Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
Abstract
Two-stage adsorption was used for selective removal of Cu(II) and phosphate from aqueous solutions. In the first stage, adsorption of Cu(II) and phosphate on oxyhumolite (OX) was examined. The pseudo second-order equation was found to be the best fit for the kinetic adsorption data. The adsorption capacity of OX for Cu(II) and phosphate depends on the adsorption time, the equilibrium pH influences only the adsorption of Cu(II). The high adsorption efficiency (E = 95 %, pH 3.5, 0.5 g of the solid sorbent and 50 cm3 of the solution, c = 4 mmol dm−3) of OX for Cu(II) is caused by the presence of humic acids (HA). In the second stage, blast furnace slag (BFS) and activated blast furnace slag (BFS-A) were used to remove phosphates. The presence of OX in the first stage positively influences the adsorption efficiency of sorbents in the second stage due to the soluble humic compounds and residues of humic acids (HA) which support the precipitation of Ca-phosphates on BFS and the ions exchange reactions on BFS-A. Adsorption equilibrium of phosphate on both slags at 298 K can be well described by the Langmuir isotherm equation. Desorption of Cu(II) from OX was around 70 %. The presence of OX in the first stage also influences the desorption of phosphate bound in the second stage. Desorption efficiency of both slags for phosphate was about 60 %.
[1] Agyei, N. M., Strydom, C. A., & Potgieter, J. H. (2002). The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends. Cement and Concrete Research, 32, 1889–1897. DOI:10.1016/s0008-8846(02)00888-8. http://dx.doi.org/10.1016/S0008-8846(02)00888-810.1016/S0008-8846(02)00888-8Search in Google Scholar
[2] Alvarez, R., Evans, L. A., Milham, P. J., & Wilson, M. A. (2004). Effects of humic material on the precipitation of calcium phosphate. Geoderma, 118, 245–260. DOI:10.1016/s0016-7061(03)00207-6. http://dx.doi.org/10.1016/S0016-7061(03)00207-610.1016/S0016-7061(03)00207-6Search in Google Scholar
[3] Bakhti, A., & Ouali, M. (2006). Sorption des ions phosphate sur une hydrotalcite de synthèse calcinée. Annales de Chimie — Science des Matériaux, 31, 407–420. DOI: 10.3166/acsm.31.407-420. (in French) http://dx.doi.org/10.3166/acsm.31.407-42010.3166/acsm.31.407-420Search in Google Scholar
[4] Bhatnagar, A., & Sillanpää, M. (2010). Utilization of agro industrial and municipal waste materials as potential adsorbents for water treatment: A review. Chemical Engineering Journal, 157, 277–296. DOI:10.1016/j.cej.2010.01.007. http://dx.doi.org/10.1016/j.cej.2010.01.00710.1016/j.cej.2010.01.007Search in Google Scholar
[5] Dimitrova, S. V. (1996). Metal sorption on blast-furnace slag. Water Research, 30, 228–232. DOI: 10.1016/0043-1354(95)00104-s. http://dx.doi.org/10.1016/0043-1354(95)00104-S10.1016/0043-1354(95)00104-SSearch in Google Scholar
[6] Drizo, A., Forget, C., Chapuis, R. P., & Comeau, Y. (2006). Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Research, 40, 1547–1554. DOI:10.1016/j.watres.2006.02.001. http://dx.doi.org/10.1016/j.watres.2006.02.00110.1016/j.watres.2006.02.001Search in Google Scholar PubMed
[7] El-Eswed, B., & Khalili, F. (2006). Adsorption of Cu(II) and Ni(II) on solid humic acid from the Azraq area, Jordan. Journal of Colloid and Interface Science, 299, 497–503. DOI:10.1016/j.jcis.2006.02.048. http://dx.doi.org/10.1016/j.jcis.2006.02.04810.1016/j.jcis.2006.02.048Search in Google Scholar PubMed
[8] Gong, G. Z., Ye, S. F., Tian, Y. J., Wang, Q., Ni, J., & Chen, Y. F. (2009). Preparation of a new sorbent with hydrated lime and blast furnace slag for phosphorus removal from aqueous solution. Journal of Hazardous Materials, 166, 714–719. DOI:10.1016/j.jhazmat.2008.11.077. http://dx.doi.org/10.1016/j.jhazmat.2008.11.07710.1016/j.jhazmat.2008.11.077Search in Google Scholar PubMed
[9] House, W. A. (1999). The physico-chemical conditions for the precipitation of phosphate with calcium. Environmental Technology, 20, 727–733. DOI:10.1080/09593332008616867. http://dx.doi.org/10.1080/0959333200861686710.1080/09593332008616867Search in Google Scholar
[10] Janoš, P., Sypecká, J., Mlčkovskáň, P., & Pilařov, V. (2007). Removal of metal ions from aqueous solutions by sorption onto untreated low-rank coal (oxihumolite). Separation and Purification Technology, 53, 322–329. DOI:10.1016/j.seppur.2006.08.004. http://dx.doi.org/10.1016/j.seppur.2006.08.00410.1016/j.seppur.2006.08.004Search in Google Scholar
[11] Janoš, P., Kopecká, A., & Hejda, S. (2011). Utilization of waste humate product (iron humate) for the phosphorus removal from waters. Desalination, 265, 88–92. DOI:10.1016/j.desal.2010.07.036. http://dx.doi.org/10.1016/j.desal.2010.07.03610.1016/j.desal.2010.07.036Search in Google Scholar
[12] Kim, D. H., Shin, M. C., Choi, H. D., Seo, C. I., & Baek, K. (2008). Removal mechanisms of copper using steel-making slag: Adsorption and precipitation. Desalination, 223, 283–289. DOI:10.1016/j.desal.2007.01.226. http://dx.doi.org/10.1016/j.desal.2007.01.22610.1016/j.desal.2007.01.226Search in Google Scholar
[13] Kohutová, H., Kostura, B., & Kukutschová, J. (2012). Oxyhumolite as a sorbent of CuII from phosphate-containing solutions. ChemPlusChem, 77, 1046–1050. DOI:10.1002/cplu.201200151. http://dx.doi.org/10.1002/cplu.20120015110.1002/cplu.201200151Search in Google Scholar
[14] Korkusuz, E. A, Beklioğlu, M., & Demirer, G. N. (2007). Use of blast furnace granulated slag as a substrate in vertical flow reed beds: Field application. Bioresource Technology, 98, 2089–2101. DOI:10.1016/j.biortech.2006.08.027. http://dx.doi.org/10.1016/j.biortech.2006.08.02710.1016/j.biortech.2006.08.027Search in Google Scholar
[15] Kostura, B., Kulveitová, H., & Leško, J. (2002). Determination of the phosphorus forms after sorption on blast furnace sludge and slag. Hutnické listy, 6–8, 7–12. Search in Google Scholar
[16] Kostura, B., Kulveitová, H., & Leško, J. (2005). Blast furnace slags as sorbents of phosphate from water solutions. Water Research, 39, 1795–1802. DOI:10.1016/j.watres.2005.03.010. http://dx.doi.org/10.1016/j.watres.2005.03.01010.1016/j.watres.2005.03.010Search in Google Scholar
[17] Kostura, B., Matysek, D., & Leško, J. (2011). Mechanisms of phosphate sorption from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Chemické Listy, 105, 874–878. (in Czech) Search in Google Scholar
[18] Kostura, B., Matysek, D., Kukutschová, J., & Leško, J. (2012). Phosphate interaction with calcined form of Mg-Al-CO3 hydrotalcite in aqueous solutions. Annales de Chemie — Science des Matériaux, 37, 11–20. DOI:10.3166/acsm.37.11-20. http://dx.doi.org/10.3166/acsm.37.11-2010.3166/acsm.37.11-20Search in Google Scholar
[19] Lazić, S. (1995). Microcrystalline hydroxyapatite formation from alkaline solutions. Journal of Crystal Growth, 147, 147–154. DOI:10.1016/0022-0248(94)00587-7. http://dx.doi.org/10.1016/0022-0248(94)00587-710.1016/0022-0248(94)00587-7Search in Google Scholar
[20] Lu, S. G., Bai, S. Q., & Shan, H. D. (2008). Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag. Journal of Zhejiang University Science A, 9, 125–132. DOI:10.1631/jzus.a071272. http://dx.doi.org/10.1631/jzus.A07127210.1631/jzus.A071272Search in Google Scholar
[21] Mikulášková, B., Lapčík, L., Jr., & Mašek, I. (1997). Lignite: Structure, properties and applications. Chemické Listy, 91, 160–168. (in Czech) Search in Google Scholar
[22] Okada, K., Shimazu, M., Kameshima, Y., Nakajima, A., & MacKenzie, K. J. D. (2007). Simultaneous uptake of Ni2+, NH 4+ and PO 43− by amorphous CaO-Al2O3-SiO2 compounds. Journal of Colloid and Interface Science, 305, 229–238. DOI:10.1016/j.jcis.2006.10.007. http://dx.doi.org/10.1016/j.jcis.2006.10.00710.1016/j.jcis.2006.10.007Search in Google Scholar PubMed
[23] Roy, A., Schilling, P. J., Eaton, H. C., Malone, P. G., Brabston, W. N., & Wakeley, L. D. (1992). Activation of ground blastfurnace slag by alkali-metal and alkaline-earth hydroxides. Journal of the American Ceramic Society, 75, 3233–3240. DOI: 10.1111/j.1151-2916.1992.tb04416.x. http://dx.doi.org/10.1111/j.1151-2916.1992.tb04416.x10.1111/j.1151-2916.1992.tb04416.xSearch in Google Scholar
[24] Xiong, J. B., He, Z. L., Mahmood, Q., Liu, D., Yang, X., & Islam, E. (2008). Phosphate removal from solution using steel slag through magnetic separation. Journal of Hazardous Materials, 152, 211–215. DOI:10.1016/j.jhazmat.2007.06.103. http://dx.doi.org/10.1016/j.jhazmat.2007.06.10310.1016/j.jhazmat.2007.06.103Search in Google Scholar
[25] Xu, D. F., Xu, J. M., Wu, J. J., & Muhammad, A. (2006). Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere, 63, 344–352. DOI:10.1016/j.chemosphere.2005.08.036. http://dx.doi.org/10.1016/j.chemosphere.2005.08.03610.1016/j.chemosphere.2005.08.036Search in Google Scholar
[26] Xu, M., Wang, H. J., Lei, D., Qu, D., Zhai, Y. J., & Wang, Y. L. (2013). Removal of Pb(II) from aqueous solution by hydrous manganese dioxide: Adsorption behavior and mechanism. Journal of Environmental Sciences, 25, 479–486. DOI:10.1016/s1001-0742(12)60100-4. http://dx.doi.org/10.1016/S1001-0742(12)60100-410.1016/S1001-0742(12)60100-4Search in Google Scholar
[27] Yang, J., Wang, S., Lu, Z. B., Yang, J., & Lou, S. J. (2009). Converter slag-coal cinder columns for the removal of phosphorous and other pollutants. Journal of Hazardous Materials, 168, 331–337. DOI:10.1016/j.jhazmat.2009.02.024. http://dx.doi.org/10.1016/j.jhazmat.2009.02.02410.1016/j.jhazmat.2009.02.024Search in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Articles in the same Issue
- Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
- Immobilisation of acid pectinase on graphene oxide nanosheets
- Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
- Enzymatic synthesis of a chiral chalcogran intermediate
- Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
- Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
- Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
- Cellulose-precipitated calcium carbonate composites and their effect on paper properties
- Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
- Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
- Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
- Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
- Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
- Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
- Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
- A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
- Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy