

Central European Journal of Medicine

Stieda process versus Haglund's deformity: An uncommon presentation of posterior ankle impingement

Case Report

Evangelos Perdikakis*, Apostolos Karantanas

Department of Radiology, University of Crete, Stavrakia, 711 10 Heraklion, Crete, Greece

Received 9 September 2010; Accepted 29 October 2010

Abstract: Posterior ankle impingement syndrome represents an important cause of chronic ankle pain and has been extensively described in the orthopaedic and radiology literature. A rare case of this painful hindfoot disorder that resulted from two concurrent developmental anomalies is presented herein.

Keywords: MR imaging • Posterior ankle impingement • Stieda process • Haglund's deformity

© Versita Sp. z o.o.

1. Introduction

Ankle impingement syndromes can be an important cause of chronic ankle pain, which can negatively influence the performance of professional athletes [1]. Biomechanically they are caused by friction between joint tissues and they are characterized by limitation of full range of ankle motion due to osseous and soft tissue abnormalities [2]. Although impingement syndromes were initially studied in elite athletes, they are nowadays considered a cause of persisting ankle pain in the general population [3]. They are classified from an anatomic and clinical point of view into anterolateral, anterior, anteromedial, posteromedial, and posterior impingement syndromes [4]. We report a case of a 27-year-old football player with a rare posterior impingement syndrome and describe the MR imaging findings.

2. Case Report

A 27-year-old male football player presented at the orthopaedic department with a two month's history of progressive posterior ankle pain. Physical examination revealed mild swelling and tenderness on palpation


along the posterolateral ankle, between the Achilles and peroneal tendons, as well as severe restriction in the range of motion during plantar or dorsal flexion. The plain X-ray (performed elsewhere, not shown) showed a hypertrophic and prominent posterolateral talar recess opposite a bony overgrowth of the posterosuperior calcaneal surface area.

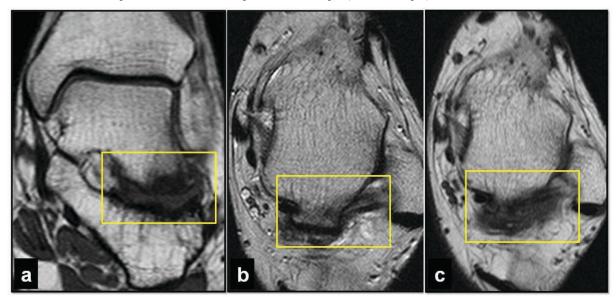
MR imaging was performed to further clarify the clinical and X-ray findings. T1-w images in the sagittal plane depicted the hypertrophic and prominent talar recess opposite the bony overgrowth of the calcaneus (Figure 1). Proton density with fat suppression (Figure 2) and T2 gradient echo images (Figure 3) confirmed the presence of marrow edema in the opposing bony protuberances. A small effusion of the tibiotalar joint (Figure 2) and soft tissue edematous and fibrotic changes in the periarticular fat (Figure 4a to c) were also depicted. The patient's history of sports activity (football), the clinical features, physical examination and imaging findings were indicative for the diagnosis of posterior ankle impingement syndrome due to a Stieda talar process impinging upon a Haglund's deformity of the calcaneus.

Figure 1. Sagittal T1-w MR image, showing the marrow edema in opposing bony protuberances (arrows). Note Haglund's deformity in calcaneus (open arrow).

Figure 3. Sagittal gradient echo (MEDIC) MR image, showing the impinging bony structures as well as the bone marrow edema (arrows).

3. Discussion

Posterior ankle impingement syndromes include a variety of abnormalities that lead to compression of the soft tissues between the talus, the calcaneus and the posterior tibia on plantar flexion of the ankle [1-6]. It has been described in literature with different names such as os trigonum syndrome, talar compression syndrome, and posterior block of the ankle [1-6]. In our


Figure 2. Sagittal fat suppressed proton density MR image, showing the bone marrow edema in Stieda process and in Haglund's deformity (area circled in yellow).

case the predisposing factors for impingement was the coexisting presence of a Stieda talar process and a Haglund's deformity and to the best of our knowledge, it represents an extremely rare report of such a painful hindfoot syndrome.

During skeletal development, a secondary ossification center forms at the posterolateral aspect of the talus between the ages of 7 and 13 years and normally fuses within 1 year [3-5]. In the case of bony overgrowth, a large lateral talar process is formed, which is called a Stieda process. If there is failure of fusion, an os trigonum is formed, which articulates with the talus through a synchondrosis [3-6]. Haglund's deformity is caused by bony overgrowth of the posterior calcaneus and is considered a developmental anatomic variant [7-9]. This retrocalcaneal exostosis has been implicated in a variety of painful entities, most commonly Achilles tendinosis and retrocalcaneal bursitis [7-9]. In our case, however, the concomitant presence of opposing calcaneal and talar developmental variants resulted in impingement syndrome. The soft tissues that may be injured in posterior ankle impingement syndrome include the posterior articular capsule, the posterior talofibular, intermalleolar, and tibiofibular ligaments and the flexor hallucis longus tendon [6-9]. Biomechanically, repetitive forced plantar flexion of the foot results in chronic injury to the aforementioned posterior elements. Ballet dancers, athletes in jumping sports and professional football players, like in our case, are at increased risk

Figure 4. Coronal T1-w (a), axial T2-w (b) and axial T1-w (c) MR images, showing the Stieda process of the talus along with marrow edema and surrounding edematous and fibrotic changes in the surrounding fat (areas in rectangles).

of developing this syndrome due to prolonged and continuous plantar flexion [7-9]. The patient's history and physical examination can suggest the correct diagnosis. Conventional radiographs and CT may show anatomic variants such as the lateral talar (Stieda) process, os trigonum or Haglund's deformity, but further imaging is required to confirm if these findings are the source of symptoms. MR imaging and MR arthrography are the best imaging modalities for identifying soft-tissue abnormalities and joint pathology. Although MRI is not

the method of choice to diagnose a bone deformity, it is considered the imaging modality of choice to diagnose impingement syndromes [4-6]. The initial treatment of posterior ankle impingement syndrome is conservative by means of physiotherapy. If this should fail, arthroscopic or open debridement results in symptomatic relief and in improvement of ankle function along with restoration of range of motion [7-10].

References

- [1] Robinson P, White LM. Soft-tissue and osseous impingement syndromes of the ankle: role of imaging in diagnosis and management. Radiographics 2002;22:1457-69
- [2] Cerezal L, Abascal F, Canga A et al. MR imaging of ankle impingement syndromes. AJR Am J Roentgenol 2003;181:551-59
- [3] Robinson P. Impingement syndromes of the ankle. Eur Radiol 2007;17:3056-65
- [4] Cerezal L, Llopis E, Canga A, Rolón A. MR arthrography of the ankle: indications and technique. Radiol Clin N Am 2008;46:973-94
- [5] Bureau NJ, Cardinal E, Hobden R, Aubin B. Posterior ankle impingement syndrome: MR imaging findings in seven patients. Radiology 2000; 215:497-03
- [6] Peace KA, Hillier JC, Hulme A, Healy JC. MRI features of posterior ankle impingement syndrome in ballet dancers: a review of 25 cases. Clin Radiol 2004;59:1025-33

- [7] Abramowitz Y, Wollstein R, Barzilay Y et al. Outcome of resection of a symptomatic os trigonum. J Bone Joint Surg Am 2003;85-A:1051-57
- [8] Pierre-Jerome C, Moncayo V, Terk MR. MRI of the Achilles tendon: A comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies. Acta Radiologica 2010;51: 438-54
- [9] Brunner J, Anderson J, O'Malley M, Bohne W, Deland J, Kennedy J. Physician and patient based outcomes following surgical resection of Haglund's deformity. Acta Orthop Belg. 2005;71:718-23
- [10] DeVries JG, Summerhays B, Guehlstorf DW. Surgical correction of Haglund's triad using complete detachment and reattachment of the Achilles tendon. J Foot Ankle Surg 2009;48:447-51