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Abstract: The main goal of our study is the analysis of data obtained from molecular modeling for a series of imidazole derivatives that possess 
strong antifungal activity. The research was designed to use artificial neural network (ANN) analysis to determine quantitative 
relationships between the structural parameters and anti-Streptococcus pyogenes activity of a series of imidazole derivatives. ANN 
in association with quantitative structure-activity relationships (QSAR) represents a promising tool in the search for drug candidates 
among the practically unlimited number of possible derivatives. In this work, a series of 286 imidazole derivatives presented as 
cationic three-dimensional structures was used. The activity was expressed as a logarithm of the reciprocal of the minimal inhibitory 
concentrations, log 1/MIC. Multilayer perceptron ANN was used for predictions of antimicrobial potency of new imidazole derivatives 
on the basis of their structural descriptors. The obtained correlation coefficient equaled 0.9461 for the learning set, 0.9060 for the 
validation set and 0.8824 for the testing set of imidazole derivatives. Hence, satisfactory and practically useful predictions of anti-
Streptococcus pyogenes activity for a series of imidazole derivatives was obtained, supporting the future successful interpretation 
of QSAR analysis for those compounds.
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Keywords: Antimicrobial activity• Artificial neural networks (ANN) analysis • Molecular descriptors • Imidazole derivatives

1 Department of Biopharmacy, Faculty of Pharmacy,  
  Collegium Medicum, Nicolaus Copernicus University, 
  Jurasza 2, 85-094 Bydgoszcz, Poland

2 Department of  Medicinal Chemistry, Faculty of Pharmacy,  
  Collegium Medicum, Nicolaus Copernicus University,
  Jurasza 2, 85-094 Bydgoszcz, Poland

3 Department of Organic Chemistry, Faculty of Pharmacy,  
  Collegium Medicum, Nicolaus Copernicus University, 
  Jurasza 2, 85-094 Bydgoszcz, Poland

4 Department of  Pharmaceutical Technology, Faculty of Pharmacy, 
  Collegium Medicum, Nicolaus Copernicus University, 
  Jurasza 2, 85-094 Bydgoszcz, Poland

5 NZOZ Pantamed Sp z o.o. in Olsztyn, 
  10-461 Olsztyn, Poland

6 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 
  Medical University of Gdańsk, 
  Hallera 107, 80-416 Gdańsk, Poland

Małgorzata Wnuk1, Michał Piotr Marszałł2, Anna Zapęcka1, Alicja Nowaczyk3, 
Jerzy Krysiński4, Jerzy Romaszko5, Piotr Kawczak6, Tomasz Bączek6,  
Adam Buciński1*

Research Article

Cent. Eur. J. Med. • 8(1) • 2013 • 1-15
DOI: 10.2478/s11536-012-0052-6

1



Prediction of antimicrobial activity by ANN

1.	 Introduction
Current pharmacotherapy still requires novel anti-
microbiological medicines in order to effectively fight 
the risks caused by micro-organisms. An increasing 
number of strains of microorganisms resistant to known 
compounds have motivated scientists to undertake 
further research. In that respect, an interesting group of 
compounds are azols, particularly imidazoles (Figure 1) 
and their derivatives, which possess strong antibacterial 
and antifungal activity. They are important compounds 
due to their roles in biological systems, particularly 
when considering enzymes as proton donors or ac-
ceptors, coordination system ligands and the base for 
charge-transfer processes. These molecules belong to 
the group of surface active compounds, so they have 
proven antiseptic properties and are used to disinfect 
sanitary surfaces [1]. The mechanism of action of 
quaternary ammonium compounds depends on the 
disruption of the cell membrane and allowance of the 
connection of a positive-charged group with a negative-
charged phosphatic group of phospholipids. In that way, 
cells of bacteria are isolated from the medium and the 
multiplication is inhibited. Dependence on structure 
compounds is related to various types of antimicrobial 
activity [2-4]. The significance of the position of a sub-
stituent in a compound structure for biological activity 
was proven when investigators evaluated antibacterial 
activity of two analogs of imidazole derivatives, 5-nitro-
imidazole and 4-nitroimidazole. A different influence of 
those analogs on two other groups of micro-organism 
was also noted [5].

Streptococci are gram-positive, spherical or ovoid 
cells arranged in chains or pairs. They belong to Lance-
field serogroup A, also known as Group A streptococci 
(GAS). Many species of streptococci are members of 
the commensial microflora; they tend to colonize the 
upper respiratory tract and are highly virulent as they 
overcome the host defense system. Streptococcus 
pyogenes causes diseases such as severe invasive 
infections, the post-streptococcal sequelae of acute 
rheumatic fever and rheumatic heart disease, acute 

glomerulonephritis, and uncomplicated pharyngitis 
pyoderma, as well as cellulitis, bacteremia, necrotizing 
fasciitis, and toxic shock syndrome [6-8]. S. pyogenes 
is sensitive to the action of imidazole salts, and those 
compounds have been specifically analyzed to search 
for new and efficient drugs [9,10].

An artificial neural network (ANN) is a mathematical 
model analysis that is inspired by the way biological ner-
vous systems, such as the brain, process information. 
Neural networks are non-linear statistical data modeling 
tools and can be used to model complex relationships 
between inputs and outputs or to find patterns in data. 
An ANN is configured for a specific application, such 
as pattern recognition or data classification, through a 
learning process. The increasing use of those models in 
sciences such as chemistry and biology has been noted 
since the 1980s. ANNs have been applied in the iden-
tification of potential drug targets, modeling of QSAR, 
compound classification and identification of potential 
drug candidates [11-15].

Quantitative structure-activity relationship (QSAR) 
represents an advance by which structural descriptors 
of a compound are quantitatively correlated with a well 
defined process, such as biological activity or chemical 
reactivity. These molecular descriptors are determined 
empirically and most often by computational methods 
characterizing physicochemical, pharmacological and 
toxicological properties of compounds [16,17].

We analysed anti-Streptococcus pyogenes activity 
of minimum inhibitory concentranion (MIC) and three-
dimensional QSAR studies for a series of imidazole de-
rivatives. The compounds have been reported in recent 
literature [2,17] and belong to the class of quaternary 
ammonium salts used as disinfectants. The aim of our 
research was to determine the quantitative relationships 
between structural parameters and the antimicrobial 
activity of a series of imidazole derivatives with the use 
of artificial neural networks. In that way, ANN in asso-
ciation with QSAR could represent a promising tool in 
the search for drug candidates among the practically 
unlimited number of possible derivatives.

2.	 Material and methods
2.1.	Imidazole derivatives

The imidazole derivatives and their antimicrobial ac-
tivities have been described previously [2,17]. Reported 
data on a series of 286 imidazole derivatives were used. 
The MIC values that represented the lowest concentra-
tion at which there was no visible growth of S. pyogenes 
ATCC 81 and S. pyogenes ATCC 101 were obtained.

a) imidazole ring (R1, R2, R3, 
R4 – kind of substitute, X – 
oxygen or sulphur).

b) benzimidazole ring (R1, R2 – 
kind of substitute, X – oxygen 
or sulphur).

Figure 1. The general chemical structure of imidazole derivatives.
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Anti-S. pyogenes activity was measured in the tube dilu-
tion test, which is the standard method for determining 
levels of resistance to antimicrobial substances. Serial 
dilutions of the compounds were prepared in the Müller-
Hinton medium obtaining the following concentrations: 
500, 375, 187.5, 93.7, 46.9, 23.4, 11.7, 5.9, 2.9, 1.5, 
0.75, 0.38, and 0.19 mg/l. After that, 0.1 mL of diluted 
24-hour culture suspension was added to each of the 
tubes. Growth of S. pyogenes was determined visu-
ally after incubation for 24 hours at 37°C. The highest 
dilution without growth was considered as the MIC. 
Antifungal activity was measured as the logarithm of the 
reciprocal of minimum inhibitory concentration against 
S. pyogenes, log 1/MICexp.

2.2.	Molecular modeling

The three-dimensional structures of the 286 imidazole 
derivatives at their cationic state were calculated using 
Gaussian 03, Revision D.01 (Gaussian, Wallingford 
CT, USA). All geometry optimizations were performed 
on isolated molecules applying semiempirical AM1 
methods. These quantum mechanical calculations were 
also used to determine selected descriptors: HF–the 
heat of formation [kcal/mole], µ–dipole moment (debye), 
DELH–the energy difference [eV] between the frontier 
molecular orbitals, ELUMO – EHOMO, where ELUMO 
is the energy of the lowest unoccupied molecular or-
bital and EHOMO is the energy of the highest occupied 
molecular orbital. All these descriptors were calculated 
using the CACheWorkSystem Pro version 7.5.0.85 
package (CACheWorkSystem Pro, Fujitsu, Oxford, 
Great Britain). Furthermore, the molecular descriptors 
were calculated using DRAGON for Windows version 
5.5-2007 package (Talete, Milano, Italy). The Dragon 
descriptors included 22 different logical blocks. The total 
number of calculated descriptors was 3224.

Descriptor dimensionalities proposed by DRAGON 
were 0D, 1D, 2D, 3D and “others”. The subset 0D re-
ferred to atom and bond type counts, 1D to fragment 
counts, 2D to topological and related descriptors, and 
3D to all the descriptors that depended on the geo-
metrical coordinates of the molecule atoms. The subset 
of “others” included charge descriptors and molecular 
properties.

Several descriptor groups were analysed. Constitu-
tional descriptors included 0D-descriptors independent 
from molecular connectivity and conformations Mw 
– molecular weight, Mp – mean atomic polarizability 
(scaled on Carbon atom) and sum of atomic properties 
such as: Sv – sum of atomic van der Waals volumes 
(scaled on C atom), Se – sum of atomic Sanderson 
electronegatives (scaled on C atom), Sp – sum of 

atomic polarizabilities (scaled on C atom), Ss – sum of 
Kier-Hall electrotopological states. Topological descrip-
tors (2D-descriptors) included molecular connectivity 
index (c0, c1, c2), average connectivity index (c0A, c1A, 
c2A), valence molecular connectivity index (c0V, c1V, c2V)a, 
index quantifying the shape of a chemical system (k1, k2, 
k3) [19,20]. These molecular descriptors were obtained 
from molecular graph, i.e., 2D-descriptors conforma-
tionally independent. They were numerical quantifiers 
of molecular topology obtained by the application of 
algebraic operators to matrices representing molecular 
graphs of values independent of vertex numbering or la-
belling. They could be sensitive to one or more structural 
features of the molecule such as size, shape, symmetry, 
branching and cyclicity and could also encode chemical 
information concerning atom type and bond multiplicity. 
Weighted Holistic Invariant Molecular (WHIM) descrip-
tors were geometrical descriptors (3D) obtained as 
statistical indices of the atoms projected onto the 3 
principal components obtained from weighted covari-
ance matrices of the atomic coordinates [21]. Calculat-
ing WHIM descriptors included volume total size index 
(unweighted or weighted by atomic: masses; Sanderson 
electronegatives; van der Waals volumes; polarizabili-
ties; electrotopological states) and K global shape index 
(unweighted or weighted by atomic: polarizabilities; 
Sanderson electronegativities). Molecular properties 
(subset of “others” descriptors) were calculated from 
models together with some empirical descriptors that 
included log P (octanol-water partition coefficient), MR – 
molar refractivity, TPSA (Tot) – topological polar surface 
area (scaled on N, O, S, P) and TPSA (NO) – topological 
polar surface area (scald on N, O) [22,23].

Several criteria were used to reduce the number of 
descriptors while optimizing the information content of 
the descriptors set. First, descriptors for which no value 
was available for all the compounds were disregarded. 
Secondly, the descriptors showing the same value (or 
nearly the same) for all compounds were excluded. For 
the remaining descriptors, if two descriptors showed a 
correlation coefficient greater than 0.9, the one showing 
the highest pair correlation with the other descriptors 
was removed. Indeed, the threshold value of the cor-
relation coefficient of 0.9 is somewhat high, but this is 
the lowest value included in the software to exclude 
correlated descriptors. Usually, when the number of 
descriptors obtained after the preliminary screening is 
high, further exclusion procedures are applied.

Finally, the chosen descriptors were used as re-
gressors of the model. They are shown in Table 1, and 
their detailed description can be found in the literature 
[21-24]. The value of each descriptor for 286 imidazole 
derivatives used in ANN is listed in Table 1S.
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2.3.	ANN analysis

We used a multilayer perceptron artificial neural net-
work, which was performed with the use of Statistica v. 
8.0 software (StatSoft, Inc., Tulsa, USA) with the Auto-
mated Artificial Neural Networks module (www.statsoft.
com). To keep the network structure as simple as pos-
sible, the ANN consisted of three layers: an input layer 

with 38 neurons, a hidden layer adjusted experimentally 
that consisted of 8 artificial neurons of tanh (hyperbolic 
tangent ) activation function and a single output neuron 
of exponential activation function. The total set of 286 
imidazole analogs was randomly subdivided into three 
sets: training (202 objects), validation (42 objects) and 
testing (42 objects). Before this procedure, all data sets 
were scaled within 0-1 range. The training set was the 

Table 1. Molecular descriptors used in ANN analysis.

No. Variable Block description

1 Heat of Formation (kcal/mole) quantum-chemical descriptors

2 Dipole Moment (debye) quantum-chemical descriptors

3 LUMO Energy (eV) quantum-chemical descriptors

4 HOMO Energy (eV) quantum-chemical descriptors

5 DELH quantum-chemical descriptors

6 Connectivity Index (order 0, standard) connectivity indices 

7 Connectivity Index (order 1, standard) connectivity indices 

8 Connectivity Index (order 2, standard) connectivity indices 

9 Valence Connectivity Index (order 0, standard) connectivity indices 

10 Valence Connectivity Index (order 1, standard) connectivity indices 

11 Valence Connectivity Index (order 2, standard) connectivity indices 

12 Average connectivity index chi-0 connectivity indices 

13 Average connectivity index chi-1 connectivity indices 

14 Average connectivity index chi-2 connectivity indices 

15 Log P - octanol-water partition. Coeff. molecular properties 

16 Molar refractivity molecular properties 

17 Moriguchi octanol-water partition coeff. (logP) molecular properties 

18 Ghose-Crippen molar refractivity molecular properties 

19 Topological polar surface area (scaled on N, O) molecular properties 

20 Topological polar surface area (scaled on N, O, S, P) molecular properties 

21 Shape Index (basic kappa, order 1) topological descriptors

22 Shape Index (basic kappa, order 2) topological descriptors

23 Shape Index (basic kappa, order 3) topological descriptors

24 Molecular weight constitutional descriptors

25 Sum of atomic van der Waals volumes  (scaled on carbon atom) constitutional descriptors

26 Sum of atomic Sanderson electronegatives (scaled on carbon atom) constitutional descriptors

27 Sum of Kier-Hall electrotopological states constitutional descriptors

28 Sum of atomic polarizabilities (scaled on carbon atom) constitutional descriptors

29 Mean atomic polarizability (scaled on Carbon atom) constitutional descriptors

30 Volume total size index/ unweighted WHIM descriptors 

31 Volume total size index/ weighted by atomic masse WHIM descriptors 

32 Volume total size index/ weighted by atomic van der Waals volumes WHIM descriptors 

33 Volume total size index/ weighted by atomic Sanderson electronegatives WHIM descriptors 

34 Volume total size index/ weighted by atomic polarizabilities WHIM descriptors 

35 Volume total size index/ weighted by atomic electrotopological states WHIM descriptors 

36 K global shape index / unweighted WHIM descriptors 

37 K global shape index / weighted by atomic polarizabilities WHIM descriptors 

38 K global shape index / weighted by atomic Sanderson electronegativities WHIM descriptors 
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largest set of data, and it was subjected to the learning 
process. The algorithm that has been used for network 
training was Broyden-Fletcher-Goldfrab-Shanno BFGS 
(Quasi-Newton). After that, during a learning process, 
a test was performed to evaluate the generalization 
ability of a trained network. Next, a final check on the 
trained network was used with a validation set. The full 
training process was controlled by a root-mean-square 
(RMS) error reaching the smallest value with regard to 
the validation set of data. The program was stopped 
automatically when received the smallest value of RMS 
error. The most suitable network was found in epoch 
87. The architecture and learning curves are presented 
in Figure 2. The validation set was used to ensure that 
there was no overfitting in the final results. The test set 
was designed to provide independent assessment of 
the network’s performance when an entire procedure 
for network design was completed.

3.	 Results and discussion
The ANN model was projected, built up and trained. 
During the training process data from the learning sets 
were presented to the ANN to recognize connectivity 
between input and output signals. Correlation analysis 
is a technique use to measure the association between 
two variables. The results of correlation analysis ob-
tained in this paper are presented in Figure 3. There 
are significant correlations between the theoretically 
calculated molecular descriptors and the experimentally 
determined antibacterial activity. The obtained correla-
tion coeffi cient was 0.9461 for the learning set, 0.9060 
for the validation set and 0.8824 for the testing set of im-
idazole derivatives. Additionally, the sensitivity analysis 
for input variables provided important information about 
the usefulness of individual variables [16,25]. On the 
basis of that analysis, the most significant predictive fac-
tors include WHIM, molecular indices and connectivity 
indices. The importance of usefulness of the individual 
descripors is listed in order of the rank in Table 2. The 

Figure 2. Learning curve of MLP: 38:8:1. Figure 3.  Correlation between the calculated and the experimental 
antifungal data for  
a) learning R = 0.9461, RMSEP = 0.4047;  
b) validation R = 0.9060,RMSEP = 0.5633; 
c) testing set R = 0.8824, RMSEP = 0.5329.

a) learning R = 0.9461, RMSEP = 0.4047; 

b) validation R = 0.9060,RMSEP = 0.5633;

c) testing set R = 0.8824, RMSEP = 0.5329;
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most significant descriptors used with the rank close 
to 1 were K global shape index/weighted by atomic 
polarizabilities, K global shape index/unweighted, and 
K global shape index/weighted by atomic Sanderson 
electronegativities. The least significant with the rank 
close to 38 included volume total size index/weighted 
by atomic electrotopological states, volume total size 
index/weighted by atomic van der Waals volumes, and 

Shape Index (basic kappa, order 1). All the WHIM de-
scriptors were built in such a way as to capture relevant 
molecular three-dimensional information regarding mo-
lecular shape, size, symmetry, and atom distribution with 
respect to the invariant reference frames. Their useful-
ness has been confirmed in such examples of modeling 
as toxicological indices, physiochemical properties of 
polichlorbiphenyls, polycyclic aromatic hydrocarbons, 

Table 2. Sensitivity analysis.

Variables Error Rank

K global shape index / weighted by atomic polarizabilities 10.6972 1

K global shape index / unweighted 6.5916 2

K global shape index / weighted by atomic Sanderson electronegativities 4.6357 3

Topological polar surface area (scaled on N, O, S, P) 3.9053 4

Average connectivity index chi-0 3.1521 5

Moriguchi octanol-water partition coeff. (logP) 3.0478 6

Average connectivity index chi-1 2.4866 7

Shape Index (basic kappa, order 3) 2.3269 8

Topological polar surface area (scaled on N, O) 2.2705 9

Log P - octanol-water partition. coeff. 2.0316 10

Average connectivity index chi-2 1.7310 11

Mean atomic polarizability (scaled on Carbon atom) 1.6827 12

Heat of Formation (kcal/mole) 1.6669 13

Dipole Moment (debye) 1.6083 14

LUMO Energy (eV) 1.5362 15

HOMO Energy (eV) 1.5007 16

Valence Connectivity Index (order 2, standard) 1.3310 17

Sum of atomic Sanderson electronegatives (scaled on carbon atom) 1.2958 18

Connectivity Index (order 2, standard) 1.2854 19

Sum of atomic van der Waals volumes  (scaled on carbon atom) 1.2623 20

Sum of atomic polarizabilities (scaled on carbon atom) 1.2507 21

DELH 1.2243 22

Connectivity Index (order 1, standard) 1.2176 23

Volume total size index/ weighted by atomic polarizabilities 1.2027 24

Volume total size index/ weighted by atomic masse 1.2017 25

Molecular weight 1.1999 26

Shape Index (basic kappa, order 2) 1.1845 27

Valence Connectivity Index (order 1, standard) 1.1523 28

Ghose-Crippen molar refractivity 1.1371 29

Connectivity Index (order 0, standard) 1.1276 30

Volume total size index/ weighted by atomic Sanderson electronegatives 1.1267 31

Molar Refractivity 1.1261 32

Volume total size index/ unweighted 1.1104 33

Valence Connectivity Index (order 0, standard) 1.1064 34

Sum of Kier-Hall electrotopological states 1.0969 35

Shape Index (basic kappa, order 1) 1.0965 36

Volume total size index/ weighted by atomic van der Waals volumes 1.0769 37

Volume total size index/ weighted by atomic electrotopological states 1.0489 38
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hydroxyl radical rate constant and soil sorption partition 
coefficients [24]. The examples of modeling with the use 
of WHIM descriptors could suggest their further use in 
prediction of activities of other compounds, like the set 
with antimicrobial activities in our research.

Previous studies have shown the benefits of the use 
of ANN analysis in prediction of antimicrobial activity 
of different imidazole derivatives against many micro-
organisms [11,15,16]. Currently, the ANN predicted 
log1/MIC values were also significantly correlated with 
experimentally obtained log 1/MIC. The comparison of 
the predicted and experimental log 1/MIC as a means 
of difference between experimental and predicted log 1/
MIC values (Δ) is presented in Table 1S.

4.	 Conclusion
The objective of our study was to demonstrate the possi-
bility of constructing ANN for predictions of antimicrobial 
activity of imidazole derivatives against Streptococcus 
pyogenes of a defined structure. The results confirm the 
benefits of ANN analysis as a convenient tool to predict 
the log1/MIC for S. pyogenes with reference content of 
imidazole derivatives. The proposed method based on 
the database with a representative compounds group 
might be used for initial classification of biologically 
important elements and could be included in the set of 
methods of QSAR analysis.

Table 1S. Experimental and predicted logarithms of reciprocal of the minimal inhibitory concentrations, log 1/MIC along with the errors between 
those two values.

No. Set R1 R2 R3 R4 X
MIC[mg/
dm3]

log 1/
MICexp

log 1/
MICpred

Δ*

1 L C4H9 - C4H9 - O 375.00 -2.5740 -2.5994 0.0253

2 L C6H13 - C4H9 - O 46.90 -1.6712 -1.8814 0.2102

3 T C8H17 - C4H9 - O 23.40 -1.3692 -0.3687 -1.0005

4 L C10H21 - C4H9 - O 0.75 0.1249 0.3415 -0.2166

5 L C12H25 - C4H9 - O 0.09 1.0458 0.0926 0.9532

6 T C14H29 - C4H9 - O 11.70 -1.0682 -0.1737 -0.8945

7 L C16H33 - C4H9 - O 11.70 -1.0682 -0.7089 -0.3593

8 T C4H9 - C6H13 - O 46.90 -1.6712 -2.0580 0.3868

9 L C6H13 - C6H13 - O 23.40 -1.3692 -1.5420 0.1728

10 L C8H17 - C6H13 - O 1.50 -0.1761 0.0395 -0.2156

11 V C10H21 - C6H13 - O 0.09 1.0458 0.7109 0.3348

12 L C12H25 - C6H13 - O 0.19 0.7213 0.6503 0.0709

13 L C14H29 - C6H13 - O 2.90 -0.4624 0.1447 -0.6071

14 T C16H33 - C6H13 - O 5.90 -0.7709 -0.5920 -0.1788

15 L C4H9 - C8H17 - O 23.40 -1.3692 -1.0902 -0.2790

16 V C6H13 - C8H17 - O 0.75 0.1249 -0.0700 0.1950

17 L C8H17 - C8H17 - O 0.09 1.0458 1.0482 -0.0024

18 L C10H21 - C8H17 - O 0.03 1.6021 1.2303 0.3718

19 L C12H25 - C8H17 - O 0.19 0.7213 0.8357 -0.1145

20 L C14H29 - C8H17 - O 1.50 -0.1761 0.0666 -0.2427

21 L C16H33 - C8H17 - O 11.70 -1.0682 -1.0604 -0.0078

22 L C4H9 - C10H21 - O 0.38 0.4202 0.0736 0.3466

23 V C6H13 - C10H21 - O 0.75 0.1249 0.8562 -0.7312

24 L C8H17 - C10H21 - O 0.03 1.6021 1.7276 -0.1255

25 T C10H21 - C10H21 - O 0.19 0.7213 1.5151 -0.7938

26 L C12H25 - C10H21 - O 0.38 0.4202 0.1260 0.2943

27 T C14H29 - C10H21 - O 5.90 -0.7709 -1.0933 0.3225

28 L C16H33 - C10H21 - O 11.70 -1.0682 -1.5618 0.4936
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Table 1S continued. Experimental and predicted logarithms of reciprocal of the minimal inhibitory concentrations, log 1/MIC along 
with the errors between those two values.

29 L C4H9 - C12H25 - O 1.50 -0.1761 0.5527 -0.7288

30 T C6H13 - C12H25 - O 0.03 1.6021 1.1667 0.4354

31 L C8H17 - C12H25 - O 0.19 0.7213 0.7688 -0.0476

32 L C10H21 - C12H25 - O 1.50 -0.1761 -0.2151 0.0390

33 L C12H25 - C12H25 - O 1.50 -0.1761 -0.3548 0.1787

34 L C14H29 - C12H25 - O 5.90 -0.7709 -0.6828 -0.0881

35 V C16H33 - C12H25 - O 11.70 -1.0682 -0.9478 -0.1204

36 L C4H9 CH3 CH3 H O 500.00 -2.6990 -2.6983 -0.0007

37 L C6H13 CH3 CH3 H O 375.00 -2.5740 -2.4707 -0.1033

38 L C8H17 CH3 CH3 H O 46.90 -1.6712 -1.6697 -0.0015

39 T C10H21 CH3 CH3 H O 1.50 -0.1761 -0.6911 0.5150

40 L C12H25 CH3 CH3 H O 0.38 0.4202 -0.1080 0.5282

41 V C4H9 C2H5 CH3 H O 375.00 -2.5740 -2.6978 0.1238

42 L C6H13 C2H5 CH3 H O 46.90 -1.6712 -1.8058 0.1346

43 T C8H17 C2H5 CH3 H O 1.50 -0.1761 -0.5671 0.3911

44 V C10H21 C2H5 CH3 H O 0.75 0.1249 -0.0291 0.1540

45 L C12H25 C2H5 CH3 H O 0.38 0.4202 -0.0255 0.4457

46 V C4H9 n-C3H7 CH3 H O 375.00 -2.5740 -2.6978 0.1238

47 T C6H13 n-C3H7 CH3 H O 23.40 -1.3692 -1.9842 0.6150

48 L C8H17 n-C3H7 CH3 H O 5.90 -0.7709 -0.6070 -0.1639

49 T C10H21 n-C3H7 CH3 H O 0.38 0.4202 0.1232 0.2970

50 V C12H25 n-C3H7 CH3 H O 0.19 0.7213 -0.0187 0.7400

51 L C4H9 iso-C3H7 CH3 H O 500.00 -2.6990 -2.6977 -0.0013

52 L C6H13 iso-C3H7 CH3 H O 500.00 -2.6990 -2.4996 -0.1994

53 T C8H17 iso-C3H7 CH3 H O 93.70 -1.9717 -1.4907 -0.4811

54 L C10H21 iso-C3H7 CH3 H O 5.90 -0.7709 -0.7749 0.0040

55 L C12H25 iso-C3H7 CH3 H O 2.90 -0.4624 -0.4691 0.0067

56 L C4H9 H CH3 Cl O 500.00 -2.6990 -2.6982 -0.0008

57 L C6H13 H CH3 Cl O 500.00 -2.6990 -2.5767 -0.1223

58 L C8H17 H CH3 Cl O 500.00 -2.6990 -2.5191 -0.1799

59 L C10H21 H CH3 Cl O 375.00 -2.5740 -2.4679 -0.1062

60 L C12H25 H CH3 Cl O 187.50 -2.2730 -2.3038 0.0308

61 V C2H5 - CH2OC2H5 - O 375.00 -2.5740 -2.6982 0.1242

62 L C4H9 - CH2OC2H5 - O 375.00 -2.5740 -2.6976 0.1236

63 L C5H11 - CH2OC2H5 - O 375.00 -2.5740 -2.6961 0.1221

64 T C6H13 - CH2OC2H5 - O 187.50 -2.2730 -1.8834 -0.3896

65 L C7H15 - CH2OC2H5 - O 23.40 -1.3692 -1.2225 -0.1467

66 L C8H17 - CH2OC2H5 - O 2.90 -0.4624 -0.5820 0.1196

67 V C9H19 - CH2OC2H5 - O 1.50 -0.1761 -0.2688 0.0927

68 L C10H21 - CH2OC2H5 - O 2.90 -0.4624 -0.1135 -0.3489

69 L C12H25 - CH2OC2H5 - O 2.90 -0.4624 -0.2066 -0.2558

70 L C14H29 - CH2OC2H5 - O 1.50 -0.1761 -0.6450 0.4689
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A. Buciński et al.

Table 1S continued. Experimental and predicted logarithms of reciprocal of the minimal inhibitory concentrations, log 1/MIC along 
with the errors between those two values.

71 L C16H33 - CH2OC2H5 - O 46.90 -1.6712 -1.1750 -0.4961

72 L C4H9 CH2OC2H5 - - S 375.00 -2.5740 -2.2426 -0.3315

73 L C6H13 CH2OC2H5 - - S 5.90 -0.7709 -0.8024 0.0315

74 L C8H17 CH2OC2H5 - - S 0.75 0.1249 -0.2772 0.4021

75 L C10H21 CH2OC2H5 - - S 1.50 -0.1761 -0.0051 -0.1710

76 L C12H25 CH2OC2H5 - - S 2.90 -0.4624 0.0107 -0.4731

77 L C2H5 - CH2OC3H7 - O 500.00 -2.6990 -2.6982 -0.0008

78 L C4H9 - CH2OC3H7 - O 500.00 -2.6990 -2.6966 -0.0024

79 L C6H13 - CH2OC3H7 - O 93.70 -1.9717 -1.7917 -0.1800

80 L C8H17 - CH2OC3H7 - O 5.90 -0.7709 -0.4942 -0.2766

81 L C10H21 - CH2OC3H7 - O 5.90 -0.7709 -0.0840 -0.6868

82 L C12H25 - CH2OC3H7 - O 1.50 -0.1761 -0.2892 0.1131

83 L C14H29 - CH2OC3H7 - O 1.50 -0.1761 -0.6942 0.5181

84 T C16H33 - CH2OC3H7 - O 2.90 -0.4624 -0.9982 0.5358

85 L C4H9 - CH2OC3H7 - S 93.70 -1.9717 -1.8800 -0.0917

86 L C6H13 - CH2OC3H7 - S 2.90 -0.4624 -0.3784 -0.0840

87 L C8H17 - CH2OC3H7 - S 0.19 0.7213 -0.1276 0.8488

88 L C10H21 - CH2OC3H7 - S 0.75 0.1249 0.0357 0.0893

89 L C12H25 - CH2OC3H7 - S 0.75 0.1249 -0.2335 0.3585

90 L C3H9 - CH2OC3H7 - O 500.00 -2.6990 -2.6981 -0.0009

91 V C5H11 - CH2OC3H7 - O 375.00 -2.5740 -2.5654 -0.0086

92 L C7H15 - CH2OC3H7 - O 23.40 -1.3692 -1.1623 -0.2069

93 T C9H19 - CH2OC3H7 - O 46.90 -1.6712 -1.2100 -0.4611

94 L C4H9 C6H5 C8H17 - S 0.38 0.4202 0.7396 -0.3194

95 L C6H13 C6H5 C8H17 - S 0.09 1.0458 1.3585 -0.3128

96 L C8H17 C6H5 C8H17 - S 0.01 2.2219 1.7486 0.4733

97 L C10H21 C6H5 C8H17 - S 0.38 0.4202 1.1772 -0.7570

98 L C12H25 C6H5 C8H17 - S 0.75 0.1249 0.2876 -0.1626

99 L C16H33 C6H5 C8H17 - S 0.75 0.1249 0.0192 0.1058

100 T C3H7 C6H5 C8H17 - O 0.38 0.4202 0.3105 0.1097

101 L C5H11 C6H5 C8H17 - O 0.09 1.0458 1.2600 -0.2143

102 L C7H15 C6H5 C8H17 - O 0.01 1.9208 2.3168 -0.3960

103 T C9H19 C6H5 C8H17 - O 0.00 2.5229 1.0453 1.4776

104 L C11H21 C6H5 C8H17 - O 0.05 1.3010 0.3153 0.9858

105 L C2H5 C6H5 C8H17 - O 0.19 0.7213 -0.1071 0.8284

106 L C4H9 C6H5 C8H17 - O 0.09 1.0458 0.9907 0.0551

107 L C6H13 C6H5 C8H17 - O 0.03 1.6021 1.6947 -0.0926

108 L C8H17 C6H5 C8H17 - O 0.01 2.2219 1.6551 0.5667

109 L C10H21 C6H5 C8H17 - O 0.01 1.9208 0.8935 1.0273

110 T C12H25 C6H5 C8H17 - O 0.19 0.7213 0.0801 0.6412

111 L C14H29 C6H5 C8H17 - O 0.38 0.4202 0.5714 -0.1512

112 L C16H33 C6H5 C8H17 - O 0.38 0.4202 0.0332 0.3870
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Prediction of antimicrobial activity by ANN

Table 1S continued. Experimental and predicted logarithms of reciprocal of the minimal inhibitory concentrations, log 1/MIC along 
with the errors between those two values.

113 L C5H11 C6H5 C8H17 - S 0.19 0.7213 1.0075 -0.2862

114 L CH2C6H5 C6H5 C8H17 - S 0.19 0.7213 0.5098 0.2115

115 L CH2C6H5 C6H5 C8H17 - O 0.19 0.7213 1.1134 -0.3921

116 L C2H5 C6H5 C6H13 - O 2.90 -0.4624 -1.3298 0.8674

117 L C4H9 C6H5 C6H13 - O 2.90 -0.4624 -0.7233 0.2609

118 V C6H13 C6H5 C6H13 - O 2.90 -0.4624 0.3282 -0.7906

119 V C8H17 C6H5 C6H13 - O 2.90 -0.4624 0.8765 -1.3389

120 L C10H21 C6H5 C6H13 - O 0.00 2.5229 2.2103 0.3126

121 L C12H25 C6H5 C6H13 - O 0.03 1.6021 0.4001 1.2020

122 L C14H29 C6H5 C6H13 - O 1.50 -0.1761 -0.0844 -0.0917

123 T C16H33 C6H5 C6H13 - O 2.90 -0.4624 -0.3294 -0.1330

124 L C4H9 C6H5 C6H13 - S 1.50 -0.1761 0.0189 -0.1950

125 L C6H13 C6H5 C6H13 - S 0.19 0.7213 0.6811 0.0401

126 L C8H17 C6H5 C6H13 - S 0.00 2.5229 1.6239 0.8990

127 L C10H21 C6H5 C6H13 - S 0.00 3.1549 1.9694 1.1855

128 L C12H25 C6H5 C6H13 - S 0.00 2.6021 1.5006 1.1015

129 T C14H29 C6H5 C6H13 - S 0.19 0.7213 0.1765 0.5447

130 L C16H33 C6H5 C6H13 - S 0.75 0.1249 0.0508 0.0742

131 L C3H7 C6H5 C6H13 - O 5.90 -0.7709 -1.2635 0.4927

132 L C5H11 C6H5 C6H13 - O 2.90 -0.4624 -0.5228 0.0604

133 V C7H15 C6H5 C6H13 - O 0.75 0.1249 -0.4061 0.5310

134 L C9H19 C6H5 C6H13 - O 1.50 -0.1761 0.9538 -1.1299

135 L C11H23 C6H5 C6H13 - O 1.50 -0.1761 0.4438 -0.6199

136 T iso-C4H9 C6H5 C6H13 - O 11.70 -1.0682 -1.6983 0.6301

137 L CH2C6H5 C6H5 C6H13 - O 2.90 -0.4624 -0.1576 -0.3048

138 L C5H11 C6H5 C6H13 - O 0.75 0.1249 0.5776 -0.4526

139 L C2H5 C6H5 H - O 375.00 -2.5740 -2.5802 0.0062

140 T C4H9 C6H5 H - O 187.50 -2.2730 -2.2443 -0.0287

141 L C6H13 C6H5 H - O 23.40 -1.3692 -1.0846 -0.2846

142 L C8H17 C6H5 H - O 1.50 -0.1761 -0.4575 0.2814

143 T C10H21 C6H5 H - O 1.50 -0.1761 -0.3920 0.2159

144 L C12H25 C6H5 H - O 23.40 -1.3692 -0.4707 -0.8986

145 L C14H29 C6H5 H - O 5.90 -0.7709 -1.0819 0.3111

146 L C16H33 C6H5 H - O 46.90 -1.6712 -1.0733 -0.5979

147 V C2H5 C6H5 C4H9 - O 46.90 -1.6712 -2.6924 1.0212

148 L C4H9 C6H5 C4H9 - O 23.40 -1.3692 -1.0997 -0.2695

149 L C6H13 C6H5 C4H9 - O 23.40 -1.3692 -0.8233 -0.5459

150 T C8H17 C6H5 C4H9 - O 5.90 -0.7709 0.0536 -0.8244

151 L C10H21 C6H5 C4H9 - O 1.50 -0.1761 0.0140 -0.1900

152 L C12H25 C6H5 C4H9 - O 0.75 0.1249 0.0044 0.1205

153 T C14H29 C6H5 C4H9 - O 0.75 0.1249 -0.5067 0.6317

154 L C16H33 C6H5 C4H9 - O 1.50 -0.1761 -0.5906 0.4145
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A. Buciński et al.

Table 1S continued. Experimental and predicted logarithms of reciprocal of the minimal inhibitory concentrations, log 1/MIC along 
with the errors between those two values.

155 L C3H7 C6H5 H - O 187.50 -2.2730 -2.6288 0.3558

156 L C5H11 C6H5 H - O 46.90 -1.6712 -1.8723 0.2012

157 L C7H15 C6H5 H - O 5.90 -0.7709 -1.0423 0.2715

158 L C9H19 C6H5 H - O 2.90 -0.4624 -0.8168 0.3544

159 V C3H7 C6H5 C4H9 - O 93.70 -1.9717 -2.6262 0.6545

160 V C5H11 C6H5 C4H9 - O 23.40 -1.3692 -1.1927 -0.1766

161 T C7H15 C6H5 C4H9 - O 5.90 -0.7709 -0.3162 -0.4546

162 L C9H19 C6H5 C4H9 - O 1.50 -0.1761 0.3043 -0.4803

163 L C4H9 C6H5 H - S 2.90 -0.4624 -0.3298 -0.1326

164 V C6H13 C6H5 H - S 0.09 1.0458 1.4633 -0.4175

165 L C8H17 C6H5 H - S 0.09 1.0458 0.9395 0.1062

166 L C10H21 C6H5 H - S 0.75 0.1249 -0.1254 0.2503

167 L C12H25 C6H5 H - S 0.38 0.4202 -0.0659 0.4861

168 L C4H9 C6H5 C4H9 - S 1.50 -0.1761 -0.2593 0.0832

169 L C6H13 C6H5 C4H9 - S 0.05 1.3010 0.3788 0.9222

170 L C8H17 C6H5 C4H9 - S 0.09 1.0458 0.9197 0.1261

171 V C10H21 C6H5 C4H9 - S 0.01 2.2219 1.5069 0.7150

172 L C12H25 C6H5 C4H9 - S 0.09 1.0458 1.8370 -0.7912

173 V C4H9 C6H5 C10H21 - S 0.03 1.6021 2.0933 -0.4912

174 T C5H11 C6H5 C10H21 - S 0.01 1.9208 2.1381 -0.2173

175 V C6H13 C6H5 C10H21 - S 0.01 1.9208 1.8675 0.0533

176 L C8H17 C6H5 C10H21 - S 0.09 1.0458 0.8771 0.1687

177 L C10H21 C6H5 C10H21 - S 0.38 0.4202 0.4669 -0.0466

178 L C12H25 C6H5 C10H21 - S 1.50 -0.1761 0.0567 -0.2328

179 L C14H29 C6H5 C10H21 - S 1.50 -0.1761 -0.0131 -0.1630

180 L C16H33 C6H5 C10H21 - S 2.90 -0.4624 0.0540 -0.5164

181 L CH2C6H5 C6H5 C10H21 - S 0.03 1.6021 1.7163 -0.1142

182 L CH2C6H5 C6H5 C10H21 - O 0.05 1.3010 1.0041 0.2970

183 L C2H5 C6H5 C10H21 - O 0.38 0.4202 0.0682 0.3520

184 L C3H7 C6H5 C10H21 - O 0.38 0.4202 0.0139 0.4063

185 L C4H9 C6H5 C10H21 - O 0.19 0.7213 0.1441 0.5772

186 L C5H11 C6H5 C10H21 - O 0.09 1.0458 0.8423 0.2034

187 V C6H13 C6H5 C10H21 - O 0.01 2.2219 1.2172 1.0047

188 T C7H15 C6H5 C10H21 - O 0.03 1.6021 1.1894 0.4126

189 L C8H17 C6H5 C10H21 - O 0.09 1.0458 1.1932 -0.1475

190 L C9H19 C6H5 C10H21 - O 0.75 0.1249 0.1776 -0.0526

191 L C10H21 C6H5 C10H21 - O 1.50 -0.1761 0.4252 -0.6013

192 V C11H23 C6H5 C10H21 - O 2.90 -0.4624 0.4252 -0.8876

193 L C12H25 C6H5 C10H21 - O 2.90 -0.4624 -0.5371 0.0747

194 T C14H29 C6H5 C10H21 - O 0.19 0.7213 -0.2584 0.9797

195 L C16H33 C6H5 C10H21 - O 2.90 -0.4624 -0.3225 -0.1399

196 L C2H5 C6H5 C2H5 - O 500.00 -2.6990 -2.6959 -0.0031
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Prediction of antimicrobial activity by ANN

Table 1S continued. Experimental and predicted logarithms of reciprocal of the minimal inhibitory concentrations, log 1/MIC along 
with the errors between those two values.

197 L C4H9 C6H5 C2H5 - O 500.00 -2.6990 -2.6198 -0.0792

198 L C6H13 C6H5 C2H5 - O 46.90 -1.6712 -1.1640 -0.5071

199 L C8H17 C6H5 C2H5 - O 2.90 -0.4624 -0.4274 -0.0350

200 L C10H21 C6H5 C2H5 - O 5.90 -0.7709 -0.2478 -0.5231

201 L C12H25 C6H5 C2H5 - O 2.90 -0.4624 -0.4716 0.0092

202 L C14H29 C6H5 C2H5 - O 5.90 -0.7709 -0.7463 -0.0245

203 L C16H33 C6H5 C2H5 - O 23.40 -1.3692 -0.7503 -0.6190

204 L C3H7 C6H5 C2H5 - O 375.00 -2.5740 -2.6945 0.1205

205 L C5H11 C6H5 C2H5 - O 187.50 -2.2730 -1.7918 -0.4812

206 V C7H15 C6H5 C2H5 - O 23.40 -1.3692 -0.7332 -0.6360

207 L C9H19 C6H5 C2H5 - O 5.90 -0.7709 -0.0869 -0.6840

208 L C11H23 C6H5 C2H5 - O 5.90 -0.7709 -0.1913 -0.5796

209 L C4H9 C6H5 C2H5 - S 46.90 -1.6712 -1.7894 0.1183

210 L C6H13 C6H5 C2H5 - S 0.73 0.1367 -0.0893 0.2260

211 L C8H17 C6H5 C2H5 - S 0.73 0.1367 0.3174 -0.1808

212 L C10H21 C6H5 C2H5 - S 0.18 0.7447 0.8821 -0.1374

213 T C12H25 C6H5 C2H5 - S 0.02 1.6383 1.6417 -0.0034

214 L C4H9 C6H5 C12H25 - S 0.75 0.1249 1.3908 -1.2659

215 L C5H11 C6H5 C12H25 - S 0.38 0.4202 0.6614 -0.2411

216 V C6H13 C6H5 C12H25 - S 0.19 0.7213 -0.1603 0.8815

217 V C8H17 C6H5 C12H25 - S 0.19 0.7213 0.5750 0.1462

218 L C10H21 C6H5 C12H25 - S 0.75 0.1249 0.2486 -0.1237

219 L C12H25 C6H5 C12H25 - S 0.75 0.1249 0.2506 -0.1256

220 L C14H29 C6H5 C12H25 - S 0.75 0.1249 0.1216 0.0033

221 L C16H33 C6H5 C12H25 - S 1.50 -0.1761 0.0516 -0.2277

222 V C2H5 C6H5 C12H25 - O 5.90 -0.7709 -0.0421 -0.7287

223 L C4H9 C6H5 C12H25 - O 1.50 -0.1761 0.3876 -0.5637

224 T C6H13 C6H5 C12H25 - O 0.75 0.1249 0.5111 -0.3861

225 L C8H17 C6H5 C12H25 - O 1.50 -0.1761 0.4918 -0.6679

226 V C10H21 C6H5 C12H25 - O 1.50 -0.1761 0.2408 -0.4169

227 L C12H25 C6H5 C12H25 - O 2.90 -0.4624 -0.2122 -0.2502

228 T C14H29 C6H5 C12H25 - O 2.90 -0.4624 -0.1050 -0.3574

229 T C16H33 C6H5 C12H25 - O 2.90 -0.4624 -0.8739 0.4115

230 L C3H7 C6H5 C12H25 - O 1.50 -0.1761 -0.1851 0.0090

231 L C5H11 C6H5 C12H25 - O 0.75 0.1249 0.0866 0.0384

232 L C7H15 C6H5 C12H25 - O 1.50 -0.1761 0.2972 -0.4733

233 L C9H19 C6H5 C12H25 - O 2.90 -0.4624 -0.0045 -0.4579

234 L C11H23 C6H5 C12H25 - O 1.50 -0.1761 -0.0043 -0.1718

235 L CH2C6H5 C6H5 C12H25 - S 0.09 1.0458 0.6069 0.4389

236 L CH2C6H5 C6H5 C12H25 - O 0.09 1.0458 0.8983 0.1475

237 L C2H5 C4H9 - - S 375.00 -2.5740 -2.5651 -0.0089

238 V C2H5 C6H13 - - S 23.40 -1.3692 -1.0099 -0.3593
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A. Buciński et al.

Table 1S continued. Experimental and predicted logarithms of reciprocal of the minimal inhibitory concentrations, log 1/MIC along 
with the errors between those two values.

239 L C2H5 C8H17 - - S 5.90 -0.7709 -0.5281 -0.2428

240 L C2H5 C10H21 - - S 1.50 -0.1761 -0.0070 -0.1691

241 L C2H5 C12H25 - - S 0.05 1.3010 1.0745 0.2265

242 T C2H5 C16H33 - - S 1.50 -0.1761 0.5305 -0.7066

243 L C2H5 C2H5 - - O 375.00 -2.5740 -2.6972 0.1232

244 L C2H5 C4H9 - - O 500.00 -2.6990 -2.6526 -0.0463

245 T C2H5 C6H13 - - O 93.70 -1.9717 -1.9175 -0.0542

246 V C2H5 C8H17 - - O 46.90 -1.6712 -0.8060 -0.8651

247 L C2H5 C10H21 - - O 5.90 -0.7709 -0.3168 -0.4540

248 V C2H5 C12H25 - - O 0.19 0.7213 0.0609 0.6604

249 L C2H5 C14H29 - - O 0.38 0.4202 0.1191 0.3011

250 V C2H5 C16H33 - - O 0.09 1.0458 0.2218 0.8240

251 L n-C4H9 C4H9 - - S 93.70 -1.9717 -1.5702 -0.4015

252 V n-C4H9 C6H13 - - S 5.90 -0.7709 -0.6251 -0.1457

253 L n-C4H9 C8H17 - - S 1.50 -0.1761 -0.3124 0.1363

254 L n-C4H9 C10H21 - - S 0.38 0.4202 0.2444 0.1758

255 L n-C4H9 C12H25 - - S 0.38 0.4202 0.2327 0.1876

256 T n-C4H9 C14H29 - - S 2.90 -0.4624 -0.3670 -0.0954

257 L n-C4H9 C16H33 - - S 0.75 0.1249 -0.1220 0.2470

258 V n-C4H9 C2H5 - - O 375.00 -2.5740 -2.6951 0.1211

259 L n-C4H9 C4H9 - - O 375.00 -2.5740 -2.3860 -0.1880

260 T n-C4H9 C6H13 - - O 11.70 -1.0682 -1.0317 -0.0365

261 T n-C4H9 C8H17 - - O 5.90 -0.7709 -0.6206 -0.1502

262 T n-C4H9 C10H21 - - O 0.38 0.4202 -0.0766 0.4968

263 L n-C4H9 C12H25 - - O 0.38 0.4202 0.1497 0.2705

264 L n-C4H9 C14H29 - - O 1.50 -0.1761 0.2423 -0.4184

265 V n-C4H9 C16H33 - - O 1.50 -0.1761 -0.2784 0.1023

266 L C6H13 C4H9 - - S 11.70 -1.0682 -0.9763 -0.0919

267 V C6H13 C6H13 - - S 2.90 -0.4624 -0.4496 -0.0128

268 L C6H13 C8H17 - - S 0.75 0.1249 -0.0776 0.2026

269 L C6H13 C10H21 - - S 1.50 -0.1761 -0.4059 0.2298

270 L C6H13 C12H25 - - S 5.90 -0.7709 -0.5607 -0.2102

271 L C6H13 C2H5 - - O 23.40 -1.3692 -2.3233 0.9541

272 L C6H13 C4H9 - - O 23.40 -1.3692 -1.1355 -0.2337

273 L C6H13 C6H13 - - O 2.90 -0.4624 -0.8732 0.4108

274 V C8H17 C4H9 - - S 0.75 0.1249 -0.6648 0.7897

275 L C8H17 C6H13 - - S 1.50 -0.1761 -0.1900 0.0139

276 L C8H17 C8H17 - - S 5.90 -0.7709 -0.7145 -0.0564

277 V C8H17 C10H21 - - S 5.90 -0.7709 -0.8651 0.0943

278 V C8H17 C12H21 - - S 2.90 -0.4624 -0.6320 0.1696

279 T C8H17 C2H5 - - O 2.90 -0.4624 -0.8457 0.3833

280 V C8H17 C4H9 - - O 2.90 -0.4624 -0.6847 0.2223
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Prediction of antimicrobial activity by ANN

Table 1S continued. Experimental and predicted logarithms of reciprocal of the minimal inhibitory concentrations, log 1/MIC along 
with the errors between those two values.

281 L C8H17 C6H13 - - O 1.50 -0.1761 -0.0744 -0.1017

282 T C8H17 C8H17 - - O 0.75 0.1249 -0.0873 0.2122

283 V C8H17 C10H21 - - O 0.38 0.4202 0.2412 0.1790

284 L C8H17 C12H25 - - O 0.75 0.1249 -0.1457 0.2706

285 T C8H17 C14H29 - - O 2.90 -0.4624 -0.5443 0.0819

286 V C8H17 C16H33 - - O 5.90 -0.7709 -0.5141 -0.2568

(1- 236 imidazole rings Fig. 1a; 237-286 benzimidazole rings Fig.2b)
(Str 7 – Difference between experimental and predicted log 1/MIC values.
L – Learing set, V – Validation set, T – Testing set
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