Home Life Sciences Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
Article
Licensed
Unlicensed Requires Authentication

Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires

  • Joanna Rakowska EMAIL logo , Krystyna Prochaska , Bożena Twardochleb , Monika Rojewska , Bożenna Porycka and Anna Jaszkiewicz
Published/Copyright: February 9, 2014
Become an author with De Gruyter Brill

Abstract

The results of research into obtaining an ecological wetting agent for wildfires are presented. First, measurements of the equilibrium and dynamic surface tension for anionic and non-ionic commercial surfactants and their binary mixtures were conducted. Next, the parameters of adsorption facilitating a quantitative description of the process in both binary systems as well as single-component solutions were estimated. In addition, the static and dynamic contact angles on model surfaces with different hydrophobicity were studied (glass, polyethylene, pressed peat). In a few mixed systems, a synergism in reducing the critical micelle concentration and/or a synergy of the ability to wetting model surfaces was identified. Next, research into the sorptivity and wettability of peat (loose and pressed) was conducted. It was found that non-ionic and anionic surfactants exhibit different abilities in respect of foaming and moistening of peat. From an analysis of the preliminary results, the surface-active components were selected to obtain a wetting agent composition. The wettability and adsorption characteristics and an evaluation of the foaming ability using solutions of the prepared compositions were tested. The effectiveness of the wetting composition thus obtained was confirmed in the laboratory and in field firefighting. The test results confirmed the better wettability and sorptivity on peat and the effectivity for combating wildfires, compared with some typical commercial products.

[1] Ager, A. A., Vaillant, N. M., & Finney, M. A. (2010). A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. Forest Ecology and Management, 259, 1556–1570. DOI: 10.1016/j.foreco.2010.01.032. http://dx.doi.org/10.1016/j.foreco.2010.01.03210.1016/j.foreco.2010.01.032Search in Google Scholar

[2] Aho, M. J., Tummavuori, J. L., Hämäläinen, J. P., & Saastamoinen, J. J. (1989). Determination of heats of pyrolysis and thermal reactivity of peats. Fuel, 68, 1107–1111. DOI: 10.1016/0016-2361(89)90179-8. http://dx.doi.org/10.1016/0016-2361(89)90179-810.1016/0016-2361(89)90179-8Search in Google Scholar

[3] Blake, D., Hinwood, A. L., & Horwitz, P. (2009). Peat fires and air quality: Volatile organic compounds and particulates. Chemosphere, 76, 419–423. DOI: 10.1016/j.chemosphere.2009.03.047. http://dx.doi.org/10.1016/j.chemosphere.2009.03.04710.1016/j.chemosphere.2009.03.047Search in Google Scholar

[4] Bonazountas, M., Kallidromitou, D., Kassomenos, P., & Passas, N. (2007). A decision support system for managing forest fire casualties. Journal of Environmental Management, 84, 412–418. DOI: 10.1016/j.jenvman.2006.06.016. http://dx.doi.org/10.1016/j.jenvman.2006.06.01610.1016/j.jenvman.2006.06.016Search in Google Scholar

[5] Charman, D. J. (2009). Peat and peatlands. Reference Module in Earth Systems and Environmental Sciences Encyclopedia of Inland Waters, 2009, 541–548. DOI: 10.1016/b978-012370626-3.00061-2. 10.1016/B978-012370626-3.00061-2Search in Google Scholar

[6] Eastoe, J. (2010). Surfactant aggregation and adsorption at interfaces. In T. Cosgrove (Ed.), Colloid science: Principles, methods and applications (chapter 4, pp. 61–89). Oxford, UK: Blackwell. Search in Google Scholar

[7] Emelyanenko, A. M., & Boinovich, L. B. (2001). The role of discretization in video image processing of sessile and pendant drop profiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 189, 197–202. DOI: 10.1016/s0927-7757(01)00585-4. http://dx.doi.org/10.1016/S0927-7757(01)00585-410.1016/S0927-7757(01)00585-4Search in Google Scholar

[8] European Commitee for Standardization (1999). Surface active agents. Determination of foaming power. Perforated disc beating method. EN 12728:1999. Brussels, Belgium. Search in Google Scholar

[9] European Commitee for Standardization (2007). Portable fire extinguishers — Part 7: Characteristics, performance requirements and test methods. EN 3-7:2004+A1:2007. Brussels, Belgium. Search in Google Scholar

[10] Fainerman, V. B., Möbius, D., & Miller, R. (2001). Studies in interface science (Vol. 13). Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[11] Fainerman, V. B., & Miller, R. (2009). Adsorption isotherms at liquid interfaces. In P. Somasundaran, & A. Hubbard (Eds.), Encyclopedia of surface and colloid science (pp. 1–15). New York, NY, USA: Tylor & Francis. Search in Google Scholar

[12] Galet, L., Patry, S., & Dodds, J. (2010). Determination of the wettability of powders by theWashburn capillary rise method with bed preparation by a centrifugal packing technique. Journal of Colloid and Interface Science, 346, 470–475. DOI: 10.1016/j.jcis.2010.02.051. http://dx.doi.org/10.1016/j.jcis.2010.02.05110.1016/j.jcis.2010.02.051Search in Google Scholar

[13] Gerwing, J. J. (2002). Degradation of forests through logging and fire in the eastern Brazilian Amazon. Forest Ecology and Management, 157, 131–141. DOI: 10.1016/s0378-1127(00)00644-7. http://dx.doi.org/10.1016/S0378-1127(00)00644-710.1016/S0378-1127(00)00644-7Search in Google Scholar

[14] Halverson, J. D., Maldarelli, C., Couzis, A., & Koplik, J. (2009). Wetting of hydrophobic substrates by nanodroplets of aqueous trisiloxane and alkyl polyethoxylate surfactant solutions. Chemical Engineering Science, 64, 4657–4667. DOI: 10.1016/j.ces.2009.05.010. http://dx.doi.org/10.1016/j.ces.2009.05.01010.1016/j.ces.2009.05.010Search in Google Scholar

[15] Kuznetsov, V. T., & Loboda, E. L. (2010). Experimental study of peat ignition upon exposure to radiant energy. Combustion, Explosion, and Shock Waves, 46, 690–695. DOI: 10.1007/s10573-010-0091-8. http://dx.doi.org/10.1007/s10573-010-0091-810.1007/s10573-010-0091-8Search in Google Scholar

[16] Lishtvan, I. I. (2010). Physicochemical properties of peat and their transformations in the use of peat deposits. Solid Fuel Chemistry, 44, 369–375. DOI: 10.3103/s0361521910060017. http://dx.doi.org/10.3103/S036152191006001710.3103/S0361521910060017Search in Google Scholar

[17] Lunkenheimer, K., & Wantke, K. D. (1981). Determination of the surface tension of surfactant solutions applying the method of Lecomte du Noüy (ring tensiometer). Colloid and Polymer Science, 259, 354–366. DOI: 10.1007/bf01524716. http://dx.doi.org/10.1007/BF0152471610.1007/BF01524716Search in Google Scholar

[18] Mizerski, A., & Langner, M. (2008). Properties of foaming concentrates containing mixtures of sodium dodecyl sulfate and cocamidopropyl betaine. Safety and Fire Technique, 2, 57–66. Search in Google Scholar

[19] Osseo-Asare, K. (1984). Internfacial phenomena in hydrometallurgical liquid-liquid extraction system. In R. G. Bautista (Ed.), Hydrometallurgical process fundamentals NATO conference series. Series VI: Materials science (pp. 357). New York, NY, USA: Plenum Press. http://dx.doi.org/10.1007/978-1-4899-2274-8_1410.1007/978-1-4899-2274-8_14Search in Google Scholar

[20] Prochaska, K. (2002). Interfacial activity of metal ion extractant. Review. Advances in Colloid Interface Science, 95, 51–72. DOI: 10.1016/s0001-8686(00)00084-1. http://dx.doi.org/10.1016/S0001-8686(00)00084-110.1016/S0001-8686(00)00084-1Search in Google Scholar

[21] Rakowska, J., Porycka, B., & Twardochleb, B. (2009). Surface tension, wettability and absorptivity of basic components of wetting agents. Safety and Fire Technique, 4, 83–94. Search in Google Scholar

[22] Rakowska, J., Porycka, B., Radwan, K., Szczygieł, R., Kwiatkowski, M., & Prochaska, K. (2013). Application tests of new wetting compositions for wildland fire fighting. Fire Safety Journal. (submitted) Search in Google Scholar

[23] Rein, G. (2011). Smoldering combustion phenomena and coal fires. In G. B. Stracher, A. Prakash, & E. V. Sokol (Eds.), Coal and peat fires: A global perspectives (chapter 17, pp. 307–315). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-52858-2.00017-7. http://dx.doi.org/10.1016/B978-0-444-52858-2.00017-710.1016/B978-0-444-52858-2.00017-7Search in Google Scholar

[24] Rosen, M. J., & Hua, X. Y. (1982). Surface concentrations and molecular interactions in binary mixtures of surfactants. Journal of Colloid Interface and Science, 86, 164–172. DOI: 10.1016/0021-9797(82)90052-2. http://dx.doi.org/10.1016/0021-9797(82)90052-210.1016/0021-9797(82)90052-2Search in Google Scholar

[25] Rosen, M. J., & Zhu, B. Y. (1984). Synergism in binary mixtures of surfactants: III. Betaine-containing systems. Journal of Colloid Interface and Science, 99, 427–434. DOI: 10.1016/0021-9797(84)90129-2. http://dx.doi.org/10.1016/0021-9797(84)90129-210.1016/0021-9797(84)90129-2Search in Google Scholar

[26] Saharjo, B. H., Sudo, S., Yonemura, S., & Tsuruta, H. (2006). Greenhouse gasses produced during burning in the land preparation area using fire in peat area belong to the community. Forest Ecology and Management, 234, S247. DOI: 10.1016/j.foreco.2006.08.276. http://dx.doi.org/10.1016/j.foreco.2006.08.27610.1016/j.foreco.2006.08.276Search in Google Scholar

[27] Twardochleb, B., Jaszkiewicz, A., Koenig, K., Lukosek, M., Fiszer, R., Tarczyńska, B., Wróblewski, D., Rakowska, J., Porycka, B., & Prochaska, K. (2010a). PL Patent No. 213275. Warsaw, Poland. Polish Patent Office Search in Google Scholar

[28] Twardochleb, B., Jaszkiewicz, A., Koenig, K., Lukosek, M., Fiszer, R., Tarczyńska, B., Wróblewski, D., Rakowska, J., Porycka, B., & Prochaska, K. (2010b). PL Patent No. 213276. Warsaw, Poland. Polish Patent Office. Search in Google Scholar

[29] Twardochleb, B., Jaszkiewicz, A., Koenig, K., Lukosek, M., Fiszer, R., Tarczyńska, B., Wróblewski, D., Rakowska, J., Porycka, B., & Prochaska, K. (2010c). PL Patent No. 213277. Warsaw, Poland. Polish Patent Office. Search in Google Scholar

[30] Twardochleb, B., Jaszkiewicz, A., Koenig, K., Lukosek, M., Fiszer, R., Tarczyńska, B., Wróblewski, D., Rakowska, J., Porycka, B., & Prochaska, K. (2010d). PL Patent No. 213278. Warsaw, Poland. Polish Patent Office. Search in Google Scholar

[31] Twardochleb, B., Jaszkiewicz, A., Koenig, K., Lukosek, M., Fiszer, R., Tarczyńska, B., Wróblewski, D., Rakowska, J., Porycka, B., & Prochaska, K. (2010e). PL Patent No. 213279. Warsaw, Poland. Polish Patent Office. Search in Google Scholar

[32] Twardochleb, B., Jaszkiewicz, A., Koenig, K., Lukosek, M., Fiszer, R., Tarczyńska, B., Wróblewski, D., Rakowska, J., Porycka, B., & Prochaska, K. (2010f). PL Patent No. 213280. Warsaw, Poland. Polish Patent Office. Search in Google Scholar

[33] Vargaftik, N., Volkov, B., & Voljak, L. (1983). International tables of surface tension of water. Journal of Physical and Chemical Reference Data, 12, 817–820. DOI: 10.1063/1.555688. http://dx.doi.org/10.1063/1.55568810.1063/1.555688Search in Google Scholar

[34] Zhu, B. Y., & Rosen, M. J. (1984). Synergism in binary mixtures of surfactants: IV. Effectiveness of surface tension reduction. Journal of Colloid Interface and Science, 99, 435–442. DOI: 10.1016/0021-9797(84)90130-9. http://dx.doi.org/10.1016/0021-9797(84)90130-910.1016/0021-9797(84)90130-9Search in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0511-9/html?lang=en
Scroll to top button