Startseite Lebenswissenschaften Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO

  • Subramanian Saravanakumar EMAIL logo , Ramachandran Saravanan und Subramanian Sasikumar
Veröffentlicht/Copyright: 9. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Phase pure nano nickel oxide was synthesized by the chemical precipitation method and sintered at 200°C, 400°C and 600°C, respectively, to study the effect of sintering on the charge distribution and magnetism. The samples were analyzed by X-ray diffraction for electron density distribution studies, vibrating sample magnetometry for magnetic behavior and by UV-VIS spectrophotometry for optical characteristics. Rearrangement of charge density distribution with respect to sintering temperature was analyzed through the maximum entropy method employed using powder X-ray diffraction data. The observed magnetic transition with respect to the temperature/size effect was analyzed and correlated with electron density distribution studies.

[1] Bahadur, J., Sen, D., Mazumder, S., & Ramanathan, S. (2008). Effect of heat treatment on pore structure in nanocrystalline NiO: A small angle neutron scattering study. Journal of Solid State Chemistry, 181, 1227–1235. DOI: 10.1016/j.jssc.2008.01.050. http://dx.doi.org/10.1016/j.jssc.2008.01.05010.1016/j.jssc.2008.01.050Suche in Google Scholar

[2] Collins, D. M. (1982). Electron density images from imperfect data by iterative entropy maximization. Nature, 298, 49–51. DOI: 10.1038/298049a0. http://dx.doi.org/10.1038/298049a010.1038/298049a0Suche in Google Scholar

[3] Chakrabarty, S., & Chatterjee, K. (2009). Synthesis and characterization of nano-dimensional nickelous oxide (NiO) semiconductor. Journal of Physical Sciences, 13, 245–250. Suche in Google Scholar

[4] Choudhury, S., Bhuiyan, M. A., & Hoque, S. K. (2012). Effect of sintering temperature on apparent density and transport properties of NiFe2O4: Synthesized from nanosize powder of NiO and Fe2O3. International Nano Letters, 2, 6. DOI: 10.1186/2228-5326-2-6. http://dx.doi.org/10.1186/2228-5326-2-610.1186/2228-5326-2-6Suche in Google Scholar

[5] Davar, F., Fereshteh, Z., & Salavati-Niasari, M. (2009). Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties. Journal of Alloys and Compounds, 476, 797–801. DOI: 10.1016/j.jallcom.2008.09.121. http://dx.doi.org/10.1016/j.jallcom.2008.09.12110.1016/j.jallcom.2008.09.121Suche in Google Scholar

[6] Guo, W., Hui, K. N., & Hui, K. S. (2013). High conductivity nickel oxide thin films by a facile sol-gel method. Materials Letters, 92, 291–295. DOI: 10.1016/j.matlet.2012.10.109. http://dx.doi.org/10.1016/j.matlet.2012.10.10910.1016/j.matlet.2012.10.109Suche in Google Scholar

[7] Granqvist, C. G. (1995). Handbook of inorganic electrochromic materials. Amsterdam, The Netherlands: Elsevier. Suche in Google Scholar

[8] Hardcastle, F. D., & Wachs, I. E. (1991). Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. The Journal of Physical Chemistry, 95, 5031–5041. DOI: 10.1021/j100166a025. http://dx.doi.org/10.1021/j100166a02510.1021/j100166a025Suche in Google Scholar

[9] Hotovy, I., Huran, J., Spiess, L., Romanus, H., Buc, D., & Kosiba, R. (2006). NiO-based nanostructured thin films with Pt surface modification for gas detection. Thin Solid Films, 515, 658–661. DOI: 10.1016/j.tsf.2005.12.232. http://dx.doi.org/10.1016/j.tsf.2005.12.23210.1016/j.tsf.2005.12.232Suche in Google Scholar

[10] Justin, P., Meher, S. K., & Rao, G. R. (2010). Tuning of capacitance behavior of NiO using anionic, cationic and nonionic surfactants by hydrothermal synthesis. The Journal of Physical Chemistry C, 114, 5203–5210. DOI: 10.1021/jp9097155. http://dx.doi.org/10.1021/jp909715510.1021/jp9097155Suche in Google Scholar

[11] Kodama, R. H., Makhlouf, S. A., & Berkowitz, A. E. (1997). Finite size effects in antiferromagnetic NiO nanoparticles. Physical Review Letters, 79, 1393–1396. DOI: 10.1103/physrevlett.79.1393. http://dx.doi.org/10.1103/PhysRevLett.79.139310.1103/PhysRevLett.79.1393Suche in Google Scholar

[12] Li, Q., Wang, L. S., Hu, B. Y., Yang, C., Zhou, L., & Zhang, L. (2007). Preparation and characterization of NiO nanoparticles through calcination of malate gel. Materials Letters, 61, 1615–1618. DOI: 10.1016/j.matlet.2006.07.113. http://dx.doi.org/10.1016/j.matlet.2006.07.11310.1016/j.matlet.2006.07.113Suche in Google Scholar

[13] Mahaleh, Y. B. M., Sadrnezhaad, S. K., & Hosseini, D. (2008). NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. Journal of Nanomaterials, 2008, 470595. DOI: 10.1155/2008/470595. 10.1155/2008/470595Suche in Google Scholar

[14] Manikandan, A., Vijaya, J. J., & Kennedy, L. J. (2013). Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Physica E: Low-Dimensional Systems and Nanostructures, 49, 117–123. DOI: 10.1016/j.physe.2013.02.013. http://dx.doi.org/10.1016/j.physe.2013.02.01310.1016/j.physe.2013.02.013Suche in Google Scholar

[15] McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., & Scardi, P. (1999). Rietveld refinement guidelines. Journal of Applied Crystallography, 32, 36–50. DOI: 10.1107/s0021889898009856. http://dx.doi.org/10.1107/S002188989800985610.1107/S0021889898009856Suche in Google Scholar

[16] Min, K. C., Kim, M., You, Y. H., Lee, S. S., Lee, Y. K., Chung, T. M., Kim, C. G., Hwang, J. H., An, K. S., Lee, N. S., & Kim, Y. (2007). NiO thin films by MOCVD of Ni(dmamb)2 and their resistance switching phenomena. Surface and Coatings Technology, 201, 9252–9255. DOI: 10.1016/j.surfcoat.2007.04.120. http://dx.doi.org/10.1016/j.surfcoat.2007.04.12010.1016/j.surfcoat.2007.04.120Suche in Google Scholar

[17] Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276. DOI: 10.1107/s0021889811038970. http://dx.doi.org/10.1107/S002188981103897010.1107/S0021889811038970Suche in Google Scholar

[18] Nathan, T., Aziz, A., Noor, A. F., & Prabaharan, S. R. S. (2008). Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties. Journal of Solid State Electrochemistry, 12, 1003–1009. DOI: 10.1007/s10008-007-0465-3. http://dx.doi.org/10.1007/s10008-007-0465-310.1007/s10008-007-0465-3Suche in Google Scholar

[19] Needham, S. A., Wang, G. X., & Liu, H. K. (2006). Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources, 159, 254–257. DOI: 10.1016/j.jpowsour.2006.04.025. http://dx.doi.org/10.1016/j.jpowsour.2006.04.02510.1016/j.jpowsour.2006.04.025Suche in Google Scholar

[20] Ni, X., Zhang, Y., Tian, D., Zheng, H., & Wang, X. (2007). Synthesis and characterization of hierarchical NiO nanoflowers with porous structure. Journal of Crystal Growth, 306, 418–421. DOI: 10.1016/j.jcrysgro.2007.05.013. http://dx.doi.org/10.1016/j.jcrysgro.2007.05.01310.1016/j.jcrysgro.2007.05.013Suche in Google Scholar

[21] Nėel, L. (1962). In C. DeWitt, B. Dreyfus, P. D. de Gennes (Eds.) Low temperature physics. (pp. 413). New York, NY, USA: Gordon and Beach. Suche in Google Scholar

[22] Pancove, J. I. (1971). Optical processes in semiconductors. Englewood Cliffs, NJ, USA: Prentice Hall. Suche in Google Scholar

[23] Peng, T. C., Xiao, X. H., Hand, X. Y., Zhou, X. D., Wu, W., Ren, F., & Jiang, C. Z. (2011). Characterization of DC reactive magnetron sputtered NiO films using spectroscopic ellipsometry. Applied Surface Science, 257, 5908–5912. DOI: 10.1016/j.apsusc.2011.01.138. http://dx.doi.org/10.1016/j.apsusc.2011.01.13810.1016/j.apsusc.2011.01.138Suche in Google Scholar

[24] Petříček, V., Dušek, M., & Palatinus, L. (2006). JANA 2006, the crystallographic computing system. Praha, Czech Republic: Academy of Sciences of the Czech Republic. Suche in Google Scholar

[25] Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. DOI: 10.1107/s0021889869006558. http://dx.doi.org/10.1107/S002188986900655810.1107/S0021889869006558Suche in Google Scholar

[26] Salavati-Niasari, M., Mohandes, F., Davar, F., Mazaheri, M., Monemzadeh, M., & Yavarinia, N. (2009). Preparation of NiO nanoparticles from metal-organic frameworks via a solidstate decomposition route. Inorganica Chimica Acta, 362, 3691–3697. DOI: 10.1016/j.ica.2009.04.025. http://dx.doi.org/10.1016/j.ica.2009.04.02510.1016/j.ica.2009.04.025Suche in Google Scholar

[27] Saravanan, R., Francis, S., & Berchmans, J. L. (2012). Doping level of Mn in high temperature grown Zn1−xMnxO studied through electronic charge distribution, magnetization and local structure. Chemical Papers, 66, 226–234. DOI: 10.2478/s11696-011-0129-8. http://dx.doi.org/10.2478/s11696-011-0129-810.2478/s11696-011-0129-8Suche in Google Scholar

[28] Scherrer, P. (1918). Bestimmung der Gröse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, 98–100. (in German) Suche in Google Scholar

[29] Smart, J. S., & Greenwald, S. (1951). Crystal structure transitions in antiferromagnetic compounds at the Curie temperature. Physical Review, 82, 113–114. DOI: 10.1103/physrev.82.113. http://dx.doi.org/10.1103/PhysRev.82.11310.1103/PhysRev.82.113Suche in Google Scholar

[30] Tadić, M., Panjan, M., Marković, D., Milošević, I., & Spasojević, V. (2011). Unusual magnetic properties of NiO nanoparticles embedded in a silica matrix. Journal of Alloys and Compounds, 509, 7134–7138. DOI: 10.1016/j.jallcom.2011.04.032. http://dx.doi.org/10.1016/j.jallcom.2011.04.03210.1016/j.jallcom.2011.04.032Suche in Google Scholar

[31] Takata, M. (2008). The MEM/Rietveld method with nanoapplications — accurate charge-density studies of nanostructured materials by synchrotron-radiation powder diffraction. Acta Crystallographica Section A, 64, 232–245. DOI: 10.1107/s010876730706521x. http://dx.doi.org/10.1107/S160053680706687110.1107/S010876730706521XSuche in Google Scholar

[32] Thota, S., & Kumar, J. (2007). Sol-gel synthesis and anomalous magnetic behavior of NiO nanoparticles. Journal of Physics and Chemistry of Solids, 68, 1951–1964. DOI: 10.1016/j.jpcs.2007.06.010. http://dx.doi.org/10.1016/j.jpcs.2007.06.01010.1016/j.jpcs.2007.06.010Suche in Google Scholar

[33] Vaidya, S., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2009). Synthesis of homogeneous NiO/SiO2 core-shell nanostructures and the effect of shell thickness on the magnetic properties. Crystal Growth & Design, 9, 1666–1670. DOI: 10.1021/cg800881p. http://dx.doi.org/10.1021/cg800881p10.1021/cg800881pSuche in Google Scholar

[34] Verma, V., & Katiyar, M. (2013). Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films, 527, 369–376. DOI: 10.1016/j.tsf.2012.12.020. http://dx.doi.org/10.1016/j.tsf.2012.12.02010.1016/j.tsf.2012.12.020Suche in Google Scholar

[35] Wang, W. Z., Liu, Y. K., Xu, C. K., Zheng, C. L., & Wang, G. H. (2002). Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chemical Physics Letters, 362, 119–122. DOI: 10.1016/s0009-2614(02)00996-x. http://dx.doi.org/10.1016/S0009-2614(02)00996-X10.1016/S0009-2614(02)00996-XSuche in Google Scholar

[36] Wang, W. N., Itoh, Y., Lenggoro, I. W., & Okuyama, K. (2004). Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Materials Science and Engineering: B, 111, 69–76. DOI: 10.1016/j.mseb.2004.03.024. http://dx.doi.org/10.1016/j.mseb.2004.03.02410.1016/j.mseb.2004.03.024Suche in Google Scholar

[37] Winkler, E., Zysler, R. D., Mansilla, M. V., & Fiorani, D. (2005). Surface anisotropy effects in NiO nanoparticles. Physical Review B, 72, 132409. DOI: 10.1103/physrevb.72.132409. http://dx.doi.org/10.1103/PhysRevB.72.13240910.1103/PhysRevB.72.132409Suche in Google Scholar

[38] Wu, Y., He, Y. M., Wu, T. H., Chen, T., Weng, W. Z., & Wan, H. L. (2007). Influence of some parameters on the synthesis of nanosized NiO material by modified sol-gel method. Materials Letters, 61, 3174–3178. DOI: 10.1016/j.matlet.2006.11.018. http://dx.doi.org/10.1016/j.matlet.2006.11.01810.1016/j.matlet.2006.11.018Suche in Google Scholar

[39] Xin, X. S., Lü, Z., Zhou, B. B., Huang, X. Q., Zhu, R. B., Sha, X. Q., Zhang, Y. H., & Su, W. H. (2007). Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO. Journal of Alloys and Compounds, 427, 251–255. DOI: 10.1016/j.jallcom.2006.02.064. http://dx.doi.org/10.1016/j.jallcom.2006.02.06410.1016/j.jallcom.2006.02.064Suche in Google Scholar

[40] Yang, H. M., Tao, Q. F., Zhang, X. C., Tang, A. D., & Ouyang, J. (2008). Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. Journal of Alloys Compounds, 459, 98–102. DOI: 10.1016/j.jallcom.2007.04.258. http://dx.doi.org/10.1016/j.jallcom.2007.04.25810.1016/j.jallcom.2007.04.258Suche in Google Scholar

[41] Zheng, Y. Z., & Zhang, M. L. (2007). Preparation and electrochemical properties of nickel oxide by molton-salt synthesis. Materials Letters, 61, 3967–3969. DOI: 10.1016/j.matlet.2006.12.072. http://dx.doi.org/10.1016/j.matlet.2006.12.07210.1016/j.matlet.2006.12.072Suche in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0519-1/html?lang=de
Button zum nach oben scrollen