streams. Some authors
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characterize sedimented sites in general by a reduced
density of prey items (Peckarsky 1984) or by a reduced
proportion of predators in macroinvertebrate assem-
blages (Larsen & Ormerod 2010). However, we explain
a higher proportion of caddisfly predators at these sites
(3, 4, 5 and 6) by an increase of Oligochaeta and Chi-
ronomidae (unpublished data), which represent their
food source and which increase in the abundance in
response to higher (autochthonous) fine sediment loads
(Gray & Ward 1982; Larsen et al. 2009; Dudgeon 1994).
A similar increase of macroinvertebrate predators due
to increased sediment input was observed by Milisa et
al. (2010). They supposed that a disrupted community
may be easier to prey on and this is the reason why
the predators thrive during the disturbance. We found
a negative correlation between predators and evenness,
which is most apparently seen at the most impacted
sites, corresponding to the most disrupted community.
At site 7, which was affected not only by windstorm,
but also by the fire in 2006, we recorded a very low
proportion of predators and very high evenness. This
could be due to valley shape, which is not steep enough
to allow high erosion. We also recorded a negative cor-
relation between the proportion of passive filter feeders
to all the species and UFPOM and the lowest deal of
passive filter feeders at sites 4 and 5. This corresponds
to several other studies stressing adverse effect of in-
creased siltation to benthic invertebrates (e.g., Wood
& Armitage 1997; Weigelhofer & Waringer 2003) or ex-
actly to caddisflies (e.g., Hedrick et al. 2010; Minshall
1984; Monaghan et al. 2001; Pollard & Reed 2004).

At site 2 we recorded the highest proportion
of grazers/scrapers, which usually occur in unshaded
streams with supposed high amount of microscopic
epilithic algae (Wiberg-Larsen et al. 2000). The sec-
ond highest proportion was at site 7, which is situ-
ated in an open area like the most impacted sites 4
and 5, where the proportion of this feeding type was
lower, but unlike them it was not so affected by ero-
sion due to shallow vee. The control site had also a
relatively low proportion of grazers/scrapers, but the
stream was more shaded. At this site we observed the
highest proportion of shredders, which prefer forested
to open floodplain due to higher detrital food resources
(Arscott et al. 2003), but the difference was insignif-
icant low in comparison with the disturbed sites. We
suppose that accumulation of LWD at impacted sites
could represent a source of BOM, which shredders feed
on (Huryn & Wallace 1987; Boulton & Lake 1992; Min-
shall et al. 1992; Angradi 1996; Voelz & Ward 1996;
Wallace et al. 1999).

Effects of river morphology on species composition

Shading and LWD explained large variance of the
species composition in studied streams. The most im-
pacted sites (3, 4, 5 and 6) with species of gen-
era Fcclisopteryz, Sericostoma, Philopotamus and most
species of the genus Rhyacophila were positively cor-
related with LWD. Many of these belong to known
wood associated fauna: Sericostoma personatum is a
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facultative xylophagous, wood serves as an attache-
ment point for Philopotamus montanus and P. ludi-
ficatus (Hoffmann & Hering 2000), Rhyacophila tris-
tis uses dead wood for searching of prey (Dittmar
1955). Overhanging boughs need for their develop-
ment especially species Chaetopteryz fusca and Hale-
sus rubricollis. These species were most closely asso-
ciated with recorded species of the genus Drusus at
site 1. Here, based on CCA analysis, Carpathian en-
demic Acrophylax sowai was closely matched to site 1
(Fig. 4), although it was not recorded at the control
site. However, A. sowai occurs, according to Szczesny
(2007), in similar habitats to Rhyacophila glareosa,
which was recorded at site 7 only. Similarity of sites
1 and 7 is caused mainly by the presence of Apa-
tania carpathica and A. fimbriata. They are accord-
ing to Graf et al. (2008) eu-hypocrenal species, so
zonation preference could probably be a more impor-
tant factor than other environmental variables influ-
encing their occurrence (as both sites had the high-
est slope and the shortest distance to the spring
(Bulankova et al. 2013). However, not all the changes
in species composition can be explained by an alter-
ation in the hydromorphology. Deforestation due to
windstorm causes other significant changes in environ-
mental factors, such as temperature regime (Swift &
Messer, 1971). Nevertheless, this is not the subject
of this article, but the matter of our further analy-
ses.

Conclusion

Erosion, shading and LWD were considered the main
factors influencing caddisfly assemblages at our study
sites. In comparison to control and sites less affected
by erosion (1, 2 and 7) the sites influenced by ero-
sion (3, 4, 5, 6) had an increased proportion of preda-
tors, mainly species Rhyacophila tristis. Moreover, at
sites 4 and 5 we recorded the lowest diversity, even-
ness and proportion of passive filter feeders. How-
ever, sites 3 and 6 had very high diversity and to-
gether with sites 4 and 5 are closely connected with
other important effect of windstorm — an increased
amount of LWD, which represents a food source, pro-
vides shelters and can have other positive effects on
aquatic biota in streams (e.g., Hoffmann & Hering
2000).

The influence of windstorm is thus a combina-
tion of negative and positive effects, which the ben-
thic invertebrates gradually adapt to. In disturbed
streams considerable succession in various directions
is in progress, whereas caddisfly assemblage structure
at the control site is in relative ecological equilibrium
(expressed also by average values of diversity). Anal-
yses of other important factors, for example increased
temperature in some disturbed streams (unpublished
data) are required to help to better understand the re-
sponses of caddisfly assemblages in this unique high-
mountain ecosystem, which is vulnerable to climate
change.
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