

The role of TerW protein in the tellurite resistance of uropathogenic *Escherichia coli*

Lenka Valkovicova, Danka Valkova, Silvia Vavrova, Olga Alekhina, Vinh Phu Hoang, Margareta Jezna & Jan Turna

Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska dolina B2, SK-84215 Bratislava, Slovakia; e-mail: fclenka@yahoo.com

Abstract: The ter operon, which is found on a large conjugative plasmid, pTE53, from the uropathogenic strain Escherichia coli KL53, mediates heavy metal ion resistance to tellurium compounds. Here we present the function of the terW gene, which is transcribed from its own promoter in the opposite direction to the terZABCDE loci and encodes a protein of 155 amino acids. A TerW protein containing an N-terminal His-tag was overexpressed, purified and analysed for the in vitro DNA-binding. Green fluorescent protein fusions, a fluorimetric assay, nonradioactive gel retardation and capillary electrophoresis footprinting were used to examine the interaction between the bioinformatically-predicted DNA-binding region and TerW. Here we show that TerW binds specifically to the potential promoter region of the terZABCDE genes, which are responsible for the tellurite resistance of the Escherichia coli host cells. Our results suggest that the transcriptional regulation of ter genes is operon-like.

Key words: tellurite resistance; ter genes; TerW biological function

Abbreviations: CE, capillary electrophoresis; EMSA, electromobility shift assay; GFPuv, green fluorescent protein; IPTG, isopropyl- β -D-1-thiogalactopyranoside; MIC, minimal inhibitory concentration; PPRR, potential promoter rich region; qRT, quantitative real time; Te^R, tellurite resistance.

Introduction

Tellurium is a rare element, belonging to the group known as chalcogens, that shares chemical properties with biologically important elements such as oxygen, sulphur and selenium (Fischer 2001). Both organic and inorganic tellurite soluble salts have been found to be toxic for most forms of life at very low concentrations (Chasteen et al. 2009). Determinants of tellurite resistance (Te^R) have been described as a part of plasmids (IncHI, IncHII and IncP) and/or chromosomes, representing typical pathogenicity-associated islands (Perna et al. 1998; Taylor 1999; Tarr et al. 2000).

Plasmids of the P incompatibility group have the ability to transfer between, replicate in and remain stable in the full variety of Gram-negative bacteria (Thomas & Smith 1987). The RK2, RP4, RP1, R18 and R68 plasmids were originally isolated from Gramnegative bacteria in Birmingham (UK) in 1969 (Holloway & Richmond 1973; Ingram et al. 1973). The RK2 Te^R determinant has been located between the *kilA* and *korA* genes, which are involved in the control of plasmid replication (Taylor & Bradley 1987). This 3 kb region contains an operon encompassing the three genes (*kilA*, *telA* and *telB*), which are necessary for the expression of high-level resistance to tellurite, and no DNA or amino acid sequence homology to the IncHI

or IncHII Te^R determinants has been detected (Goncharoff et al. 1991; Walter et al. 1991). The *kilA* gene was previously identified by Figurski et al. (1982), and a lethal effect was observed when it was cloned separately from the *korA* (kill-override) gene, which negatively regulates transcription from the *kilA* promoter (Young et al. 1987). Further work by this group suggested that each of three genes (*kilA*, *telA* and *telB*) can express a host-lethal phenotype (Goncharoff et al. 1991).

The determinant of ter gene family was first found on a pMER610 (IncHI2) plasmid of Alcaligenes sp. (Jobling & Ritchie 1987); it has also been found on the plasmid pHH1508a (IncHII) from Klebsiella aerogenes (Walter & Taylor 1989), the large conjugative plasmid pR478 (IncHI2) from Serratia marcescens (Whelan et al. 1997) and the chromosomes of *Proteus mirabilis* (Toptchieva et al. 2003) and Escherichia coli O157:H7 (Perna et al. 2001). Several enteric pathogens share a similar locus of ter genes, which provides the high level resistance that is currently used for the isolation and identification of many pathogens, including the emergent enterohemorrhagic E. coli O157:H7 strain (Zadik et al. 1993). This human pathogen probably acquired these genes by horizontal gene transfer, as a part of a large tellurium-resistance and adhesin-conferring island that also conferred urease, colicin and phage protection proteins (Tarr et al. 2000).

Table 1. Strains and plasmids used in this study.

Strain/Plasmid	Relevant genotype	Reference
Strain E. coli		
$\mathrm{DH5}lpha$	F', endA1, hsdR17, $(r_k^- m_k^+)$, supE44, thi-1, recA1, gyrA (Nal ^R), relA1, Δ (lacIZYA-argF) U169, deoR, $(\Phi 80 dlac \Delta (lacZ) M15)$	Woodcock et al. (1989)
BL21(DE3)	F-, $ompT$, $hsdS_{\beta}$ (r_{β} - m_{β} -), dcm , gal , (DE3) tonA	Novagen
KL53 KL53-W1 KL53-W1b Plasmid	${\rm Cm^R,\ Tc^R,\ Te^R,\ clinical\ isolate}$ KL53 containing the expression plasmid pETW1.1, $\lambda{\rm DE3,\ Cm^R,\ Tc^R,\ Km^R,\ Te^R}$ KL53 containing the expression plasmid pRSFW1b, $\lambda{\rm DE3,\ Cm^R,\ Tc^R,\ Km^R,\ Te^R}$	Burian et al. (1998) This work This work
pJET 1.2/blunt pET28a(+) pRSFDuet-1 pACYC184 pBAD-GFPuv pPMZ-JET pMBAD1 pMAC1 pETW1.1 pRSFW1b	A/T cloning vector, Ap^R ColE1 replicon, Km^R RSF1030 replicon, Km^R p15A replicon, Cm^R , Tc^R ColE1 replicon, Ap^R PPRR of ter operon in pJET1.2/blunt, Ap^R PPRR of ter operon fused with $gfpUV$ in pBAD-GFPuv, Ap^R PPRR of ter operon fused with $gfpUV$ in pACYC184, Cm^R $terW$ in pET28a(+), Km^R , $terW$ in pRSFDuet-1, $terW$ $terW$ in pRSFDuet-1, $terW$ te	Fermentas Novagen Novagen Chang & Cohen (1978) Crameri et al. (1996) This work This work This work This work This work This work

The ter operon (terXYW and terZABCDEF) has been found in our laboratory on a large conjugative plasmid pTE53, isolated from the uropathogenic strain E. coli KL53 (Burian et al. 1998). The minimal part of the operon, which is essential for the tellurite resistance phenotype, contains the terBCDE genes (Kormutakova et al. 2000). The whole determinant was cloned using in vivo methods based on the miniMu derivative cloning system, resulting in the pNT3B plasmid (Kormutakova et al. 2000; Tu et al. 2001; Vavrova et al. 2006). The presence of the ter operon improved the fitness of bacterial strains by enabling them to escape from macrophage attack (Valkova et al. 2007). In the present study, we present the biological function of the TerW protein.

Material and methods

Strains and cultivation media

Escherichia coli DH5α cells were used for the cloning and amplification of all recombinant plasmids. E. coli BL21(DE3) cells were used for the expression and overproduction of His-tagged fusion proteins. The E. coli KL53 strain is the original uropathogenic clinical isolate from the Department of Urology, Faculty of Medicine, Comenius University in Bratislava (Burian et al. 1998). LB medium with appropriate antibiotics was used for the maintenance and growth of the E. coli strains. Antibacterial agent concentrations were used as follows: 0.5–10 mM K₂TeO₃ (Biomark Laboratories), 100 μg/mL ampicillin, 25 μg/mL kanamycin, 34 μg/mL chloramphenicol and 25 μg/mL tetracycline.

In silico analysis and cloning of a potential promoter sequence

The potential promoter rich region (PPRR) of the *ter* operon was determined with the help of the Neural Network Promoter Prediction software (http://www.fruitfly.org/seq_tools/promoter.html) and Softberry-BPPROM software (http://www.softberry.com/berry.phtml). DNA manipulations were carried out as described by Sambrook et al.

(1989). Plasmid DNA was isolated from overnight culture in LB medium with appropriate antibiotics using QI-Aprep spin miniprep kits (Qiagen). For all PCR amplifications, total DNA from E. coli KL53 was used as the template. PCR products were purified using the Promega Wizard PCR product purification kit. All generated plasmids are listed in Table 1. The construction of the plasmid called pPMZ-JET consisted of the insertion of an 830 bp PCR fragment DV3-ZfuzR (bearing PPRR) into the A/T cloning vector pJET1.2/blunt (Fermentas). Primers DV3 (5'-ATACCGGGCTGTCCGAGAAC-3') and ZfuzR (5'-AAGCTAGCGAGTGATACCGTCTGG-3') were derived from the sequence of the large conjugative plasmid pTE53, isolated from uropathogenic E. coli KL53. To simplify the cloning and preparation of an in-frame gfpUV fusion, we used a reverse ZfuzR primer with an artificial NheI restriction site. Amplification was performed using the following thermal program: initial denaturation at 94°C for 2 min, 29 cycles of 94°C for 30 s, 55°C for 45 s and 72°C for 2 min, with a final extension cycle at $72\,^{\circ}\mathrm{C}$ for 8 min. The PCR amplification product comprised 36 bp from the terZ gene and a 794 bp region preceding the terZ gene; we assumed that this region was large enough to include the native ter operon promoter. The extracted fragment DV3-ZfuzR (XbaI/NheI) from the plasmid pPMZ-JET was subcloned into the vector pBAD-GFPuv (Crameri et al. 1996) as follows: (i) we removed the natural gfpUV promoter from the pBAD-GFPuv vector by cutting with restriction endonucleases EcoRV and NheI; and (ii) the PCR fragment of the ter PPRR (DV3-ZfuzR) was subcloned into linearised pBAD-GFPuv vector. Using the aforementioned subcloning process, we prepared the plasmid pMBAD1 (pBAD-GFPuv derivative with EcoRV and XbaI restriction sites removed by Klenow treatment and re-ligation). After the digestion of plasmid pMBAD1 with the restriction enzymes ClaI and EcoRI, a DNA fragment 1,950 bp in size remained, which included the PPRR with the gfpUV fusion. Plasmid pMAC1 contains the fragment described above, recloned into pA-CYC184 (Chang & Cohen 1978). New plasmid constructs were verified by restriction analysis and sequencing by an ABI 3100-Avant Genetic Analyzer (Applied Biosystems).

Construction of expression plasmids

The entire terW coding region (468 bp) was amplified by PCR using the sense primers pETWF (5'-CGGGATCCAT GCAATTAAATACCAGACA-3') and pETWFb (5'-CGGG ATCCAATGCAATTAAATACCAGACA-3'), respectively, and the antisense primer pETWR (5'-CGGAATTCGGAC TTTTTAGCGCTGTATT-3'). The PCR amplification methods were as described above. The PCR products were digested with BamHI and EcoRI restriction enzymes and cloned between the same sites of the pET28a(+) and pRSFDuet-1 expression vectors (Novagen), yielding the expression plasmids pETW1.1 and pRSFW1b, respectively. The inserted terW genes carried a 6-His tag fused to their N terminus. The identities of the recombinant plasmids were confirmed by PCR amplification and double restriction endonuclease (BamHI and EcoRI) digestion.

Expression and purification of proteins

The expression plasmids (pETW1.1 or pRSFW1b) were transformed into E. coli BL21(DE3) cells after verifying of the reading frame by sequence analysis. Transformed BL21(DE3) cells were cultivated overnight in LB medium supplemented with kanamycin at 37°C. Bacteria were diluted with fresh LB medium containing the appropriate antibiotic (1:20), and the cells were grown to the exponential phase (OD₆₀₀ \sim 0.6–0.8) at 37 °C. The expression of recombinant protein was then induced by the addition of isopropyl- β -D-1-thiogalactopyranoside (IPTG) at a final concentration of 1 mM, and the cells were further incubated with shaking at 37 °C for 3 h. The bacteria cells that expressed the TerW protein were collected by centrifugation, resuspended in equilibration buffer (50 mM sodium phosphate pH 7.4, 300 mM NaCl), lysed by sonication at 4°C (total time of 10 min, with 15 s bursts and 35 s cooling periods) and treated with DNase I (Promega). Cell debris was removed by centrifugation, and the supernatant was applied onto an equilibrated 1 mL Ni²⁺ chelating agarose column (Qiagen). The proteins were washed with 3 mL of Wash Buffer 1 (50 mM sodium phosphate pH 7.4, 300 mM NaCl, 10 mM imidazole) and 3 mL of Wash Buffer 2 (50 mM sodium phosphate pH 7.4, 300 mM NaCl, 20 mM imidazole). The purified His-tagged TerW protein was eluted with 2 mL buffer (50 mM sodium phosphate pH 7.4, 300 mM NaCl, 250 mM imidazole). After that, the samples were detected by 12% SDS-PAGE.

Non-radiochemical electromobility shift assay (EMSA) DNA fragments encompassing the PPRR of the ter operon were generated by the PCR method. Protein/DNA binding reactions were carried out in 20 μL of 20 mM TrisHCl (pH 7.6), 75 mM KCl, 5 $\mu g/mL$ of bovine serum albumin, 10% (v/v) glycerol, for 30 min at 37 °C. The binding mixtures (protein/DNA) were applied on 5% non-denaturing PAGE, stained with ethidium bromide and visualised with UV alongside a 1 kb ladder (Fermentas). Primers SL1 (5'-GTACCGTCAGCCTGGTCAGTG-3') and LVr4 (5'-CGATTCCTTTGGAGCCGAAC-3') were designed to amplify a part of terA gene, which was used as a negative control, not expected to be recognised by terW gene product.

Non-radiochemical DNase I footprinting by capillary electrophoresis (CE)

Total DNA from the $E.\ coli$ KL53 strain was used as a template to generate a probe that encompasses the potential promoter region for the tellurite resistance genes (terZABCDE). The first probe (585 bp) was generated by

PCR using the primers DV3 and Len1-FAM (5'-(6-FAM) CACTCCATAACCACTGAAGT-3'). The second, shorter probe (100 bp) was generated by PCR using the primers PTforward (5'-TCCGGAACGCCATGCAAA-3') and Len1-FAM. The PCR was performed for 30 cycles under the following conditions: 94°C for 30 s, 55°C for 30 s, and 72°C for 60 s, and fluorescein-labelled PCR products were used to prepare the binding reactions. The control reaction contained 25 µL of binding buffer (50 mM Tris-HCl pH 8.0, 100 mM KCl, 12.5 mM MgCl₂, 1 mM EDTA, 20% glycerol, 1 mM DTT), 10 µL of FAM-labelled probe (500 ng) and 10 μL of nuclease free water. The sample reactions contained 25 μL of binding buffer, 10 μL of FAM-labelled probe (500 ng) and 10 µL of the purified TerW protein (ranging from 0.1 to 20 µg). The binding mixtures were incubated for 1 hour at 37°C. Next, 50 µL of Ca²⁺/Mg²⁺ solution (5 mM CaCl₂, 10 mM MgCl₂) were added and the reactions were incubated at room temperature for 1 min. Immediately prior to use, we diluted 5 μ L of RQ1 RNase-Free DNase (Promega; $1u/\mu$ L) in 100 µL of cold Tris-HCl, pH 8.0. For the DNase I treatment, we used 3 µL of diluted RQ1 RNase-free DNase, and all reactions were then incubated at room temperature for 90 s. Each reaction was terminated by adding 90 μ L of Stop Solution (Promega), incubated at 75 °C for 10 min and then extracted with 200 µL of phenol:chloroform:isoamyl alcohol (25:24:1). The upper, aqueous phase was transferred to a fresh tube and precipitated on ice using 500 µL of 100% ethanol for 20 min. After precipitation and centrifugation $(14,000\times q)$, the DNA pellets were washed once with 70% ethanol, after which the samples were heated to 95 °C for 2 min to remove any residual ethanol. To prepare the samples for CE, the DNA pellets obtained as described in the above section were resuspended in 20 µL of nuclease-free water. Digested DNA, 1 μ L, was added to 8.6 μ L HiDi formamide (Applied Biosystems) and 0.4 µL GeneScan-600 LIZ size standards (Applied Biosystems). The samples were analysed using the 3130xl DNA Analyzer (Applied Biosystems) with the G5 dye set, running an altered default genotyping module that increased the injection time to 45 s and the injection voltage to 2.5 kV. The CE traces were examined for a loss of signal in the protein-containing samples compared to the samples without protein to determine the protein-binding regions within the DNA fragment being examined.

Fluorimetry

Conventional fluorescence microscopy was used to detect the promoter-GFPuv fusions. Promoter strength was measured with a fluorimetric assay. GFPuv reporter was chosen because tellurite toxicity prevented the use of the lacZ fusion as a reporter for regulatory studies (Toptchieva et al. 2003). E. coli BL21(DE3) containing pBAD-GFPuv with the araBAD promoter, P_{BAD} , from the arabinose operon, and the corresponding regulatory gene, araC, were used as positive and negative controls for fluorimetry that were dependent on arabinose addition/non-addition to the growth medium, respectively. Strains containing vector pBAD-GFPuv and vector derivatives carrying the PPRR of the ter operon promoter were grown in liquid media. Samples of these cultures were loaded into 96-well white microtitre plates and their fluorescence levels were measured on a fluorimeter (Tecan Safire²-Basic) with 365/10 nm excitation and 509/10 nm emission filters. In all cases, the fluorescence level of each sample was divided by the OD_{600} of the sample.

Table 2. Primers used for qRT-PCR. All PCR products were 100 bp in length.

Gene	Forward primer sequence	Reverse primer sequence
terW	5'-ACCAGACAGGCCCGGATT-3'	5'-GTCGGCTCTGAGCATTCCA-3'
terZ	5'-TTCCGTGGTCAGTCGTTCAA-3'	5'-GAGCCCTGCTCAGTCAGCTT-3'
terB	5'-AATCGGCAAGGGCGAAAC-3'	5'-CACTTTTCGCAACGGCAAT-3'
terC	5'-TGTTTATGCACCGTGATGACAA-3'	5'-GTAGAGGAAACCGGCAAATGC-3'
tufA	5'-CCGCAGACTCGTGAGCACAT-3'	5'-AGCAGCTCTTCGTCATCAACCA-3'

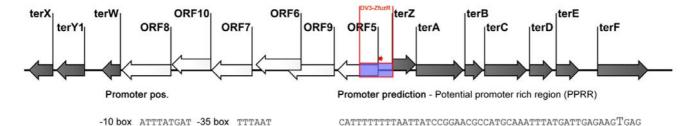


Fig. 1. Physical map and organisation of the *ter* operon from uropathogenic *Escherichia coli* KL53. The region represents the 15,719 bp assembly of sequences – GenBank Acc. Nos. AJ888883 and AJ238043. The PPRR is illustrated by the red arrow as a part of the DV3–ZfuzR DNA fragment (shaded violet). The basic promoter sequence was predicted by the Neural Network Promoter Prediction software for prokaryotic sequences with a score cutoff of 1.00 and by the Softberry-BPPROM software. The transcription start point is shown in a larger font.

Tellurite susceptibility testing

The exposure agent $K_2 TeO_3$ was serially diluted (0–10 mM) in a deep-well microplate (Sarstedt) containing 200 μL of LB medium supplemented with the required antibiotic(s) and 1 mM IPTG per well in case of His-TerW overproduction in the strains E.~coli~KL53-W1 and E.~coli~KL53-W1b. Cultures grown at 37 °C in LB medium with the appropriate antibiotic(s) to an $OD_{600} \sim 0.4$ were added to each well. Cells were incubated at 37 °C with shaking overnight and the OD_{600} was monitored to determine the minimal inhibitory concentration (MIC). The MIC was determined as the lowest concentration of $K_2 TeO_3$ that totally inhibited bacterial growth.

Quantitative real time (qRT) PCR analysis

The strains E. coli KL53-W1 and E. coli KL53-W1b, which contain expression vectors for IPTG-induced TerW overproduction, were cultivated at 37° C to an OD_{600} of ~ 0.5 in LB medium supplemented with 1 mM potassium tellurite. Overexpression of TerW protein was induced by the addition of 1 mM IPTG and cell cultures were further incubated with shaking at 37°C for 1 h. Subsequently, RNA was isolated from the IPTG-induced and non-induced strains, E. coli KL53-W1 and E. coli KL53-W1b. The RNA was stabilised by mixing 3 mL of bacterial culture with 5.4 mL of RNAlater (Ambion). After 5 min at room temperature, the bacteria were harvested by centrifugation at $3,000 \times g$ for 10 min. RNA was isolated from the pellet using the commercial SV Total RNA Isolation System (Promega), with increased DNase treatment time (60 min) compared with the manufacturer's protocol. The RNA (1 $\mu g)$ was reverse-transcribed to cDNA using a ImProm-II $^{\rm TM}$ Reverse Transcription System (Promega) and universal hexaoligonucleotide primers. For each sample, a control to check for DNA contamination in the RNA preparation was included, from which reverse transcriptase was omitted. Real time PCR was performed in an ABI Prism 9600 HT thermocycler (Applied Biosystems) with the SybrGreen Master Mix (Applied Biosystems), 10 pmol of each primer and 25 ng of template cDNA in a total volume of 20 µL. The thermocycler program consisted

of 40 cycles (15 s at 94°C, 1 min at 60°C) after an initial denaturation of 10 min at 94°C. The primers, designed using PrimerExpress (Applied Biosystems), are described in Table 2. The expression levels of particular genes were quantified using the $\Delta\Delta Ct$ method (Livak & Schmittgen 2001) normalised to the expression of the tufA gene. For each experiment, qRT-PCR was used to determine the transcript levels in triplicate on three independent cDNA samples derived from three independent cultures. Error bars show standard deviations. Expression levels were relative to the relevant non-IPTG-induced samples.

Results

In our previous work (Vavrova et al. 2006), we measured the expression of the ter operon genes in uropathogenic $E.\ coli$ KL53 under different cultivation conditions using qRT-PCR and transcription unit identification. Those experiments confirmed that terZABCDE, without terF, is transcribed as one mRNA unit, and similarly, the terW gene is transcribed separately from the terXY genes. Based on these results, we searched the ter operon sequence (GenBank Acc. Nos. AJ888883 and AJ238043) for potential promoters common to the same transcription unit as the terZABCDE genes. We used bioinformatics analysis to identify potential prokaryotic promoters. To increase the reliability of our predictions, we specifically identified potential promoters with a minimum promoter score of 1.0 (Fig. 1).

To assess the native terZABCDE promoter activity, we substituted the araBAD promoter and part of the araC regulatory gene in the pBAD-GFPuv cloning vector with a DNA fragment (DV3–ZfuzR) generated by PCR. In this way, we confirmed the existence of one common functional promoter for the ter genes by cloning a probable promoter region into the pBAD-GFPuv vector. The GFPuv reporter variant was ideal

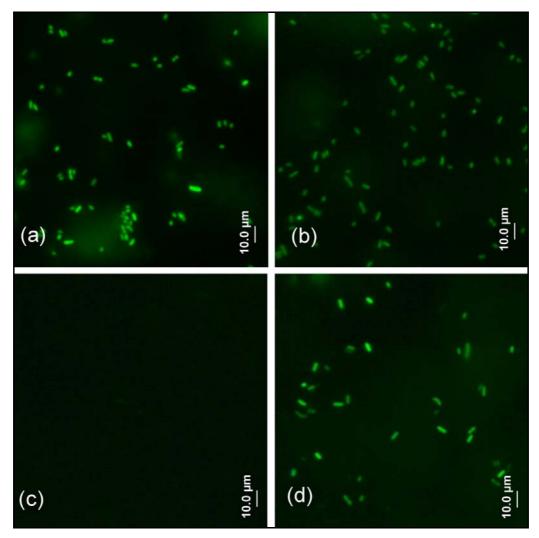


Fig. 2. E. coli with a ter promoter-gfpUV fusion. (a) E. coli cells containing the pMBAD1 plasmid expressing GFPuv. (b) E. coli cells containing the pMAC1 plasmid expressing GFPuv. (c) and (d) E. coli cells carrying the pBAD-GFPuv plasmids used as negative/positive controls in dependence on arabinose non-addition/addition to growth medium, respectively.

for these experiments because the expression of gfpUVfusion proteins have been successfully detected using UV light and could easily be checked by visual inspection of growth plates. The functional fusion of the proposed PPRR with GFPuv in the generated plasmids (pMBAD1 and pMAC1) resulted in the expression of green fluorescent protein. Its expression was analysed on an Olympus BX50 fluorescence microscope using a 100×1.25 objective, Olympus C-35AD-4 camera system and BXTA WU/SWB filter. The E. coli cells in which the gfpUV gene was under the control of the terZ-ABCDE promoter are shown in Figure 2. We measured the fluorescence with two different assays: (i) using a conventional fluorescent microscopy to visually detect the fluorescence emitted from bacteria; and (ii) collecting cells from a liquid growth medium and suspending them in PBS for the measurement using fluorimeter (Fig. 3).

Because we suspected that the product of the *terW* gene (17,263 Da) could be a key participant in the regulation of the *terZABCDE* loci at the transcriptional level, we generated plasmids expressing recombinant His-tagged TerW protein for an interaction study.

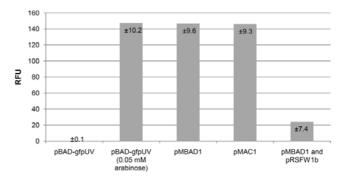


Fig. 3. Fluorimetric assay to determine the relative ter promoter activity using the reporter gene $gfp\,UV$. For each $E.\ coli$ strain bearing the corresponding plasmids, the fluorescence (RFU) was averaged from 15 separate measurements and the standard deviations were calculated.

The first positive interaction between TerW protein and PPRR was confirmed by incubating purified His-TerW with a fragment containing the *ter* promoter region; the interacting mixture was resolved by native PAGE and identified by non-radiochemical EMSA. The gel band was gradually retarded and smeared following the addi-

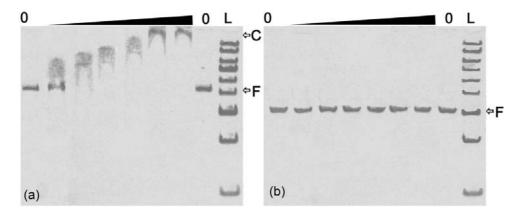


Fig. 4. Gel retardation assay. (a) In electrophoretic mobility shift experiments performed in the presence of an 838-base pair DNA fragment (DV3-ZfuzR), purified His-TerW at a concentration of 0.1–20 µg was bound to the terZABCDE promoter region. (b) A negative control performed with a 521-base pair DNA fragment (SL1-LVr4) not expected to be recognised by His-TerW (0.1–20 µg). The lanes marked L contained a molecular weight standard. Capital letters C and F represent protein-DNA complexes and free DNA fragment, respectively.

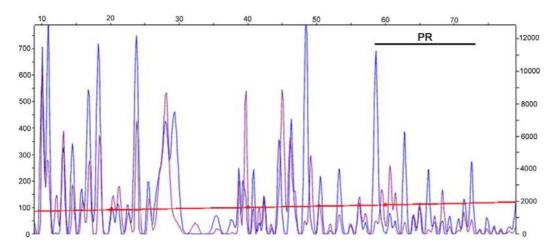


Fig. 5. Footprint analysis. The fragment profile showing the protection pattern of the terZABCDE PPRR fragments resulting from digestion with DNase I after an incubation in the presence (violet peaks) or absence (blue peaks) of TerW protein. The area showing significant differences in the peak profiles is remarked as PR. The fluorescence intensity of FAM-labelled DNA fragments (y axis) is plotted against the sequence length of the fragment (PTforward-Len1-FAM probe) (x axis).

tion of increasing protein concentrations (Fig. 4). Such behaviour suggested that TerW bound to the potential DNA promoter region and a native DNA/protein complex was formed. Regulation of this promoter was also confirmed by the presence of GFPuv fluorescence in the *E. coli* BL21(DE3) strain expressing the plasmid pMBAD1 (or pMAC1) but not in cells that also contained the expression plasmid pRSFW1b. In the latter case, bacteria with pMBAD1 (or pMAC1) decreased the GFPuv fluorescence due to the repression of the *terZABCDE* promoter by TerW overproduction (Fig. 3).

To confirm the DNA binding function of TerW protein using traditional methods, i.e., fluorescence measurement and gel retardation, we verified the non-radiochemical DNase I footprint assay using fluorescent dyes and CE. Peak Scanner software allowed us to superimpose electropherograms from CE and to compare the fragment patterns. Negative control reactions were included in each assay; these reactions contained no protected regions and showed uniform peaks across the

whole potential promoter DNA fragment after cleavage because the TerW DNA binding protein was replaced with BSA. The resulting DNA fragment profiles after digestion in the absence and the presence of the DNA-binding protein TerW were compared. Dissimilarities between the protected and unprotected fragments were simultaneously examined by data assimilation in the same genotyping file. The protected DNA region of interest on the FAM-labelled strand matched our predicted TerW binding function and partially overlapped with the hypothetical promoter (Fig. 5).

The possible influence of TerW overproduction on the expression of the ter operon was evaluated by qRT-PCR analysis. The terZ, terB and terC genes were chosen as representatives of the terZABCDE operon, together with the protective terW gene. We detected that the mRNA level of terZ, terB and terC was up-regulated by the presence of IPTG-induced TerW overproduction (Fig. 6). The results, also suggested the up-regulation function of the terW gene product, were obtained by the Te^R susceptibility testing. The MICs of potassium

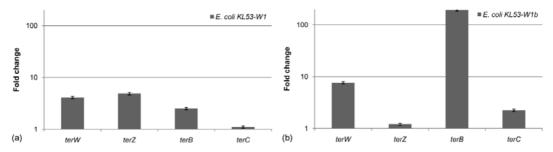


Fig. 6. The effect of TerW overproduction on ter gene expression using qRT-PCR. The housekeeping gene encoding tufA was used to normalise the RNA input and the level of ter expression was determined in the following IPTG-induced strains: (a) E. coli KL53-W1 and (b) E. coli KL53-W1b. Gene expression was calculated relative to the results obtained from the relevant non-IPTG-induced samples.

tellurite for the $E.\ coli\ KL53$ -W1 and $E.\ coli\ KL53$ -W1b strains were increased to 9 mM and 5 mM, respectively, whereas the original uropathogenic isolate $E.\ coli\ KL53$ had an MIC of $4.5\ \text{mM}$ potassium tellurite.

Discussion

The regulation of heavy metal resistance is usually mediated by specific activators or repressors (Silver & Phung 1996). The precise molecular mechanisms used by cells to cope with tellurite have not been fully elucidated. Previous studies have shown that tellurite exerts various effects on the physiology of several enteric pathogens, leading to increased concentrations of intracellular oxygen reactive species and triggering oxidative stress (Perez et al. 2007; Tremaroli et al. 2007). The interaction of tellurite with the membrane redox systems and thiol compounds has been suggested to play an important role in tellurite reduction and its detoxification (Zannoni et al. 2008). Although the plasmid-borne or chromosomally located ter clusters have been extensively studied, the real functions of the Te^R genes are not well understood. The introduction of the ter operon from uropathogenic E. coli KL53 into non-pathogenic and uropathogenic E. coli (ter-gene free) showed that the presence of the ter loci improved the fitness of bacterial strains by enabling them to survive inside macrophages (Valkova et al. 2007). Deletion of the Te^R region reduced the ability of the strain to adhere to epithelial cells in vitro and in ligated pig ileal loops (Yin et al. 2009). In spite of the rare occurrence of tellurite in nature, the acquisition of the ter operon could offer some selective advantage to pathogens in natural environments, such as the urinary tract of humans, and facilitate colonisation despite immune assault.

Determination of the expression level of the ter genes in uropathogenic E. coli KL53 revealed that terW showed 4–5 times lower expression when compared to the terZABCDE loci (Vavrova et al. 2006). The real time PCR assay also confirmed that the ter gene cluster in E. coli KL53 and its regulatory region are not inducible by potassium tellurite and/or hydrogen peroxide (Vavrova et al. 2006). This observation is in contrast to the regulation of the ter operon in the urinary pathogen Proteus mirabilis, in which transcription is induced by oxidative stress (Toptchieva et al. 2003).

The original intention of this work was to characterise the genetic basis for the potential promoter region of the ter operon genes (terZABCDE) encoding Te^{R} in clinical isolate E. coli KL53. The re-cloned promoter sequence of the ter operon exhibited lack of homology to the *Proteus mirabilis* regulatory region, which is in agreement with the previously published failure to identify induction conditions necessary to achieve higher than basal expression of the ter genes (Vavrova et al. 2006). Based on these assumptions, we can conclude that the differences between inducible and constitutive ter determinants may be connected with the loss of a transcriptional repressor and changes in an unrelated promoter part of the ter operons. The present study demonstrates the potential regulatory function of overexpressed TerW protein, which is the first known function of the *ter* gene products involved in Te^R pathway.

The cloning of the ter genes has previously revealed their paradoxical nature. These genes protect many Enterobacteria from the toxic effects of potassium tellurite but parts of the ter operon, especially terA and terZ, have also been shown to be toxic to host cells when overexpressed or expressed without the protective terWgene product. The unusual filamentous morphology of E. coli cells harbouring the ter genes cloned into the pUC13 plasmid (plasmid pKFW4A) was described by Whelan et al. (1997), who divided the operon into protective (upstream of terZ gene) and toxic (downstream of, and including, the terZ gene) regions. They found that chromosomal DNA replication was not inhibited and proposed that the unusual filamentous morphology was caused by the inhibition of cell division. Using Tn1000 transposon mutagenesis they have shown that insertions in the terZ, terA and terB genes inhibited the filamentation, and the cells expressing these derivatives of pKFW4A had normal cell length. We have observed the same elongated phenotype in our in vivo sub-clone of a large conjugative E. coli plasmid pTE53, pNT3B (Tu et al. 2001), and also in an in vitro sub-clone, pJS4 (Vavrova et al. 2006). The pJS4 sub-clone expresses the ter genes in the presence of terW cloned into the pBluescript SK(+) phagemid. The plasmid pLK18, which is also an in vitro clone of pTE53, bearing only the essential ter genes $(terB, terC, terD, terE, \Delta terF)$, did not show the elongated phenotype. Together with our many unsuccessful attempts to express a larger part

of the promoter, including more than 36 bp of the terZ gene, we can conclude that the terZ gene is the most toxic one. This is comparable to the phenotype of the other Te^R operon, which is found on a broad-hostrange $IncP\alpha$ plasmid RK2 and known as KilA-klaAB. A derivative of RK2Ter, namely the klaAB gene, has been shown to mediate Te^{R} and λ phage development inhibition and also interfere with cell division (Saltman et al. 1991, 1992; Turner et al. 1994). The analogue of terW in this case might be korA (kill-override), which regulates transcription from the kilA promoter. However, the mechanism behind this biological control is not clear and the kilA/klaAB operon genes exhibit no similarity with our ter determinant. We suppose that the mechanism of their biological control is similar to that of the terW/terZ(A) genes, and the ter operon (terZABCDE) is naturally controlled by the terW gene product.

Acknowledgements

This work was financially supported by the VEGA grant No.1/0346/10 from the Ministry of Education of the Slovak Republic, the Comenius University grant No. UK/560/2010 and by project APVV 20-054005 of the Slovak Research and Development Agency. Authors would like to thank Jozef Mravec for his invaluable help.

References

- Burian J., Tu N., Klucar L., Guller L., Lloyd-Jones G., Stuchlik S., Fejdi P., Siekel P. & Turna J. 1998. In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli. Folia Microbiol. 43: 589–599.
- Chang A.C. & Cohen S.N. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134: 1141–1156.
- Chasteen T.G., Fuentes D.E., Tantalean J.C. & Vasquez C.C. 2009. Tellurite: history, oxidative stress and molecular mechanism of resistance. FEMS Microbiol. Rev. **33**: 820–832.
- Crameri A., Whitehorn E.A., Tate E. & Stemmer W.P. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14: 315–319.
- Figurski D.H., Pohlman R.F., Bechhofer D.H., Prince A.S. & Kelton C.A. 1982. Broad host range plasmid RK2 encodes multiple kil genes potentially lethal to Escherichia coli host cells. Proc. Natl. Acad. Sci. USA 79: 1935–1939.
- Fischer W. 2001. A second note on the term "chalcogen". J. Chem. Educ. **78:** 1333.
- Goncharoff P., Saadi S., Chang C.H., Saltman L.H. & Figurski D.H. 1991. Structural, molecular, and genetic analysis of the kilA operon of broad-host-range plasmid RK2. J. Bacteriol. 173: 3463–3477.
- Holloway B.W. & Richmond M.H. 1973. R-factors used for genetic studies in strains of *Pseudomonas aeruginosa* and their origin. Genetical Res. 21: 103–105.
- Ingram L.C., Richmond M.H. & Syker R.B. 1973. Molecular characterization of the R factors implicated in the carbenicillin resistance of a sequence of *Pseudomonas aeruginosa* strains isolated from burns. Antimicrob. Agents Chemother. 3: 279–288.
- Jobling M.G. & Ritchie D.A. 1987. Genetic and physical analysis of plasmid genes expressing inducible resistance of tellurite in Escherichia coli. Mol. Genet. 208: 288–293.

Kormutakova R., Klucar L. & Turna J. 2000. DNA sequence analysis of the tellurite resistance determinant from clinical isolate of *Escherichia coli* and identification of essential genes. Biometals 13: 135–139.

- Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta C_{\rm T}}$ method. Methods **25**: 402–408.
- Perez J.M., Calderon I.L., Arenas F.A., Fuentes D.E., Pradenas G.A., Fuentes E.L., Sandoval J.M., Castro M.E., Elias A.O. & Vasquez C.C. 2007. Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS ONE 2: e211.
- Perna N.T., Mayhew G.F., Posfai G., Elliott E., Donnenberg M.S., Kaper J.B. & Blattner F.R. 1998. Molecular evolution of pathogenicity island from enterohemorrhagic *Escherichia* coli O157:H7. Infect. Immun. 66: 3810–3817.
- Perna N.T., Plunkett G.III, Burland V., Mau B., Glasner J.D., Rose D.J., Mayhew G.F., Evans P.S., Gregor J., Kirkpatrick H.A., Posfai G., Hackett J., Klink S., Boutin A., Shao, Miller L., Grotbeck E.J., Davis N.W., Lim A., Dimalanta E.T., Potamousis K.D., Apodaca J., Anantharaman T.S., Lin J., Yen G., Schwartz D.C., Welch R.A. & Blattner F.R. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529-533.
- Saltman L.H., Kim K.S. & Figurski D.H. 1991. The kilA operon of promiscuous plasmid RK2; the use of a transducing phage (λ pklaA-1) to determine the effects of the lethal klaA gene on $Escherichia\ coli\ cells$. Mol. Microbiol. 5: 2673–2683.
- Saltman L.H., Kim K.S. & Figurski D.H. 1992. Inhibition of bacteriophage λ development by the klaA gene of broad-host-range plasmid RK2. J. Mol. Biol. **227**: 1054–1067.
- Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning
 A Laboratory Manual. Cold Spring Harbor Laboratory
 Press, Cold Spring Harbor, N.Y.
- Silver S. & Phung L. 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50: 753–789.
- Tarr P., Bilge S.S., Vary J.C., Jelacic S., Habeeb R.L., Ward T.R., Baylor M.R. &, Besser T.E. 2000. Iha: a novel Escherichia coli O157:H7 adherence conferring molecule encoding on recently acquired chromosomal island of conserved structure. Infect. Immun. 68: 1400–1407.
- Taylor D.E. 1999. Bacterial tellurite resistance. Trends Microbiol. 7: 111–115.
- Taylor D.E. & Bradley D.E. 1987. Location on RP4 of a tellurite resistence determinant not normally expressed in $IncP\alpha$ plasmids. Antimicrob. Agents Chemother. **31:** 823–825.
- Thomas C.M. & Smith C.A. 1987. Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu. Rev. Microbiol. 41: 77–101.
- Toptchieva A., Sisson G., Bryden L.J., Taylor D.E. & Hoffman P.S.2003. An inducible tellurite-resistance operon in *Proteus mirabilis*. Microbiology **149**: 1285–1295.
- Tremaroli V., Fendi S. & Zannoni D. 2007. Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of *Pseudomonas pseudoalcaligenes* KF707. Arch. Microbiol. **187**: 127–135.
- Tu N., Burian J., Stuchlik S., Kormutakova R., Klucar L., Lackovicova D. & Turna J. 2001. In vivo cloning of tellurite resistance genes with mini-Mu derivative of bacteriophage Mu. Biologia 56: 251–255.
- Turner R.J., Weiner J.H. & Taylor D.E. 1994. Characterization of the growth inhibition phenotype of the kilAtelB operon from $IncP\alpha$ plasmid RK2Te^R. Biochem. Cell Biol. **72**: 333–342.
- Valkova D., Valkovicova L., Vavrova S., Kovacova E., Mravec J. & Turna J. 2007. The contribution of tellurite resistance genes to the fitness of *Escherichia coli* uropathogenic strains. Central Eur. J. Biol. 2: 182–191.
- Vavrova S., Valkova D., Drahovska H., Kokavec J., Mravec J. & Turna J. 2006. Analysis of the tellurite resistance determinant on the pNT3B derivative of the pTE53 plasmid from uropathogenic *Escherichia coli*. Biometals **19**: 453–460.
- Walter E.G. & Taylor D.E. 1989. Comparison of tellurite resistance determinants from the IncPa plasmid RP4Ter and the IncHII plasmid pHH1508a. J. Bacteriol. 171: 2160–2165.

- Walter E.G., Thomas C.M., Ibbotson J.P. & Taylor D.E. 1991. Transcriptional, translational analysis and sequence of the kilA-tellurite resistance region of plasmid RK2Te^R. J. Bacteriol. 173: 1111–1119.
- Whelan K.F., Sherburge R.K. & Taylor D.E. 1997. Characterization of a region of the IncHI2 plasmid R478 which protects *Escherichia coli* from toxic effects specified by components of tellurite, phage and colicin resistance cluster. J. Bacteriol. **178**: 63–71.
- Woodcock D.M., Crowther P.J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S.S., Michael M.Z. & Graham M.W. 1989. Quantitative evaluation of *Escherichia coli* host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17: 3469–3478.
- Yin X., Wheatcroft R., Chambers J.R., Liu B., Zhu J. & Gyles C.L. 2009. Contribution of O island 48 to adherence of enterohemorrhagic *Escherichia coli* O157:H7 to epithelial cells in vitro and in ligated pig ileal loops. Appl. Environ. Microbiol. 75: 5779–5786.
- Young C., Burlage R.S. & Figurski D.H. 1987. Control of the kilA gene of the broad host-range plasmid RK2: involvement of korA, korB, and a new gene, korE. J. Bacteriol. 169: 1315–1320.
- Zadik P.M., Chapman P.A. & Siddons C.A. 1993. Use of tellurite for the selection of verocytotoxigenic *Escherichia coli* O157. J. Med. Microbiol. **39:** 155–158.
- Zannoni D., Borsetti F., Harrison J.J. & Turner R.J. 2008. The bacterial response to the chalcogen metalloids Se and Te. Adv. Microb. Physiol. **53:** 1–72.

Received January 18, 2011 Accepted April 18, 2011