Abstract
Recent progress in nanotechnology has prompted research interest in immobilised enzymes on graphene oxide (GO) nanosheets for their large specific surface area and abundant functional groups. In the present work, acid pectinase was immobilised on the GO via the cross-linking of amino groups on pectinase and functional groups (e.g. carboxyl group) on the GO surface. Acid pectinase was effectively immobilised on the support and high loading densities were obtained (2400 mg per g of support). In addition, the immobilised enzyme achieved a better catalytic efficiency (K cat/K m) than its free counterpart; 3.7 mg−1 min−1 mL for immobilised pectinase, 3.5 mg−1 min−1 mL for free pectinase. Under acidic conditions, pectinase immobilised on GO will be agglomerated, but the addition of surfactant PEG 6000 could solve the problem and afford higher catalytic activity and catalytic efficiency.
[1] Abad, J. M., Mertens, S. F. L., Pita, M., Fernández, V. M., & Schiffrin, D. J. (2005). Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. Journal of the American Chemical Society, 127, 5689–5694. DOI: 10.1021/ja042717i. http://dx.doi.org/10.1021/ja042717i10.1021/ja042717iSearch in Google Scholar
[2] Asuri, P., Bale, S. S., Pangule, R. C., Shah, D. A., Kane, R. S., & Dordick, J. S. (2007). Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir, 23, 12318–12321. DOI: 10.1021/la702091c. http://dx.doi.org/10.1021/la702091c10.1021/la702091cSearch in Google Scholar
[3] Bailey, M. J., & Pessa, E. (1990). Strain and process for production of polygalacturonase. Enzyme and Microbial Technology, 12, 266–271. DOI: 10.1016/0141-0229(90)90098-b. http://dx.doi.org/10.1016/0141-0229(90)90098-B10.1016/0141-0229(90)90098-BSearch in Google Scholar
[4] Bayhan, M., & Tuncel, A. (1998). Uniform poly(isopropylacrylamide) gel beads for immobilization of α-chymotrypsin. Journal of Applied Polymer Science, 67, 1127–1139. DOI: 10.1002/(SICI)1097-4628(19980207)67:6<1127::AID-APP21>3.0.CO;2-W. http://dx.doi.org/10.1002/(SICI)1097-4628(19980207)67:6<1127::AID-APP21>3.0.CO;2-W10.1002/(SICI)1097-4628(19980207)67:6<1127::AID-APP21>3.0.CO;2-WSearch in Google Scholar
[5] Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI:10.1016/0003-2697(76)90527-3. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar
[6] Bučko, M., Mislovičoválka, J., Vikartovská, A., Šefčovičov, J., Katrlík, J., Tkčík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., ŠmogrovičovŠvitel, J. (2012). Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chemical Papers, 66, 983–998. DOI:10.2478/s11696-012-0226-3. http://dx.doi.org/10.2478/s11696-012-0226-310.2478/s11696-012-0226-3Search in Google Scholar
[7] Demir, N., Acar, J., Sarıoğlu, K.,& Mutlu, M. (2001). The use of commercial pectinase in fruit juice industry. Part 3: Immobilized pectinase for mash treatment. Journal of Food Engineering, 47, 275–280. DOI:10.1016/s0260-8774(00)00127-8. http://dx.doi.org/10.1016/S0260-8774(00)00127-810.1016/S0260-8774(00)00127-8Search in Google Scholar
[8] Gao, Y., & Kyratzis, I. (2008). Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-a critical assessment. Bioconjugate Chemistry, 19, 1945–1950. DOI: 10.1021/bc800051c. http://dx.doi.org/10.1021/bc800051c10.1021/bc800051cSearch in Google Scholar
[9] Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C.,& Liu, H. (2009). Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. Journal of Molecular Catalysis B: Enzymatic, 58, 103–109. DOI:10.1016/j.molcatb.2008.12.001. http://dx.doi.org/10.1016/j.molcatb.2008.12.00110.1016/j.molcatb.2008.12.001Search in Google Scholar
[10] Kim, H.,& Macosko, C. W. (2009). Processing-property relationships of polycarbonate/graphene composites. Polymer, 50, 3797–3809. DOI:10.1016/j.polymer.2009.05.038. http://dx.doi.org/10.1016/j.polymer.2009.05.03810.1016/j.polymer.2009.05.038Search in Google Scholar
[11] Kim, J., Cote, L. J., & Huang, J. (2012). Two dimensional soft material: New faces of graphene oxide. Accounts of Chemical Research, 45, 1356–1364. DOI: 10.1021/ar300047s. http://dx.doi.org/10.1021/ar300047s10.1021/ar300047sSearch in Google Scholar
[12] Klibanov, A. M. (1983). Immobilized enzymes and cells as practical catalysts. Science, 219, 722–727. DOI:10.1126/science.219.4585.722. http://dx.doi.org/10.1126/science.219.4585.72210.1126/science.219.4585.722Search in Google Scholar
[13] Kumar, A., Sharma, V., Sharma, P., & Kanwar, S. S. (2013). Effective immobilisation of lipase to enhance esterification potential and reusability. Chemical Papers, 67, 696–702. DOI: 10.2478/s11696-013-0377-x. http://dx.doi.org/10.2478/s11696-013-0377-x10.2478/s11696-013-0377-xSearch in Google Scholar
[14] Lei, Z.,& Bi, S. (2007). The silica-coated chitosan particle from a layer-by-layer approach for pectinase immobilization. Enzyme and Microbial Technology, 40, 1442–1447. DOI:10.1016/j.enzmictec.2006.10.027. http://dx.doi.org/10.1016/j.enzmictec.2006.10.02710.1016/j.enzmictec.2006.10.027Search in Google Scholar
[15] Li, S. F., Chen, J. P.,& Wu, W. T. (2007). Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 47, 117–124. DOI:10.1016/j.molcatb.2007.04.010. http://dx.doi.org/10.1016/j.molcatb.2007.04.01010.1016/j.molcatb.2007.04.010Search in Google Scholar
[16] Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI:10.1021/ac60147a030. http://dx.doi.org/10.1021/ac60147a03010.1021/ac60147a030Search in Google Scholar
[17] Mutlu, M., Sarıoğlu, K., Demir, N., Ercan, M. T.,& Acar, J. (1999). The use of commercial pectinase in fruit juice industry. Part I: viscosimetric determination of enzyme activity. Journal of Food Engineering, 41, 147–150. DOI:10.1016/s0260-8774(99)00088-6. http://dx.doi.org/10.1016/S0260-8774(99)00088-610.1016/S0260-8774(99)00088-6Search in Google Scholar
[18] Noureddini, H., Gao, X.,& Philkana, R. S. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology, 96, 769–777. DOI: 10.1016/j.biortech.2004.05.029. http://dx.doi.org/10.1016/j.biortech.2004.05.02910.1016/j.biortech.2004.05.029Search in Google Scholar PubMed
[19] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V.,& Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669. DOI:10.1126/science.1102896. http://dx.doi.org/10.1126/science.110289610.1126/science.1102896Search in Google Scholar PubMed
[20] Park, M., Park, S. S., Selvaraj, M., Zhao, D.,& Ha, C. S. (2009). Hydrophobic mesoporous materials for immobilization of enzymes. Microporous and Mesoporous Materials, 124, 76–83. DOI: 10.1016/j.micromeso.2009.04.032. http://dx.doi.org/10.1016/j.micromeso.2009.04.03210.1016/j.micromeso.2009.04.032Search in Google Scholar
[21] Pollak, A., Blumenfeld, H., Wax, M., Baughn, R. L.,& Whitesides, G. M. (1980). Enzyme immobilization by condensation copolymerization into crosslinked polyacrylamide gels. Journal of the American Chemical Society, 102, 6324–6336. DOI:10.1021/ja00540a026. http://dx.doi.org/10.1021/ja00540a02610.1021/ja00540a026Search in Google Scholar
[22] Qi, B., Chen, X., & Wan, Y. (2010). Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresource Technology, 101, 4875–4883. DOI: 10.1016/j.biortech.2010.01.063. http://dx.doi.org/10.1016/j.biortech.2010.01.06310.1016/j.biortech.2010.01.063Search in Google Scholar
[23] Singh, V.K., Patra, M.K., Manoth, M., Gowd, G. S., Vadera, S. R., & Kumar, N. (2009). In situ synthesis of graphene oxide and its composites with iron oxide. New Carbon Materials, 24, 147–152. DOI: 10.1016/s1872-5805(08)60044-x. http://dx.doi.org/10.1016/S1872-5805(08)60044-X10.1016/S1872-5805(08)60044-XSearch in Google Scholar
[24] Stuart, B. H. (2004). Infrared spectroscopy: fundamentals and applications (Chapter 3, pp. 45–70). Chichester, UK: Wiley. DOI: 10.1002/0470011149. http://dx.doi.org/10.1002/047001114910.1002/0470011149Search in Google Scholar
[25] Su, R., Shi, P., Zhu, M., Hong, F.,& Li, D. (2012). Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresource Technology, 115, 136–140. DOI:10.1016/j.biortech.2011.12.085. http://dx.doi.org/10.1016/j.biortech.2011.12.08510.1016/j.biortech.2011.12.085Search in Google Scholar PubMed
[26] Wang, S., Bao, H., Yang, P., & Chen, G. (2008). Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Analytica Chimica Acta, 612, 182–189. DOI: 10.1016/j.aca.2008.02.035. http://dx.doi.org/10.1016/j.aca.2008.02.03510.1016/j.aca.2008.02.035Search in Google Scholar PubMed
[27] Wang, Y., Li, Z., Wang, J., Li, J.,& Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 29, 205–212. DOI:10.1016/j.tibtech.2011.01.008. http://dx.doi.org/10.1016/j.tibtech.2011.01.00810.1016/j.tibtech.2011.01.008Search in Google Scholar PubMed PubMed Central
[28] Wei, T., Luo, G., Fan, Z., Zheng, C., Yan, J., Yao, C., Li, W.,& Zhang, C. (2009). Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion. Carbon, 47, 2296–2299. DOI:10.1016/j.carbon.2009.04.030. http://dx.doi.org/10.1016/j.carbon.2009.04.03010.1016/j.carbon.2009.04.030Search in Google Scholar
[29] Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., & Guo, S. (2010). Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26, 6083–6085. DOI: 10.1021/la904014z. http://dx.doi.org/10.1021/la904014z10.1021/la904014zSearch in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy