

Central European Journal of Medicine

Pulmonary actinomycosis as a rare cause of inflammatory myofibroblastic tumor: a case report

Case Report

Zdravko Kosjerina^{1*}, Ivan Kuhajda², Yale Rosen³, Slobodan Sekulic⁴, Vesna Kosjerina Ostric⁵

> 1 Institute for Lung Diseases of Vojvodina, Pathology Department 21234 Sremska Kamenica, Serbia

2 Institute for Lung Diseases of Vojvodina, Clinic of Thoracic Surgery 21234 Sremska Kamenica, Serbia

> 3 SUNY Downstate Medical Center, Pathology Department, Brooklyn, NY 11203, USA.

4 Department of Neurology, Clinical Center of Vojvodina Hajduk Veljkova 1-7, 21000 Novi Sad, Serbia

5 Institute for Lung Diseases of Vojvodina, Pulmology Department 21234 Sremska Kamenica, Serbia

Received 11 January 2013; Accepted 13 April 2013

Abstract: Pulmonary inflammatory myofibroblastic tumor encompasses a heterogeneous spectrum of reactive, infectious, and neoplastic entities. It is composed of spindle-shaped myofibroblastic cells in a background of inflammatory cells and collagen fibres. Actinomycosis is a bacterial infection. It infects the lower respiratory tracts by inhalation or aspiration of oropharyngeal or upper gastrointestinal materials. Only eight cases of pulmonary IMT associated with actinomycosis have been reported in the literature so far. This is the ninth case reported.

Keywords: Pulmonary inflammatory myofibroblastic tumor • Actinomycosis

© Versita Sp. z o.o

1. Introduction

Inflammatory myofibroblastic tumor (IMT), also known as inflammatory pseudotumor or plasma cell granuloma encompasses a heterogeneous spectrum of reactive, infectious, and neoplastic entities, which may occur at virtually any site in the human body. It is characterized by a mass composed of spindle myofibroblastic cells in a background of inflammatory cells and collagen

Although these tumors are typically benign, IMTs have an uncertain malignant potential and may show local recurrence, infiltrative growth, vascular invasion, and malignant sarcomatous transformation [2].

Actinomycosis is a bacterial infection caused mainly by Actinomyces israelii and can involve sites of the body such as the cervicofacial, abdominopelvic and thoracic areas, as well as the skin, brain, pericardium, or extremities. Actinomyces infects the lower respiratory tracts by inhalation or aspiration of oropharyngeal or upper gastrointestinal materials [3].

More frequently, pulmonary actinomycosis occurs in immunocompetent persons during the fourth and fifth decades of life, with a prevalence in men. It is frequently

misdiagnosed as primary or metastatic lung cancer or as other more conventional lung infections, usually tuberculosis [4].

In this study, we describe the clinicopathologic, imaging, and histologic features of a case of pulmonary IMT caused by Actinomycosis.

2. Case report

A 32 year old female patient was admitted to the hospital due to a persistent cough of 10 months duration, chest pain, transitory pain in the legs and spine, fever and an abnormal shadow on the chest X-ray (Figure 1). She had a history of psychosis and had taken medications for that disorder (Clozapine, Lorazepam, Sulpirid, Eftil). She was a 12 pack-year smoker, with no alcohol abuse.

A chest CT scan revealed a lobular expansive infiltration, 74x68x55 mm, located within the right middle lobe, in contact with costal and mediastinal pleura (Figure 1). Mediastinal lymph nodes were enlarged 20 mm. The patient underwent bronchoscopy, which was essentially normal, as well as transthoracic middle lobe aspiration biopsy. Echocardiography, abdominal ultrasonography and lung function tests were essentially normal. A right anterolateral thoracotomy was performed with biopsy of enlarged mediastinal lymph nodes and tumor from midle lobe. The diagnosis on frozen section was inflammatory pseudotumor, without carcinoma cells. A right middle lobectomy was performed. The postoperative course was uneventful. Subsequent workup excluded dental infections or poor oral health. The patient was discharged six days after surgery and one year later, there was no evidence of recurrence or other pulmonary infiltrations.

The right middle lobe with partially thickened, whitish pleura was received in the Pathology Department. On cross section, almost the entire lobe was occupied with a gray-yellowish, partially gray-whitish, lobulated, moderately solid tumor measuring 9.5x7 cm. In some parts, the tumor was not clearly distinguished from the surrounding structures (Figure 2).

Microscopic examination revealed a mixture of spindle cells showing fibroblastic and myofibroblastic differentiation arrayed in fascicles, or with storiform architecture. The spindle cells had oval nuclei, fine chromatin, inconspicuous nucleoli, and pale eosino-philic cytoplasm. Admixed with the spindle cells was an inflammatory infiltrate containing lymphocytes, plasma cells, and a few neutrophils. Immunohistochemical analysis showed positive staining for vimentin and SMA

Figure 2. Gray-yellowish, partially gray-whitish, lobulated, tumor measuring 9.5x7 cm.

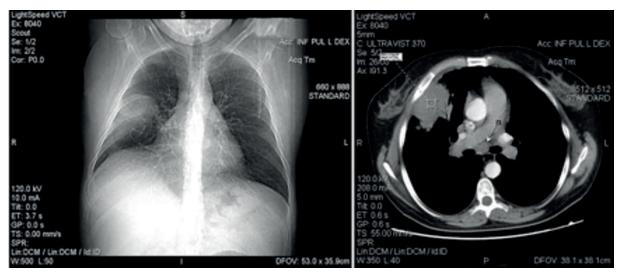


Figure 1. Chest X-ray: Homogenous shadow in the right middle lobe; CT: lobular expansive infiltration located within the right middle lobe

(Figure 3), and negative staining for desmin, S 100 protein and pan-cytokeratin.

Within this pseudotumor are multiple 'microab-scesses' which contained centrally located colonies of bacteria. These colonies have an eosinophilic hyaline "clubbing" material. Brightly eosinophilic clubs at the periphery of the granules are identified as the Splendore-Hoeppli phenomenon. The bacterial colonies are composed of individual, thin bacterial filaments with frequent 90-degree branching and a beaded appearance. The bacterial filaments are Gram-positive, Grocott silver positive, PAS positive (Figure 4) and acid fast negative.

3. Disscussion

IMT has an equal sex distribution and occurs in all ages, with a peak incidence in the second and third decades [5]. The lung is the most common site of such lesions, which are frequently detected incidentally on chest radiograph as a solitary lung mass or nodule in asymptomatic

patients. Symptomatic patients may complain of cough, chest pain, fever, hemoptysis, and dyspnea [6].

IMT can be solitary or multiple with a wide range in size, from less than 1 cm to occupying almost the entire hemithorax [7].

The differential diagnosis for spindle cell tumors includes IMT, leiomyoma, leiomyosarcoma, rhabdomyosarcoma, malignant fibrous histiocytoma, inflammatory

fibrosarcoma, intra-abdominal fibromatosis, and gastrointestinal stromal tumor [2].

Some believe IMT is a reactive inflammatory condition, others that it represents a low grade mesenchymal malignancy [5]. Noguchi reports IMT may be due to trauma- or coagulopathy-induced intraparenchymal bleeding, or it is autoimmune in nature, the latter supported by the presence of abundant plasma cells [8]. A specific IMT-inducing infectious agent has not been identified yet, but numerous infectious agents have been reported as potential causes of IMT including: Coxiella burnetti, Bacteroides corrodeus, Klebsiella pneumoniae, Pseudomonas veronii [9], Cryptococcus

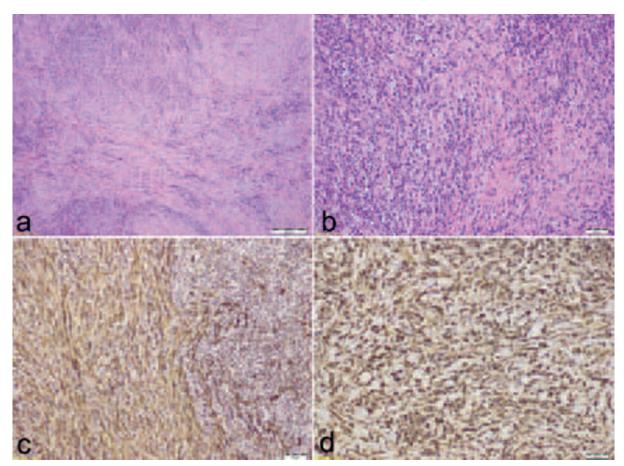


Figure 3. A. Mixture of spindle cells showing fibroblastic and myofibroblastic differentiation arrayed in fascicles, or with storiform architecture.

B. The spindle cells have oval nuclei, fine chromatin, inconspicuous nucleoli, and pale eosinophilic cytoplasm; inflammatory infiltrate containing lymphocytes and plasma cells. C. Positive staining for vimentin, and D. Positive staining for SMA.

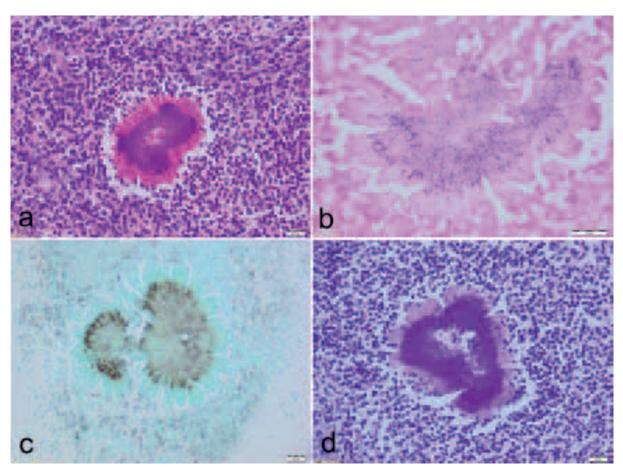


Figure 4. A. Microabscess with centrally located bacterial granules exhibiting the Splendore-Hoeppli phenomenon. B. The bacterial granules are composed of individual, thin bacterial filaments which are Gram positive C. Grocott silver positive, and D. PAS positive.

Table 1. Inflammatory pseudotumor associated with actinomycosis – review of literature [6, 17-35]

Localization of IMT	Number of cases	%
Abdominal ^{18,19,20}	9	32.1
Lung 6,17,21,22,23,24	8	28.5
Liver ^{25,26,27,28}	4	14.2
Lymph node ²⁹	1	3.6
Brain ³⁰	1	3.6
Pelvis ³¹	1	3.6
Kidney ³²	1	3.6
Colon ³³	1	3.6
Urachal remnants 34	1	3.6
Retroperitoneal 35	1	3.6
TOTAL	28	100.0

gattii [1], Epstein-Barr virus [10], Mycobacterium avium intracellulare, Corynebacterium equi, Campylobacter jejuni, Bacillus sphaericus, Escherichia coli [2], Nocardia [11], Mycobacterium malmoense, Mycoplasma pneumoniae [6], John Cunningham virus [12], Mycobacterium tuberculosis, Human Herpes Virus-8 [13], Eikenella corrodens [14] and Actinomyces [15].

To our knowledge, 28 cases of IMT associated with actinomycosis have been reported so far, only eight of which were pulmonary IMTs (Table 1).

The gram-positive bacterium, Actinomyces israelii is a commensal organism in humans and can be found in the mouth, bronchi, gastrointestinal and genitourinary tracts.

Actinomycosis is a disease of insidious onset with nonspecific symptoms and therefore poses a diagnostic challenge. Due to a similar histological presentation, it is essential for a pathologist to differentiate actinomycosis from nocardiosis and botryomycosis,

Histological examination of a biopsy from the actinomycotic lesion demonstrates bacteria colonies that are associated with variable amounts of eosinophilic, amorphous, Splendore-Hoeppli material. The bacterial colonies are composed of individual, thin bacterial filaments which are Grocott silver positive, PAS positive, acid fast negative and Gram-positive with frequent 90-degree branching and a beaded appearance [16].

Nocardiosis is a bronchopulmonary infectious disease caused by Nocardia sp. Histologic examination shows multiple confluent abscesses and long filamentous, thin, and beaded microorganisms arranged in a "Chinese character" pattern. The microorganisms stain positively with Gram, methenamine silver stains and acid fast stains [4].

Botryomycosis is an uncommon infection caused by nonfilamentous bacteria (usually Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli). Histologic examination reveals aggregates of nonfilamentous, gram-positive cocci or gram-negative bacilli that form colonies and may exhibit the Splendore-Hoeppli phenomenon; methenamine silver stains are negative. [4].

Our case is IMT with numerous microabscesses which contain colonies of Actinomyces.

The mainstay of treatment for IMT is surgical resection with wide margins. Radiotherapy, immunosuppression, and chemotherapy have not been proven to have any definitive benefit [2].

The genus Actinomyces is susceptible to a wide variety of antibiotics in vitro, and penicillin is the drug of choice for the treatment of actinomycosis. Ferreira reports the "surgical treatment of actinomycosis is controversial and should be restricted to abscess drainage, debridement of necrotic tissue, curettage of bone, and drainage of empyema". [17]. When actinomycosis is associated with IMT, we consider that the surgical removal of the "tumorous" mass is a necessary and reasonable treatment modality.

4. Conclusion

Although the etiology and pathophysiology of IMT require further investigation, our case demonstrates that a reactive inflammatory process secondary to chronic infection, including actinomycosis is a cause of IMT.

Acknowledgments

This study was supported by the Serbian Ministry of Education and Science, Grant Number 175006/2011.

References

- [1] Kushner YB, Brimo F, Schwartzman K, Auger M. A Rare Case of Pulmonary Cryptococcal Inflammatory Myofibroblastic Tumor Diagnosed by Fine Needle Aspiration Cytology. Diagnostic Cytopathology, 2010, 38 (6): 447-451
- [2] Bajaj P, Harris L, Vermillion JM, Pinkston GR, McCann LS, Mahajan JY. An Uncommon Presentation of Inflammatory Myofibroblastic Tumor. Hospital Physician, 2007, 27-30
- [3] Baik JJ, Lee GL, Yoo CG, Han SK, Shim YS, Kim Y. Pulmonary actinomycosis in Korea, Respirology, 1999, 4, 31–35
- [4] Andreani A, Cavazza A, Marchioni A, Richeldi L, Paci M, Rossi G. Bronchopulmonary Actinomycosis Associated With Hiatal Hernia, Mayo Clin Proc 2009;84(2):123-128
- [5] Travis WD, Brambilla E, Muler Hermelink HK, Harris CS. Tumors of the Lung, Pleura, Thymus and Heart, WHO, IARC Press, Lyon, 2004, 105-106
- [6] Park SY, Lee YC, Rhee YK, Kweon EY, Lee HB. Plasma Cell Granuloma Associated with Pulmonary Actinomycosis: A Case Report. J Korean Med Sci 2006; 21: 1117-1120

- [7] Lewin-Smith MR, Klassen MK, Frankel SS, Nelson AM. Pathology of Human Immunodeficiency Virus Infection: Infectious Conditions. Ann Diagn Pathol, 1998, (2): 181-194
- [8] Noguchi H, Kondo H, Kondo M, Shiraiwa M, Monobe Y. Inflammatory Pseudotumor of the Soleen: A Case Report. Jpn J Clin Oncol, 2000, 30 (4): 196-203
- [9] Cheuk W, Woo PCI, Yuen KY, Yu PH, Chan JKC. Intestinal inflammatory pseudotumour with regional lymph node involvement: identification of a new bacterium as the aetiological agent. J Pathol 2000; 192: 289-292
- [10] Arber DA, Weiss LM, Chang KL. Detection of Epstein-Barr virus in inflammatory pseudotumor. Semin Diagn Pathol 1998; 15: 155–160
- [11] Hussain SF, Salahuddin N, Khan A, Memon SJ, Fatimi SH, Ahmed R. The Insidious Onset of Dyspnea and Right Lung Collapse in a 35-Year-Old Man, Chest, 2005; 127:1844–1847
- [12] Duarte AG, Sullivan S, Sips GJ, Naidich T, Kleinman G, Murray J, Morgello S, Germano I, Mullen M, Simpson D. Inflammatory Pseudotumor

- associated with HIV, JCV, and Immune Reconstitution Syndrome. Neurology, 2009, 72: 289-290
- [13] Farris B, Kradin RL. Follicular localization of dendritic cells in a xanthomatous inflammatory tumor of lung associated with human herpes virus-8 infection. Virchows Arch, 2006, 449:726–729
- [14] Lee SH, Fang YC, Luo JP, Kuo HI, Chen HC. Inflammatory pseudotumour associated with chronic persistent Eikenella corrodens infection: a case report and brief review. J Clin Pathol 2003;56:868–870
- [15] Radhi J, Hadjis N, Anderson L, Burbridge B, Ali K. Retroperitoneal actinomycosis masquerading as inflammatory pseudotumor. J Pediatr Surg 1997; 32: 618-620
- [16] Isotalo PA, Qian X, Hayden RT, Roberts GD, Lloyd RW. In Situ Hybridization for the Differentiation of Actinomyces and Nocardia in Tissue Sections, Diagn Mol Pathol 2009;18:183–188
- [17] Ferreira HP, Araújo CA, Cavalcanti JF, Miranda RL, Ramalho Rde A. Pulmonary actinomycosis as a pseudotumor: a rare presentation. J Bras Pneumol. 2011 Sep-Oct;37(5):689-693
- [18] Das N, Lee J, Madden M, Elliot CS, Bateson P, Gilliland R. A rare case of abdominal actinomycosis presenting as an inflammatory pseudotumour. International Journal of Colorectal Disease, 2006, 21: 483-484
- [19] Ketataa S, Mabroukb MB, Derbelb F, Fodhaa I, Sabrib Y, Trabelsia A, Mtimetb A, Hadj Hamidab MB, Mazhoudb J, Ben Ali A, Hadj Hamidab RB, Boujaafara N. Tumoral form of abdominal actinomycosis: A retrospective case series of seven patients. La Revue de médecine interne, 2010, 31:735–741
- [20] Yamada H, Kondo S, Kamiya J, Nagino M, Miyachi M, Kanai M, Hayata A, Washizu J, Nimura Y. Computed Tomographic Demonstration of a Fish Bone in Abdominal Actinomycosis: Report of a Case. Surg Today, 2006, 36:187–189
- [21] Fernández Villar A, Roca Serrano R, Piñeiro Amigo L. Pulmonary pseudotumor with mediastinal extension caused by actinomyces. Arch Bronconeumol. 1996, 32(7):374-375
- [22] Dorman JP, Arom KV. Pulmonary pseudotumor caused by actinomycosis. Tex Med. 1976,72(6):65-67
- [23] Schweigert M, Meyer C, Stadlhuber RJ, Dubecz A, Kraus D, Stein HJ. Surgery for inflammatory tumor of the lung caused by pulmonary actinomycosis. Thorac Cardiovasc Surg. 2012, 60(2):156-160

- [24] Dweik RA, Goldfarb J, Alexander F, Stillwell PC. Actinomycosis and plasma cell granuloma, coincidence or coexistence: patient report and review of literature. Clin Pediatr (Phila). 1997; 36: 229-233
- [25] Kim HS, Park NH, Park KA, Kang SB. A case of pelvic actinomycosis with hepatic actinomycotic pseudotumor. Gynecol Obstet Invest. 2007;64(2):95-99
- [26] Tamsel S, Demirpolat G, Killi R, Elmas N. Primary hepatic actinomycosis: a case of inflammatory pseudotumor (case report). Tani Girisim Radyol. 2004, 10(2):154-157
- [27] Lin TP, Fu LS, Peng HC, Lee T, Chen JT, Chi CS. Intra-abdominal actinomycosis with hepatic pseudotumor and xanthogranulomatous pyelonephritis in a 6-y-old boy. Scand J Infect Dis. 2001;33(7):551-553
- [28] Lamoureux E, Daloze P, Bayardelle P, Paquin F. Hepatic actinomycosis presenting as a pseudotumor. Union Med Can. 1984, 113(1):30-1, 34
- [29] Sweis RF, Propes MJ, Hyjek E. Actinomycesinduced inflammatory pseudotumor of the lymph node mimicking scrofula. Ann Intern Med. 2011, 5;155(1):66-67
- [30] Battikh R, M'Sadek F, Bougrine F, Madhi W, Ben Abdelhafidh N, Bouziani A, Yedeas M, Othmani S. Cerebral actinomycosis pseudotumor: a case report. Rev Neurol (Paris). 2011, 167(3):260-263
- [31] Abid M, Ben Amar M, Damak Z, Feriani N, Guirat A, Khebir A, Mzali R, Frikha MF, Beyrouti MI. Intrauterine device and pelvic tumor: two case reports of pelvic actinomycosis with pseudotumor from tropical zones. Med Trop (Mars). 2010, 70(3):285-287
- [32] Chomel S, Mallick S, Mahdaoui C, Bertsch M, Lamarche F, Milet-Gruel C. French Guyana's case of renal pseudotumor caused by actinomycosis. J Radiol. 2002 Feb;83(2 Pt 1):157-160
- [33] Díaz Morant V, Fúnez Liébana R, Manteca González R, García González E, Morales Jiménez J, Pradas Caravaca M.An actinomycotic inflammatory pseudotumor of the transverse colon. Gastroenterol Hepatol. 1999, 22(4):206-207
- [34] Chaitra V, Rajalakshmi T, Mohanty S, Lahoti NK, George A, Idiculla J. Actinomycosis in urachal remnants: A rare cause of pseudotumor. Indian J Urol 2011;27:545-546
- [35] Radhi J, Hadjis N, Anderson L, Burbridge B, Ali K. Retroperitoneal actinomycosis masquerading as inflammatory pseudotumor. J Pediatr Surg 1997; 32: 618-620