Home Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
Article
Licensed
Unlicensed Requires Authentication

Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures

  • Seyyed Sabounchei EMAIL logo , Mohammad Panahimehr , Hamid Khavasi , Fateme Bagherjeri and Collete Boscovic
Published/Copyright: January 28, 2014
Become an author with De Gruyter Brill

Abstract

The reaction of dppm (1,1-bis(diphenylphosphino)methane) with 2-bromo-4-phenylacetophenone and benzyl bromoacetate in chloroform produces new phosphonium salts, [Ph2PCH2PPh2CH2C(O) C6H4Ph]Br (I) and [Ph2PCH2PPh2CH2COOCH2Ph]Br (II). By allowing the phosphonium salts to react with the appropriate base, the bidentate phosphorus ylides, Ph2PCH2PPh2=C(H)C(O)C6H4Ph (III) and Ph2PCH2PPh2=C(H)C(O)OCH2Ph (IV), were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H4Ph)]} (X = Cl (V); X = Br (VI); X = I (VII)) and {HgX2[(Ph2PCH2PPh2C(H)COOCH2Ph)]} (X = Cl (VIII); X = Br (IX); X = I (X)). The FTIR and 1H, 31P and 13C NMR spectra were studied. The structure of compound III was unequivocally determined by the single-crystal X-ray diffraction technique. Single-crystal X-ray analysis of the {HgBr2[(Ph2PCH2PPh2C(H)C(O)C6H4Me)]} complex (XI) revealed the presence of a mononuclear complex containing the Hg atom in a distorted tetrahedral environment. In all complexes, the ylides referred to above were coordinated through the ylidic carbon and the phosphine atom.

[1] Abu-Gnim, C., & Amer, I. (1996). Phosphine oxides as ligands in the hydroformylation reaction. Journal of Organometallic Chemistry, 516, 235–243. DOI: 10.1016/0022-328x(96)06137-2. http://dx.doi.org/10.1016/0022-328X(96)06137-210.1016/0022-328X(96)06137-2Search in Google Scholar

[2] Agilent Technologies (2011). CrysAlisPro software system, Version 1.171.35.19. Oxford, UK: Agilent Technologies. Search in Google Scholar

[3] Barbaro, P., Cecconi, F., Ghilardi, C. A., Midollini, S., Orlandini, A., & Vacca, A. (1994). Metal coordination and Hg-C bond protonolysis in organomercury(II) compounds. Synthesis, characterization, and reactivity of the tetrahedral complexes [(np3)HgR][(CF3)SO3] {np3 = N(CH2CH2PPh2)3; R= CH3, C2H5, C6H5}. Inorganic Chemistry, 33, 6163–6170. DOI: 10.1021/ic00104a029. http://dx.doi.org/10.1021/ic00104a02910.1021/ic00104a029Search in Google Scholar

[4] Bell, N. A., Dee, T. D. Goldstein, M., McKenna, P. J., & Nowell, I. W. (1983). Mercury(II) halide complexes of tertiary phosphines. Part VI. The crystal structure of HgCl2(PPh3)2 and a comparison with related compounds. Inorganica Chimica Acta, 71, 135–140. DOI: 10.1016/s0020-1693(00)83650-6. http://dx.doi.org/10.1016/S0020-1693(00)83650-610.1016/S0020-1693(00)83650-6Search in Google Scholar

[5] Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Haward, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341. DOI: 10.1107/s0021889808042726. http://dx.doi.org/10.1107/S002188980804272610.1107/S0021889808042726Search in Google Scholar

[6] Ebrahim, M. M., Stoeckli-Evans, H., & Panchanatheswaran, K. (2007). Reactivity of mercury(II) halides with the unsymmetrical phosphorus ylide Ph2PCH2CH2PPh2=C(H)C(O)Ph: Crystal structure of {HgI2[PPh2CH2CH2PPh2=C(H) C(O)Ph]n}. Polyhedron, 26, 3491–3495. DOI: 10.1016/j.poly.2007.03.059. http://dx.doi.org/10.1016/j.poly.2007.03.05910.1016/j.poly.2007.03.059Search in Google Scholar

[7] Ebrahim, M. M., Panchanatheswaran, K., Neels, A., & Stoeckli-Evans, H. (2009). Mercury(II) complexes of stabilized phosphine-phosphonium ylide derived from bis(diphenylphosphino) methane: Synthesis, spectra and crystal structures. Journal of Organometallic Chemistry, 694, 643–648. DOI: 10.1016/j.jorganchem.2008.11.051. http://dx.doi.org/10.1016/j.jorganchem.2008.11.05110.1016/j.jorganchem.2008.11.051Search in Google Scholar

[8] Falvello, L. R., Fernαndez, S., Navarro, R., & Urriolabeitia, E. P. (2000). Reactivity of Pd(0) complexes with the phosphino ylide [Ph2PCH2PPh2=C(H)C(O)Me]. Molecular structure of [Pd(PPh2CHPPh2C(H)C(O)Me)2]. Inorganic Chemistry, 39, 2957–2960. DOI: 10.1021/ic990923z. http://dx.doi.org/10.1021/ic990923z10.1021/ic990923zSearch in Google Scholar

[9] Falvello, L. R., Fernαndez, S., Larraz, C., Llusar, R., Navarro, R., & Urriolabeitia, E. P. (2001). C-H activation in phosphonium salts promoted by platinum(II) complexes. Organometallics, 20, 1424–1436. DOI: 10.1021/om001034i. http://dx.doi.org/10.1021/om001034i10.1021/om001034iSearch in Google Scholar

[10] Falvello, L. R., Margalejo, M. E., Navarro, R., & Urriolabeitia, E. P. (2003). Synthesis and characterization of PdII complexes containing cyclic bis-ylides. Inorganica Chimica Acta, 347, 75–85. DOI: 10.1016/s0020-1693(02)01448-2. http://dx.doi.org/10.1016/S0020-1693(02)01448-210.1016/S0020-1693(02)01448-2Search in Google Scholar

[11] Grushin, V. V. (2004). Mixed phosphine-phosphine oxide ligands. Chemical Reviews, 104, 1629–1662. DOI: 10.1021/cr0 30026j. http://dx.doi.org/10.1021/cr030026jSearch in Google Scholar

[12] Heinicke, J., Peulecke, N., Köhler, M., He, M., & Keim, W. (2005). Tuning of nickel 2-phosphinophenolates — catalysts for oligomerization and polymerization of ethylene. Journal of Organometallic Chemistry, 690, 2449–2457. DOI: 10.1016/j.jorganchem.2004.10.012. http://dx.doi.org/10.1016/j.jorganchem.2004.10.01210.1016/j.jorganchem.2004.10.012Search in Google Scholar

[13] Heydari, R., Maghsoodlou, M. T., Habibi-Khorassani, S. M., Hazeri, N., Barahuie, F., & Rostamizadeh, M. (2010). An efficient method for synthesis of stable phosphorus ylides and 1,4-diionic organophosphorus compounds in the presence of sodium dodecyl sulfate in aqueous media. Arabian Journal of Chemistry, 3, 229–232. DOI: 10.1016/j.arabjc.2010.06.006. http://dx.doi.org/10.1016/j.arabjc.2010.06.00610.1016/j.arabjc.2010.06.006Search in Google Scholar

[14] Janardanan, D., & Sunoj, R. B. (2007). Computational investigations on the general reaction profile and diastereoselectivity in sulfur ylide promoted aziridination. Chemistry — A European Journal, 13, 4805–4815. DOI: 10.1002/chem.200700 303. http://dx.doi.org/10.1002/chem.200700303Search in Google Scholar

[15] Johnson, A. W. (1993). Ylides and imines of phosphorus. New York, NY, USA: Wiley. Search in Google Scholar

[16] Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T., & Wen, H. (1995). Reactions of benzoylmethylenetriphenylphosphorane with mercury(II) halides: spectral and structural characterization of [(C6H5)3PCHCOC6H5 · Hg Cl2]2 · 2CH3OH and [(C6H5)3PCHCOC6H5 · HgI2]2. Journal of Organometallic Chemistry, 491, 103–109. DOI: 10.1016/0022-328x(94)05217-y. http://dx.doi.org/10.1016/0022-328X(94)05217-Y10.1016/0022-328X(94)05217-YSearch in Google Scholar

[17] Koezuka, H., Matsubayashi, G., & Tanaka, T. (1974). Ylide-metal complex. Preparations and structures of palladium(II) and platinum(II) halide complexes with a stable sulfur ylide. Inorganic Chemistry, 13, 443–446. DOI: 10.1021/ic50132a042. http://dx.doi.org/10.1021/ic50132a04210.1021/ic50132a042Search in Google Scholar

[18] Koezuka, H., Matsubayashi, G., & Tanaka, T. (1976). Ylide-metal complex. Preparations and structures of palladium(II) and platinum(II) halide complexes with some phenacylides. Inorganic Chemistry, 15, 417–421. DOI: 10.1021/ic50156a035. http://dx.doi.org/10.1021/ic50156a03510.1021/ic50156a035Search in Google Scholar

[19] Kokotos, C. G., & Aggarwal, V. K. (2007). Aminals as substrates for sulfur ylides: A synthesis of functionalized aziridines and N-heterocycles. Organic Letters, 9, 2099–2102. DOI: 10.1021/ol070507f. http://dx.doi.org/10.1021/ol070507f10.1021/ol070507fSearch in Google Scholar

[20] Kolodiazhnyi, O. I. (1997). Methods of preparation of Csubstituted phosphorus ylides and their application in organic synthesis. Russian Chemical Reviews, 52, 225–254. DOI: 10.1070/rc1997v066n03abeh000232. http://dx.doi.org/10.1070/RC1997v066n03ABEH00023210.1070/RC1997v066n03ABEH000232Search in Google Scholar

[21] Kubicki, M., Hadjikakou, S. K., & Xanthopoulou, M. N. (2001). Synthesis, characterisation and study of mercury(II) bromide complexes with triphenylphosphine and heterocyclic thiones. The crystal structures of [bis(triphenylphosphine) dibromo mercury(II)] and [dibromo (pyrimidine-2-thionato) (triphenylphosphine) mercury(II)]. Extended intra-molecular linkages via N-H…Br and C-H…Br interactions. Polyhedron, 20, 2179–2185. DOI: 10.1016/s0277-5387(01)00827-0. http://dx.doi.org/10.1016/S0277-5387(01)00827-010.1016/S0277-5387(01)00827-0Search in Google Scholar

[22] Lin, I. J. B., Shy, H. C., Liu, C. W., Liu, L. K., & Yeh, S. K. (1990). Mixed sulphur and phosphorus ylide complexes of palladium formed by phase-transfer catalysis. X-Ray crystal structure of [Pd{(CH2)2S(O)Me}{Ph2PCH2PPh2CHC(O)Ph}]I·CH2Cl2·H2O. Journal of the Chemical Society, Dalton Transactions, 1990, 2509–2514. DOI: 10.1039/dt9900002509. http://dx.doi.org/10.1039/dt990000250910.1039/DT9900002509Search in Google Scholar

[23] Navarro, R., & Urriolabeitia, E. P. (1999). α-Stabilized phosphoylides as versatile multifunctional ligands. Journal of the Chemical Society, Dalton Transactions, 1999, 4111–4122. DOI: 10.1039/a906116i. http://dx.doi.org/10.1039/a906116i10.1039/a906116iSearch in Google Scholar

[24] Nishiyama, H., Itoh, K., & Ishii, Y. (1975). A convenient synthesis and structure of stabilized ylide complexes of palladium(II). Journal of Organometallic Chemistry, 87, 129–135. DOI: 10.1016/s0022-328x(00)80349-6. http://dx.doi.org/10.1016/S0022-328X(00)80349-610.1016/S0022-328X(00)80349-6Search in Google Scholar

[25] Oosawa, Y., Urabe, H., Saito, T., & Sasaki, Y. (1976). Preparation of chelate ylide ligands and their palladium(II) and platinum(II) halide complexes. Journal of Organometallic Chemistry, 122, 113–121. DOI: 10.1016/s0022-328x(00)92752-9. http://dx.doi.org/10.1016/S0022-328X(00)92752-910.1016/S0022-328X(00)92752-9Search in Google Scholar

[26] Sabounchei, S. J., Jodaian, V., Salehzadeh, S., Samiee, S., Dadrass, A., Bayat, M., & Khavasi, H. R. (2010a). Synthesis of new phosphonium ylides containing thiophene and furan rings and study of their reaction with mercury(II) halides: Spectral and structural characterization. Helvetica Chimica Acta, 93, 1105–1119. DOI: 10.1002/hlca.200900305. http://dx.doi.org/10.1002/hlca.20090030510.1002/hlca.200900305Search in Google Scholar

[27] Sabounchei, S. J., Samiee, S., Salehzadeh, S., Bolboli Nojini, Z., & Irran, E. (2010b). Four-coordinate and pseudo five-coordinate Hg(II) complexes of a new bidentate phosphorus ylide: X-ray crystal structure and spectral characterization. Journal of Organometallic Chemistry, 695, 1441–1450. DOI: 10.1016/j.jorganchem.2010.02.029. http://dx.doi.org/10.1016/j.jorganchem.2010.02.02910.1016/j.jorganchem.2010.02.029Search in Google Scholar

[28] Sabounchei, S. J., Samiee, S., Salehzadeh, S., Bolboli Nojini, Z., Bayat, M., Irran, E., & Borowski, M. (2010c). New mononuclear mercury(II) complexes of a bifunctionalized ylide containing five-membered chelate ring: Spectral and structural characterization. Inorganica Chimica Acta, 363, 3654–3661. DOI: 10.1016/j.ica.2010.05.004. http://dx.doi.org/10.1016/j.ica.2010.05.00410.1016/j.ica.2010.05.004Search in Google Scholar

[29] Sabounchei, S. J., Nemattalab, H., & Khavasi, H. R. (2010d). Crystal structure of 4’-chlorobenzoylmethylenetriphenylphosphorane ylide, C26H20ClOP. X-ray Structure Analysis Online, 26, 35–36. DOI: 10.2116/xraystruct.26.35. http://dx.doi.org/10.2116/xraystruct.26.3510.2116/xraystruct.26.35Search in Google Scholar

[30] Sabounchei, S. J., Panahimehr, M., Ahmadi, M., Nasri, Z., & Khavasi, H. R. (2013a). Four-coordinate Pd(II) complexes containing non-symmetric phosphorus ylides: Synthesis, characterization, and catalytic behavior towards Suzuki reaction. Journal of Organometallic Chemistry, 723, 207–213. DOI: 10.1016/j.jorganchem.2012.10.004. http://dx.doi.org/10.1016/j.jorganchem.2012.10.00410.1016/j.jorganchem.2012.10.004Search in Google Scholar

[31] Sabounchei, S. J., Panahimehr, M., Salehzadeh, S., Bayat, M., Khavasi, H. R., & Morales-Morales, D. (2013b). Structural, theoretical and spectroscopic study of mercury(II) complexes of two new unsymmetric phosphorus ylides. Phosphorus, Sulfur, and Silicon and the Related Elements, in press. DOI: 10.1080/10426507.2013.779274. 10.1080/10426507.2013.779274Search in Google Scholar

[32] Saravanabharathi, D., Venkatakrishnan, T. S., Nethaji, M., & Krishnamurthy, S. S. (2003). Rhodium(I) complexes of α-keto-stabilised 1,2-bis(diphenylphosphino)alkane mono ylides. Journal of Chemical Sciences, 115, 741–749. DOI: 10.1007/bf02708264. http://dx.doi.org/10.1007/BF0270826410.1007/BF02708264Search in Google Scholar

[33] Sbovata, S. M., Tassan, A., & Facchin, G. (2008). Synthesis and coordination of the bifunctionalized ylides Ph2P(CH2)n(Ph)2 P=CHCOOMe (n = 1, 2) and ketenylidene Ph2P(CH2)2(Ph)2P=C=C=O to Pd and Pt complexes. Inorganica Chimica Acta, 361, 3177–3183. DOI: 10.1016/j.ica.2007.10.055. http://dx.doi.org/10.1016/j.ica.2007.10.05510.1016/j.ica.2007.10.055Search in Google Scholar

[34] Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, A64, 112–122. DOI: 10.1107/s0108767307043930. 10.1107/S0108767307043930Search in Google Scholar PubMed

[35] Spannenberg, A., Baumann, W., & Rosenthal, U. (2000). Palladium(II) complexes of α-stabilized phosphorus ylides. Organometallics, 19, 3991–3993. DOI: 10.1021/om000429z. http://dx.doi.org/10.1021/om000429z10.1021/om000429zSearch in Google Scholar

[36] Stoe & Cie (2005a). X-AREA and X-RED software package [computer software]. Darmstadt, Germany: Stoe & Cie. Search in Google Scholar

[37] Stoe & Cie (2005b). X-STEP 32 software package [computer software]. Darmstadt, Germany: Stoe & Cie. Search in Google Scholar

[38] Takahashi, H., Oosawa, Y., Kobayashi, A., Saito, T., & Sasaki, Y. (1976). Structure of a chelate ylide complex: Dichloro(benzoylmethylenediphenyl-2-diphenylphosphinoethyl phosphorane)palladium. Chemistry Letters, 5, 15–16. DOI: 10.1246/cl.1976.15. http://dx.doi.org/10.1246/cl.1976.1510.1246/cl.1976.15Search in Google Scholar

[39] Urriolabeitia, E. P. (2008). Bonding properties and bond activation of ylides: recent findings and outlook. Dalton Transactions, 2008, 5673–5686. DOI: 10.1039/b806787b. http://dx.doi.org/10.1039/b806787b10.1039/b806787bSearch in Google Scholar

[40] Usón, R., Forniés, J., Navarro, R., & Ortega, A. M. (1987). Perhalophenyl complexes of palladium(II) containing ketostabilized phosphorus ylides of the type Ph2P(CH2)nPPh2CHC(O)R. Journal of Organometallic Chemistry, 334, 389–397. DOI: 10.1016/0022-328x(87)80101-8. http://dx.doi.org/10.1016/0022-328X(87)80101-810.1016/0022-328X(87)80101-8Search in Google Scholar

[41] Viau, L., Lepetit, C., Commenges, G., & Chauvin, R. (2001). Chiral phosphine-phosphonium ylide rhodium complexes. Organometallics, 20, 808–810. DOI: 10.1021/om000885n. http://dx.doi.org/10.1021/om000885n10.1021/om000885nSearch in Google Scholar

[42] Vicente, J., Chicote, M. T., Lagunas, M. C., & Jones, P. G. (1991). Synthesis and structural characterization of gold-(I), -(III) and silver(I) complexes of the ylide ligand Ph3P=CHC(O)NMe2. Crystal structure of [(AuPPh3)2{μ-C(PPh3)C(O)NMe2}]ClO4. Journal of the Chemical Society, Dalton Transactions, 1991, 2579–2583. DOI: 10.1039/dt9910002579. http://dx.doi.org/10.1039/dt9910002579Search in Google Scholar

[43] Vicente, J., Singhal, A. R., & Jones, P. G. (2002). New ylide-, alkynyl-, and mixed alkynyl/ylide-gold(I) complexes. Organometallics, 21, 5887–5900. DOI: 10.1021/om020753p. http://dx.doi.org/10.1021/om020753p10.1021/om020753pSearch in Google Scholar

[44] Wegman, R. W., Abatjoglou, A. G., & Harrison, A. M. (1987). Carbonylation of methanol at unusually low temperature and pressure with cis-RhCl(CO)2Ph2P(CH2)2P(O)Ph2. Journal of the Chemical Society, Chemical Communications, 1987, 1891–1892. DOI: 10.1039/c39870001891. http://dx.doi.org/10.1039/c3987000189110.1039/c39870001891Search in Google Scholar

[45] Weleski, E. T., Jr., Silver, J. L., Jansson, M. D., & Burmeister, J. L. (1975). Palladium(II), platinum(II) and mercury( II) complexes of ambidentate phosphonium, arsonium, sulfonium and pyridinium ylids. Journal of Organometallic Chemistry, 102, 365–385. DOI: 10.1016/s0022-328x(00)95204-5. http://dx.doi.org/10.1016/S0022-328X(00)95204-510.1016/S0022-328X(00)95204-5Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Downloaded on 14.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0487-5/html?lang=en
Scroll to top button