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Abstract: Gram-positive bacteria have been widely investigated for their huge capability to secrete proteins, such as
those involved in gene expression, bacterial surface display and bacterial pathogenesis. The N-terminal signal peptide of
a secretory protein is responsible for the translocation of polypeptide through the cytoplasmic membrane. Recently, the
signal peptide prediction has become a major task in bioinformatics, and many programs with different algorithms were
developed to predict signal peptides. In this paper, five prediction programs (SignalP 3.0, PrediSi, Phobius, SOSUIsignal and
SIG-Pred) were selected to evaluate their prediction accuracy for signal peptides and cleavage site using 509 unbiased and
experimentally verified Gram-positive protein sequences. The results showed that SignalP was the most accurate program
in signal peptide (96% accuracy) and cleavage site (83%) prediction. Prediction performance could further be improved by
combining multiple methods into consensus prediction, which would increase the accuracy to 98%, and decrease the false
positive to zero. When the consensus method was used to predict Bacillus’s extracellular proteins identified by proteomics,
more new signal peptides were successfully identified. It could be concluded that the consensus method would be useful to

make prediction of signal peptides more reliable.

Key words: signal peptide; cleavage site; prediction; gram-positive bacteria.

Abbreviations: HMM, hidden Markow model; MCC, Matthew’s correlation coefficient; NN, neural network; Sn, sensitivity;

SP, signal peptide; Sp, specificity.

Introduction

Protein transport from the cytoplasm to cell envelope
or extracellular environment is a common phenomenon
for bacteria (Gardy & Brinkman 2006). Secreted pro-
teins are essential for bacterial growth including nu-
trients uptake, virulence, and environmental sensing.
They are usually synthesized as precursors with an N-
terminal signal peptide (SP), which acts as a targeting
ticket directing proteins to the transport machineries
located in the cytoplasmic membrane and are cleaved
off latterly by specific signal peptidases (Schneider &
Fechner 2004).

Among multiple protein transportation pathways
in Gram-positive bacteria, the Sec and Tat pathways
were mostly investigated (Pohlschroder et al. 2005).
Their N-terminal SPs were classified as Class I type SP,
which was processed by a class I signal peptidase. The
efficient and accurate prediction of SPs and their cleav-
age sites were important to a wide range of studies, such
as genome-wide analysis of proteins’ subcellular local-
ization and industrial application (Gardy & Brinkman
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2006). Over the past few years, the identification of the
type I SP has become a major task in bioinformatics.
Despite SPs show no conservation in sequences, the SPs
generally consist of three structurally and functionally
distinct regions: (i) an N-terminal positively charged n-
region; (ii) a central hydrophobic h-region; and (iii) a
neutral but polar c-region. Based on these recognized
characters, many algorithms have been developed to
predict SP and its cleavage site, such as weight ma-
trix, neural network, hidden Markov model, and so on
(Emanuelsson et al. 2007).

Currently, there have been many progresses in
SP prediction, but none of the prediction meth-
ods can achieve 100% accuracy (Schneider & Fech-
ner 2004). The single predictor was not enough to
identify all SP with different characteristics, because
each program was trained with special dataset and
with different algorithms, so it is advised to use sev-
eral prediction techniques simultaneously whenever
possible. Although many prediction methods have
been developed recently, their predictive performance
has not yet been independently compared in sig-
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nal sequences of bacteria (Klee & Ellis 2005; Menne
2000).

In contrast to Gram-negative bacteria with an in-
ner and outer membrane, Gram-positive bacteria are
surrounded only by a single cytoplasmic membrane
and their protein secretion pathway became simpli-
fied, so many Gram-positive bacteria have been used as
hosts to secrete higher levels of heterologous proteins
in gene expression and bacterial surface display (Freudl
1992). Currently, the prediction of protein localization
of Gram-positive bacteria has become increasingly im-
portant with availability of gene products in the post-
genomic era (Shen & Chou 2007). Five prediction pro-
grams including Signalp 3.0, PrediSi, Phobius, SOSU-
Isignal and SIG-Pred were developed to predict SPs for
Gram-positive bacteria, in which the SignalP program
was most widely used.

In this study, five web-based prediction programs,
Signalp 3.0, PrediSi, Phobius, SOSUIsignal and SIG-
Pred were selected, which produce both SP classi-
fication and cleavage site assignment. Based on our
datasets of experimentally verified Gram-positive bac-
teria SPs, their ability to predict SP and cleavage site
prediction accuracy was evaluated. We further com-
bined these programs to achieve even better perfor-
mance with a simple algorithm.

Material and methods

Creating protein test sets

The experimentally verified SPs were collected from data-
bases of Swiss-Prot (Boeckmann et al. 2003) and SPdb
(Choo et al. 2005). Swiss-Prot (Release 52.4) was down-
loaded from EBI ftp server, and entries annotated with
“firmicutes” and “actinobacteria” in OC (organism classi-
fication) field were selected because we focused on Gram-
positive proteins only. If SPs and their cleavage site were
ambiguous, i.e. if annotated as “potential”, “possible” and
“by similarity” in FT (feature) field, the entries were elim-
inated. Sequences with <50 amino acid residues and the
same N-terminal 30 amino acids were discarded. Lipopro-
teins cleaved by signal peptidase II were also removed since
their cleavage site was different from prokaryotic signal pep-
tidase I. Some SPs were extracted from the database SPdb,
and the repeats with Swiss-Prot records were removed. We
obtained a positive SPs test set containing 249 sequences.

Cytoplasmic proteins were downloaded from Swiss-
Prot with DT (date) field annotated as “2006/2007”, and
some entries were retrieved from experimentally verified cy-
toplasmic proteins in PSORTdb database (Rey et al. 2005).
The total number of proteins without SP was 260.

We also constructed a dataset of 275 extracellular
proteins of Bacillus species, which were identified by pro-
teomics, including B. subtilis, B. anthracis and B. licheni-
formis (Antelmann et al. 2001, 2005; Voigt et al. 2006).

Prediction programs

Five free programs were selected for web-based and bacte-
ria parameters. SignalP (http://www.cbs.dtu.dk/services/
SignalP/) has two algorithms: neural network (NN) and hid-
den Markov model (HMM). Prediction was done with set-
tings for “Gram-positive bacteria” sequence data, “Both”
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analysis methods, “No graphics” output, “Short” out-
put and sequence truncation set on 70 residues. PrediSi
(http://www.predisi.de/) was run using the Gram-positive
bacteria organism group and a text-based output (Hiller et
al. 2004). Phobius (http://phobius.cgb.ki.se/) was run with
short output format. SOSUIsignal (http://bp.nuap.nagoya-
u.ac.jp/sosui/sosuisignal/) and SIG-Pred (http://www.
bioinformatics.leeds.ac.uk /prot analysis/Signal.html) were
run sequence by sequence with “prokaryote/Gram-positive
bacteria” parameters (Gomi et al. 2000). Output files from
all analyses were parsed and program performance measures
were calculated by using custom Perl scripts.

Program performance measures

Performance of prediction methods on test set was measured

as sensitivity (Sn), specificity (Sp) and Matthew’s correla-

tion coefficient (MCC).The calculation formula was as fol-

lows:

Sn = TP/ (TP + FN), Sn is the proportion of SPs that

have been correctly predicted as SPs;

Sp = TP/ (TP + FP), Sp is the proportion of predicted

SPs that are actually SPs;

MCC — TP x TN — FP x FN 7
/(TP + FP)(TN + FN)(TP + FN)(TN + FP)

MCC equals one for a perfect prediction, while it is zero for

a completely random assignment.

In the above formulas, TP = true positives, TN = true
negatives, FN = false negatives (under-prediction), and FP
= false positives (over-prediction).

Performance was also evaluated for combination of pre-
diction methods. With combinatorial analysis, a SP was as-
signed only if it is positively discriminated by three or more
methods and the sum of two discrimination scores from Sig-
nalP was >1.0. Otherwise it was not assigned as a SP.

Results

Common features of signal peptides in Gram-positive
bacteria

When using the sequence logo method (Crooks et al.
2004) to analyze the positional preferences of amino
acids of Gram-positive bacteria SP database, it was
confirmed that these SPs have some obviously com-
mon features. The length of SPs is between 14 and 59
residues, most (about 80%) of which with a length be-
tween 25 and 40. As shown in Figure 1, Gram-positive
bacteria are known to have longer SPs that carry more
basic residues (K/R) in the n-region than that of Gram-
negative bacteria and eukaryotes (Li et al. 2006). The
SPs mostly contain three conserved parts: a positively
charged amino acids in the n-region, such as arginine
and lysine; the hydrophobic h-region which is rich in
leucine, alanine, serine, and valine from about 6% to
16" residue; and the c-region ending with the cleav-
age site recognized by signal peptidase. The positions
—1 and —3 from the cleavage site are rich in alanine
or other residues with short side chains, such as glycine
and valine. Furthermore, position +1 from the cleavage
site prefers alanine.

Signal peptide prediction
To evaluate SP prediction, program performance on the
test sets was measured with sensitivity (Sn), specificity
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Fig. 1. Amino acid composition of SPs. The total height of the stack of letters at each position shows the amount of sequence
conservation at the position, while the relative height of each letter shows the relative abundance of the corresponding amino acid.
The left side of the chart shows the positions from the 15t to the 15" residues in SPs. The positions —3 to +3 from signal peptide

cleavage site is shown on the right side.

Table 1. Programs performance measurement.®

Program TP FP TN
SignalP-nn 240 2 258
SignalP-hmm 244 2 258
PrediSi 234 2 258
Phobius 232 3 257
Sig-pred 206 8 252
SOSUlIsignal 204 10 250
Consensus method 245 0 260

FN Sn Sp MCC
9 0.96 0.99 0.96

5 0.97 0.99 0.97
15 0.93 0.99 0.93
17 0.93 0.98 0.92
43 0.82 0.96 0.80
45 0.82 0.95 0.79
4 0.98 1 0.99

@ Performance was measured based on the ability of the programs to correctly distinguish signal peptides from non-signal peptides.
SignalP-nn: SignalP neural network; SignalP-hmm: SignalP hidden Markow model.
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Fig. 2. The cleavage sites prediction accuracy in Gram-positive bacteria. The Y-axis indicates the percentage of SP sequences where
the cleavage site was placed correctly. The empty bars represent the percentages of correctly predicted sites among positively predicted
sequences by each program. The hatched bars represent overall percentages that were measured using all these sequences.

(Sp), accuracy (Ac), and Matthew’s correlation coeffi-
cient (MCC) as benchmarks. SP predictive accuracy for
individual prediction program is shown in Table 1.

Based on MCC, SignalP was found to be the most
accurate predictor. Two algorithms of SignalP, neural
network (nn) and hidden Markow model (hmm) exhib-
ited similar accuracy (they have a MCC value of 96%
and 97%, respectively). SignalP-hmm predicted four
more true SPs than did the SignalP-nn. However, Sig-
Pred and SOSUIsignal were weak in SP prediction eval-
uation for Gram-positive bacteria. PrediSi and Phobius
have similar performance, a little less accurate than Sig-
nalP (Predisi was 0.93 and Phobius was 0.92).

As Sp value was strikingly high, the prediction re-

sult was reliable when sequence was predicted to con-
tain a SP. In contrast, Sn was comparably lower than
Sp, and all programs still have room to be improved in
the capability to detect SP. Taken together, the existing
prediction programs were powerful to identify SP.

Cleavage site prediction

In particular, it was critical to realistically assess the
prediction accuracy of cleavage site, because it was
often desirable to produce hybrid, functional secreted
proteins with tag linked precisely to the N-termini of
mature proteins for scientific and commercial purposes
(Zhang & Henzel 2004). As shown in Figure 2, SignalP
and PrediSi showed nearly the same ability to predict
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Fig. 3. SP prediction on Bacillus’s extracellular proteomics dataset. Numbers in parentheses were total proteins predicted by five
programs: SignalP-nn, SignalP-hmm, PrediSi, Phobius, SOSUIsignal and SIG-Pred. The number of SP identified by each program and

their shared prediction are shown in each circle areas.

the signal cleavage sites in Gram-positive bacteria, with
the accuracy of 80% and above. In contrast, both Pho-
bius and SIG-Pred yielded markedly lower accuracies.
The best program appeared to be SignalP-nn (83%) fol-
lowed by SignalP-hmm (82%) and PrediSi (81%). Pho-
bius has an accurate value of about 70%, which is ap-
proximately 10 percent less than both SignalP and Pre-
diSi. Similar to signal sequence prediction, SOSUIsignal
has worst ability in cleavage site prediction (45%).

We found that the prediction performance of locat-
ing cleavage site was similar to that of signal sequences.
It was believed that more accuracy in identifying SP
would have more accuracy in locating cleavage sites.

Improving prediction by combining methods

Among the existing prediction methods, SignalP was
the most effective and was widely used in many works
to determine SPs (Brockmeier et al. 2006). But each
predictor has its limit, especially in cleavage site pre-
diction. False positive or false negative results were easy
to happen when using a prediction method, so it was
necessary for us to combine them with a simple algo-
rithm (see Materials and methods section) to get more
reliable prediction. SignalP have provided discriminate
score (D-score/Sprob) in output, and it was easy to
see whether the prediction was more or less reliable by
comparing discriminate score to the cutoff value. The
consensus prediction was evaluated on each program
(Table 1).

As shown in Table 1, the MCC value of combined
method was the best one (0.99). False positive and false
negative results were reduced to 0 and 4, respectively.
This consensus method showed highest true positive
value, which is important for biological research.

A continuously increasing number of extracellu-
lar proteins identified by proteomics may include many
new secreted proteins whose signal sequences have not
been revealed before. We used the proteomics data to
compare the prediction capability of each predictive
method to detect SP. Bacillus species have been taken
as model organisms to secretion research and many pro-

teomic papers have been published. We collected the ex-
tracellular proteins in these papers as dataset to evalu-
ate the performance of each program. SignalP has been
identified to have the highest amount of SPs in these
proteins (Fig. 3), but some proteins were still ignored.
More proteins containing SPs were identified by using
PrediSi, Phobius, SOSUIsignal and Sig-Pred simultane-
ously. By using consensus methods, we found five more
proteins with signal sequences (BA1973, BLi02391,
pbpA, BLi00281, BLi03060). It is worth mentioning
that in order to select a signal sequence more strictly,
the consensus method may be useful to make the pre-
diction more reliable.

Discussion

SP identification is important in industrial biotechnol-
ogy. Accurate identification of SPs has become a pre-
requisite in order to use such technologies effectively.
Based on our evaluation of these methods on bacteria,
we found that the prediction accuracy of SPs was high;
only two proteins (MTCY LEUME, CWLA BACSP;
SWISS-PROT database) could not be identified, but
the cleavage site prediction was less accurate. As the
training sets of all the programs are very likely to con-
tain sequences from SWISS-PROT, the evaluation re-
sult may be better since we have got the recent SWISS-
PROT entries.

As documented in Table 1, the Sp of 5 programs
was very accurate, namely the predicted SP was re-
liable. But the Sn was relatively low, and many SPs
could not be identified by existing programs. That may
be caused by the diversity of SPs and some features of
SPs have not been used by existing programs. Except
the amino acids composition characteristics, the codon
usage or the secondary structure of signal sequences
may be helpful to improve prediction performance (Li
et al. 2006).

Another disadvantage of the computer-based ap-
proach was that it was limited to predict only those
proteins secreted via the general export pathway. The
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SPs belonged to class I type, which were cleaved by
class I signal peptidase. Signal sequences may exist in
the protein middle and also in the C-terminal parts, but
unfortunately our program cannot predict the middle
and C-terminal signal sequences.

Since different prediction programs have been de-
veloped for specific purposes, it is practical to improve
the prediction performance by using different prediction
methods simultaneously. SignalP-HMM was based on a
hidden Markov model formalism and was developed in
order to improve the discrimination between SPs and
N-terminal transmembrane anchor segments. Phobius
could add value to analysis of protein sequences con-
taining N-terminal transmembrane domains. SOSUIsig-
nal uses the propensities of occurrence of amino acids
for the SP and other parameters as a membrane protein
predictor. As shown by the results, many SPs had been
erroneously predicted as transmembrane peptides. To
discriminate between a SP and a real first transmem-
brane segment is difficult because most SPs have a hy-
drophobic core which resembles that of a typical trans-
membrane segment. PrediSi was the fastest program
and did not restrict the size of sequence set analyzed.
Therefore, if users work with extremely large datasets,
PrediSi can be used for rapid initial screens.

Many extracellular proteins were detected by pro-
teomics technique lacked a typical SP, which could not
be detected by signalP (Antelmann et al. 2001), or these
proteins were released by cell lysis or other unidenti-
fied export pathways. Among the 13 newly predicted
SPs, which cannot be predicted by SignalP-nn, five pro-
teins can be classified as secreted proteins by our con-
sensus method (Q81RR7 BACAN, Q65NX4 BACLD,
Q65143 BACLD, MDH BACLD, YQGF BACSU;
SWISS-PROT database). YQGF BACSU is annotated
as a transmembrane protein and belongs to transpep-
tidase family. Other proteins are enzymes associated
with metabolic processes (such as hydrolysis activi-
ties), and some are not annotated at all in the SWISS-
PROT database. This suggests that consensus predic-
tion methods could result in better coverage in secreted
protein prediction, especially when the goal was all se-
creted proteins, i.e., the secretome. Therefore, although
the prediction accuracy of a method has been relatively
high, the prediction could be more reliable by using
these methods simultaneously.
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