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Abstract: A genetic algorithm (GA) for feature selection in conjunction with neural network was applied to predict protein
structural classes based on single amino acid and all dipeptide composition frequencies. These sequence parameters were
encoded as input features for a GA in feature selection procedure and classified with a three-layered neural network to
predict protein structural classes. The system was established through optimization of the classification performance of
neural network which was used as evaluation function. In this study, self-consistency and jackknife tests on a database
containing 498 proteins were used to verify the performance of this hybrid method, and were compared with some of prior
works. The adoption of a hybrid model, which encompasses genetic and neural technologies, demonstrated to be a promising
approach in the task of protein structural class prediction.
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Introduction

The functional properties of proteins are depending on
their three-dimensional (3D) structure which is encoded
in the amino acid sequence. All information regarding
the structure and function of a protein is thus coded in
its amino acid sequence (Anfinsen 1973). Understand-
ing the rules by which 3D structures of proteins are
developed from their linear sequences, is of great im-
portance in contemporary molecular biology. It is also
helpful in predicting the function of novel designed se-
quences.
As far back as 50 years ago it was demonstrated

that in some cases the bare protein sequence informa-
tion is both a necessary and sufficient determinant for
the structure and functionality of a peptide, and this
paradigm has held true to this day for all but a minis-
cule minority exceptions to the rule (Anfinsen 1973).
Structural protein classes were defined over 20

years ago as being general ways of describing folds that
reflected content of the secondary-structure elements
and their arrangement in folded proteins (Levitt 1976).
Protein folds can be classified into four main classes
consist of all-α, all-β, α/β and α+ β. Since then, vari-

ous quantitative classification rules have been proposed
based on the percentages of α-helices and β-sheets in a
protein.
Historically, Nishikawa’s findings (Nishikawa &

Ooi 1982; Nishikawa et al. 1983a,b) highlighted the
strong correlation between the structural classes of pro-
teins and amino acid composition. Since then, many dif-
ferent theoretical methods have been proposed to pre-
dict the structural class of proteins, such as statistical
analysis which uses parameters obtained from known
protein sequences and tertiary structure (Chou & Fas-
man 1974), information theory (Garnier et al. 1978),
nearest neighbor methods (Yi & Lander 1993), multi-
ple alignment (Russell & Barton 1993; King & Stern-
berg 1996;), neural networks (Metfessel et al. 1993),
component-coupled (Chou & Maggiora 1998), combina-
tion of multiple alignment and neural networks (Rost
& Sander 1994), 3D-one-dimensional compatibility (Ito
et al. 1997), support vector machines (Cai et al. 2001),
rough sets (Cao et al. 2006), pseudo amino acid compo-
sition (Xiao et al. 2008a,b) and hybrid models (Jahan-
dideh et al. 2007a,b). In addition, many more studies
have applied various methods to predict protein struc-
tural classes (Chou 1995, 1999, 2000, 2005; Chou &
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Zhang 1994; Feng et al. 2005; Shenet et al. 2005; Cao
et al. 2006; Chen et al. 2006a,b; Du et al. 2006; Niu et
al. 2006; Xiao et al. 2006).
In our previous works (Jahandideh et al. 2007a,b),

we established hybrid models using multinomial logis-
tic regression (MLR) and linear discriminant analysis
(LDA) in the first stages of hybrid modelling procedures
and artificial neural networks (ANNs) in the second
stages. Results of previous works showed that combina-
tion of ANNs as a non-algorithmic model and MLR and
LDA both as algorithmic models provide better results
than either one alone. At the present study, we applied
the neural network analysis to the database for predict-
ing the protein structural classes based on parameters
that had been extracted from the protein sequences and
automatically selected by a genetic algorithm (GA). In-
deed, GA replaced MLR and LDA as a non-algorithmic
model in new hybrid modelling procedure.

Material and methods

Database
The database comprising 498 protein domain sequences as
described by Zhou (1998) which was collected from SCOP
database (Murzin et al. 1995) was used in the present study.
The unit of classification in SCOP is usually the protein do-
main. Small proteins, and most of those of medium size,
have a single domain and are therefore treated as a whole.
The domains in large proteins are usually classified individu-
ally. According to the SCOP, the classification of structural
classes for protein domains is based on the evolutionary rela-
tionship and on the principles that govern the 3D structure
of proteins, therefore is more natural and reliable. We used
the database to test our model through self-consistency test
and jackknife test and to compare the prediction accuracy
and success rates of each structural class with other models.

Our parameters including amino acid and all dipep-
tide composition frequencies were generated using in-house
programs in MATLAB language. Amino acid and dipep-
tide compositions have been used for several applications,
such as predicting protein subcellular localization, virulent
proteins in bacterial pathogens, protein secondary struc-
ture content, etc. (Liu & Chou 1999; Garg & Gupta 2008;
Tantoso & Li 2008). In order to check the fidelity of
these programs, results were compared with the outputs
of COMPSEQ program (http://bioweb.pasteur.fr/seqanal/
interfaces/compseq.html) on the same database.

Feature selection
Feature selection is one of the most important steps in clas-
sifier design, because the presence of ineffective features of-
ten degrades the performance of a classifier on test samples
(Chan et al. 1998). In this article, we used the GA method
for feature selection. The GA has become increasingly pop-
ular in feature selection as an optimization task (Goldberg
1989). The fundamental principle underlying GAs is the
mimicry of natural selection. To solve an optimization task,
a GA generates a population of bit strings, which are re-
ferred to as chromosomes. Each “chromosome” in that pop-
ulation corresponds to a possible solution of the problem
(Qian et al. 2005). In this study, we extracted 420 parame-
ters to train the ANNs. Therefore, there are 2420 total possi-
ble feature subsets for GA to select the best ones. A binary
vector in a 420-dimension space represents an individual in

the population. Therefore, the defined chromosome contains
420 genes, one gene for each feature, which takes on 2 val-
ues. A value of 0 indicates that the corresponding feature
is not selected, and a value of 1 means that the feature is
selected. In each generation, the population is probabilisti-
cally modified, generating new chromosomes that may have
a better chance of solving the problem (Zhang et al. 2005).
New characteristics are introduced into a chromosome by
crossover and mutation. The probability of survival or repro-
duction of an individual depends more or less on its fitness
to the environment. Each feature in a given feature space is
treated as a gene and is encoded by a binary digit (bit) in a
chromosome (Wang 2005). In this article, two-point binary
crossover and binary mutation are performed.

Selection of individuals to produce successive genera-
tions plays an extremely important role in a GA. Selection
means that two individuals from the whole population of
individuals are selected as ‘parents’, and the selection is
dependent on the individual’s evaluation function of each
individual. There are several selection schemes. Here the
roulette wheel selection was used. This selection simulates
a roulette wheel with the area of each segment proportional
to its expectation. The algorithm then uses a random num-
ber to select one of the sections with a probability equal to
its area.

The relevant parameter settings which we used were:
population size: 30; number of generation: 100; probability
of crossover: 0.8; probability of uniform mutation: 0.1. The
size of population is one of the most important parameters.
Setting the population size too small may yield premature
convergence of GA, while setting the large size of popula-
tion remains the population variety that could enable GA to
search more point and thereby prevent local optimum trap-
ping of the algorithms. However, the time used for a popula-
tion improvement might be too long for the large population
size. We used the equation (1) as evaluation function (EF)
of the model and our goal was to maximizing it in test cases:

EF = (p(c) + n(c))/t × 100 (1)

This value was regarded as a measure of fitness in the cor-
responding generation. This function will be described in
performance measures section. For the simulation of this
hybrid model, the parameters were selected using GA opti-
mization method and normalized between 0 and 1 according
to the maximum value of each feature in the database. The
normalized data was then fed forward into the network. This
procedure is shown in Figure 1.

The iterative algorithm to evolve a solution to a prob-
lem on a computer is including four steps that could be sum-
marized as follows: (i) population preparation; (ii) fitness
evaluation; (iii) selection; and (iv) crossover and mutation.
Because of their simple and straightforward mechanism as
mentioned earlier, GA can be seen as a tool empowering
researchers’ competence in scientific investigation.

Neural classifier
A neural network is a model that simulates the functions
of biologic neurons. The ability of a single neuron could
greatly be improved via connection of multiple neurons in
a layer. ANNs are powerful non-linear models used vastly
for classifying different types of data. A neural network
is composed of few layers of neurons. Neurons in adjust-
ing layers are connected with relative quantitative weights.
These weights are randomly chosen, and then are changed
through the training procedure, so that the mean of the
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Fig. 1. Feature selection based on neural network classification.

sum-of-squares error is minimized. The minimized sum-of-
squares error is the squared difference between the network
output and network target, averaged over all of the cases.
We used a three-layered feed-forward neural network. Some
training algorithms were implemented and tested: gradient
descent methods, resilient back-propagation, conjugate gra-
dient methods, and quasi Newton methods. The best results
were obtained using a conjugate gradient method. The se-
lected features from GA were considered as inputs into the
established neural network. The number of the inputs is au-
tomatically optimized using GA processing. The numbers of
nodes in the only hidden layer were adjusted in an attempt
to achieve optimum classification accuracy on the testing
cases. Two nodes were used in the output layer which have
been trained to represent [1 1] for all-α, [0 1] for all-β, [0
0] for α + β and [1 0] for α/β. Each neuron in the net-
work used a logistic activation function. In order to deter-
mine the best optimized structure for the neural network,
we simulated a large number of neural networks by varying
the number of hidden nodes, iterations and learning rates.
Finally, after the network had been trained perfectly in each
simulation the testing cases were presented to the trained
network. Our network was trained perfectly over 1,000 it-
erations in each learning process on a personal computer
(Pentium 2.8 MHz, IBM compatible machine). Also the op-
timal learning rate and error goal was found to be 0.2 and
0.02, respectively. The jackknife technique, in which all cases
were undergone both the training and testing processes, was
applied to train and test model on the database. The pro-
cedure is as follows: given a training set of N proteins, the
first protein in the training set, t1, is set aside (left out).
Then the model is trained on the remaining N − 1 proteins
and tested on the left out sample. Then sample t1 is in-
serted back into the database and the next protein, t2, is
left out. This procedure is repeated until every protein in
the database had the opportunity to be a left out sample.
It therefore provided as many simulations as the number of
samples in each database. In addition to jackknife test we
used self-consistency test on the database.

Performance measures
Three threshold dependent indices used to assess the per-
formance of the model can be derived from the four scalar
quantities: (i) p(c) is the number of properly predicted pro-
teins in class c; (ii) n(c) is the number of correctly predicted

proteins not in class c; (iii) u(c) is the number of under-
predicted and o(c) is the number of over-predicted proteins.
These indices were used to calculate the prediction accuracy
(PA), success rate (sensitivity) (SR) and Matthews correla-
tion coefficient (MCC) for the output of the hybrid model.

1. PA is the total number of correctly classified exam-
ples: PA = (p(c) + n(c))/t × 100, where t stands for the
number of examples.

2. SR is the percentage of correctly predicted examples
in each class: SR = (p(c)/Ind(c))× 100, where Ind(c) is the
number of proteins reside in class c.

3. MCC – we used MCC as a more vigorous measure to
evaluate the reliability of the established method (Mathew
1975). The MCC for each class is defined by

MCC(c) = (p(c)n(c)− u(c)o(c))/

/
√
(p(c) + u(c))(p(c) + o(c))(n(c) + u(c))(n(c) + o(c))

The MCC is a limited number between −1 and 1. If
there is no relationship between the predicted values and
the actual values, the MCC should be 0 or very low (the
predicted values are not better than random numbers). In
contrast, the MCC value would increase as the strength of
the relationship between the predicted values and actual
values increases. It is obvious that a perfect fit gives a co-
efficient of 1.0. Furthermore, the higher MCC indicates the
better performance of the prediction for the model.

Results

Many experiments were carried out to find the com-
bination of features that provide the best accuracy
in prediction of protein structural classes. The PA
on testing samples was used as a measure to cal-
culate the fitness for reproduction of genetic feature
selection. We changed the number of hidden units
from 3 to 15 and run GA for each of them to show
which parameters are more frequently selected. Us-
ing the selected parameters, the maximum accuracy
was met 93.98% using 13 hidden units in jackknife
procedure. In each jackknife process different param-
eters were selected by the model. However, the only
11 parameters including valine amino acid composi-
tion frequency and cysteine-arginine, alanine-glycine,
aspartic acid-cysteine, glutamic acid-tyrosine, serine-
tryptophan, praline-cysteine, glycine-glutamic acid, his-
tidine-tyrosine, leucine-aspartic acid and tryptophan-
asparagine dipeptide composition frequencies were se-
lected in all jackknife processes. All of eleven sequence
parameters selected by this model are among selected
sequence parameters in our previous works using two al-
gorithmic at the first stages of our hybrid models. Using
the same number of hidden units, we ran GA through
self-consistency test.
The results of jackknife and self-consistency tests

were evaluated by the performance evaluative mea-
sures. The results shown in Table 1 were obtained ac-
cording to the output of the model. Results show that
the SR has the highest value in all-α protein structural
class. These results are in agreement with our results
from previous works (Jahandideh et al. 2007a,b).
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Table 1. Performance comparison between self-consistency and jackknife.

Rate of correct prediction for each class
Test Performance measures

All-α All-β α/β α+ β

Self-consistency SR (%) 100 100 100 100
MCC 1 1 1 1

Jackknife SR (%) 96.26 92.06 94.12 93.08
MCC 0.73 0.75 0.67 0.69

Table 2. Results of self-consistency and jackknife tests.

Success rate (sensitivity) for each class (%)
Test Algorithm Predicition

All-α All-β α/β α+ β accuracy (%)

Self-consistency Component coupleda 95.80 95.20 94.90 95.40 95.80
Neural networkb 100 98.40 96.30 84.50 94.60
SVMc 100 100 100 100 100
Rough stsd 100 100 100 100 100
Multinomial logistic regressione 100 100 100 100 100
Hybrid neural logistic modele 100 100 100 100 100
LDAe 100 100 100 100 100
Hybrid neural discrimnant modele 100 100 100 100 100
Hybrid genetic neural model 100 100 100 100 100

Jackknife Component coupleda 93.50 88.90 90.40 84.50 89.20
Neural networkb 86 96 88.20 86 89.20
SVMc 88.80 95.20 96.30 91.50 93.20
Rough Setsd 87.90 91.30 97.10 86 90.80
Multinomial logistic regressione 92.50 88.10 90.50 89.90 90.40
Hybrid neural logistic modele 96.30 92.10 95.60 93.80 94.40
LDAe 94.39 89.68 92.64 92.24 92.17
Hybrid neural discrimnant modele 95.32 88.88 94.11 93.02 92.77
Hybrid genetic-neural model 96.26 92.06 94.12 93.08 93.98

aReported results from Zhou (1998). bReported results from Cai & Zhou (2000). cReported results from Cai et al. (2001). dReported
results from Cao et al. (2006). eThe results of these models were reported from our previous works (Jahandideh 2007a,b).

PA and SR in each class for the hybrid genetic-
neural model in comparison with our previous hy-
brid models and some of other methods on the same
database are shown in Table 2. The results of the hy-
brid genetic-neural model showed all the percentages
of correct prediction on the database reaching 100% in
self-consistency test, which is the same as our previous
hybrid models results, SVM and rough sets based meth-
ods (Cai et al. 2001; Cao et al. 2006; Jahandideh et al.
2007b). The highest PA value of 94.6% has been ob-
tained in a previous study using jackknife test (Feng et
al. 2005). However, our results indicated that the hybrid
genetic-neural model, same as our previously proposed
hybrid models, captured the characteristics between se-
quences and their classes through single amino acid and
all dipeptide composition frequencies. The comparison
should be focused on the jackknife test because it is
more rigorous and objective method. From the result
of jackknife test, it is obvious that the PA is compara-
ble to previous proposed models.

Discussion and conclusion

Determining the 3D fold of a protein applying golden
standard techniques such as NMR and X-ray crystallog-

raphy is expensive and time-consuming. Consequently,
there is a large gap between the number of known pro-
tein sequences and the number of known 3D protein
structures. The computational prediction of structures
from amino acid sequence has therefore come to play
a key role in narrowing the gap. The previous reports
indicated that these computational methods have been
very promising in providing useful information for the
biological research community.
In order to establish powerful hybrid models we

used GA in conjunction with neural network in the
present work. In the previous works, MLR and LDA
were used at the first stage of hybrid modelling proce-
dures. Indeed, GA, LDA and LDA were used to select
the effective sequence parameters that are applied for
prediction of protein structural classes.
We note that while the accuracy of predicting four

major classes of proteins appears promising, SCOP does
not includ only four classes. Currently, there are eleven
classes listed, of which at least seven are highly pop-
ulated (Murzin et al. 1995). Also these proteins and
folds are further classified into superfamilies, families,
etc. Any classification technique should attempt to pre-
dict the sub-classes as well, in addition to the main
classes. For instance, Rogen & Fain (2003) successfully
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reproduced the entire hierarchy of CATH classification
database (Orengo et al. 1997) (∼95% accuracy). The
attempts then should be made to produce similar re-
sults for SCOP, rather than just predict only the major
classes at the first level of hierarchy.
In our opinion the high accuracies obtained by

majority of existing methods on dataset 498 pro-
teins are an artifact resulting from duplicates and
highly similar sequences included in this dataset. Our
dataset with 498 domains include over 10 copies of
the same sequence that appears under different PDB
(http://www.rcsb.org/) codes. The accuracies of the
same models on the databases with low sequence iden-
tities are lower (Chen et al. 2007).
Regarding the fact that almost all previously used

models detected all-α cases better than other classes
(Gromiha & Selvaraj 1998), it is revealed that the SR
value in the result of hybrid genetic-neural model is
compatible many other previous works done. A plau-
sible reason for this tendency of predictors is the pre-
dominant role of short and medium range interactions
in all-α proteins. Similarly, uniformly lower accuracy
in the prediction of the other classes implies the dom-
inance of long-range interactions (Gromiha & Selvaraj
1998).
It is obvious from the results of jackknife test, α/β

class has the higher SR than has the α + β class. This
may be related to the proportion of the α/β class in
the training sets in which α/β class occupied the big-
ger part. As a supervised learning method, it makes it
easier to capture characteristics that feed more training
objects to neural networks.
Using restricted number of sequence parameters

among the 420 sequence parameters, hybrid models
can predict the structural class of proteins; this is one
of the most important advantages of these models.
In general, the results showed that by use of hybrid
genetic-neural model, one can provide adequate infor-
mation for an accurate prediction applying a few se-
quence parameters, only including single and dipep-
tide compositions. Although the ANNs may work as
an excellent predictor, it may not be able to ex-
plain which findings are more relevant in reaching the
pattern recognition due to its “black box” behaviour
(Randall et al. 2006). GA offers a particularly at-
tractive approach to select the effective parameters
(Zhang et al. 2005). According to the obtained re-
sults, applying GA improved the PA. The benefits of
applying GA as a pre-processor were improvement in
generalization ability of ANNs and reducing the size
of calculations through simplifying the ANNs struc-
ture.
This study clarified the efficiency of using hybrid

genetic-neural model in determining effective parame-
ters, as well as an independent predictor. Moreover, the
optimal structure of neural network can be simplified,
thereby reducing the needed time for neural network
training procedure and the probability of over-fitting
occurrence is decreased and a high precision and relia-
bility is obtained in this way.
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