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Abstract: �The analyses of 18 biochemical parameters (alanine aminotransferase, albumin, aspartate aminotransferase, calcium, cholesterol, 
chloride, creatinine, iron, glucose, γ- glutamyl transferase, alkaline phosphatase, phosphorus, potassium, sodium, total protein, trig-
lycerides, uric acid, and urea nitrogen) were performed for 166 healthy individuals and 108 patients with end-stage renal failure 
(ESRF). The application of cluster analysis proved that there were points of similarity among all 18 biochemical parameters that formed 
major groups; these groups corresponded to the authors’ assumption of the existence of several overall patterns of biochemical pa-
rameters that may be termed “enzyme-specific”; “general health indicator”; “major component excretion”; “blood-specific indicator”; 
and “protein-specific”. These patterns also appear in the subsets of males and females that were obtained by separation of the general 
dataset. In addition, the performance of factor analysis similarly proved the validity of this assumption. This projection and modelling 
method indicated the existence of seven latent factors, which explained 70.05% of the total variance in the system for healthy individu-
als and more than 72% of the total variance in the system for patients with ESRF. All these results support the probability that a general 
health indicator could be constructed by taking into account the existing classification groups in the list of biochemical parameters.

	        © Versita Warsaw and Springer-Verlag Berlin Heidelberg.
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1. Introduction  

Chronic renal failure (CRF) is a slowly progressive loss 
of renal function over a period of months or years and is 
defined as an abnormally low glomerular filtration rate, 
which is usually determined indirectly by the creatinine 
level in blood serum. CRF that leads to severe illness 

and requires some form of renal replacement therapy 
(such as dialysis) is called end-stage renal disease 
(ESRD) [1-9]. 

ESRD is a complete or nearly complete failure of 
the kidneys to excrete wastes, concentrate urine, and 
regulate electrolytes. ESRD occurs when the kidneys 
are no longer able to function at a level that is necessary 
for daily life. It usually occurs when chronic renal failure 
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results in kidney function that is less than 10% of normal. 
At that point, complications are multiple and severe, 
and, without dialysis or kidney transplantation, death 
will occur from bodily accumulation of fluids and waste 
products [10].

Many diseases can irreversibly damage or injure 
the kidneys. Acute kidney failure can become chronic if 
function is not recovered after treatment. Therefore, any 
process that can cause acute kidney failure can cause 
chronic kidney failure. The most common causes of CRF 
in North America and Europe are diabetic nephropathy, 
hypertension, and glomerulonephritis. Together, these 
cause approximately 75% of all cases in adults. Certain 
geographic areas have a high incidence of human 
immunodeficiency virus (HIV) nephropathy [11-15].

The patient with ESRD usually has a long history 
of chronic renal failure that has progressed and may 
have required dialysis to control. The urine volume may 
decrease, or urine production may stop totally. There is 
often evidence of complications. Creatinine and urea 
levels are chronically high, and creatinine clearance 
is very low. Blood tests are essential for diagnosis and 
monitoring chronic renal failure, because the results 
show an increase in levels of urea and creatinine, 
metabolic waste products that are normally filtered out 
by the kidneys. The level of potassium in the blood is 
normal or only slightly increased, but it can become 
dangerously high when kidney failure reaches an 
advanced stage or if a large amount of potassium is 
ingested. The level of triglycerides in the blood is likely 
to be elevated; the calcium level decreases, and the 
phosphorus level increases. Dialysis is the usual option 
for ongoing treatment and is often used while waiting 
for a suitable transplant opportunity. It is not as efficient 
as a human kidney, so those with chronic kidney failure 
usually need to restrict their intake of fluid and of 
certain foods. They also require additional medication 
such as iron supplements, phosphate binders, and 
antihypertensive drugs. Despite the advent of dialysis, 
most people with advanced kidney failure die within 5 to 
10 years [16-21].  

The prognosis for patients with chronic renal disease 
is guarded, because epidemiologic data has shown that 
all-cause mortality (the overall death rate) increases as 
kidney function decreases. The leading cause of death 
in patients with chronic renal disease is cardiovascular 
disease, regardless of whether there is progression to 
ESRD [22-25].

The aim of this study is to offer a simple multivariate 
statistical strategy, in addition to the recommended 
monitoring procedures, for interpretation and modelling 
of the laboratory data usually determined in clinical and 
biochemical laboratories.

2. Material and Methods
We studied the distribution patterns of some analytes 
commonly assessed in clinical chemistry - biochemistry 
laboratories for healthy individuals and for patients from 
Greece with ESRF. 

The way in which healthy individuals were selected 
is described in detail elsewhere [26]. Patients with end-
stage renal failure undergoing hemodialysis were being 
treated at the General Hospital of Kavala. A total of 166 
healthy individuals from the Prefectures of Drama and 
Kavala (females N=94, males N=72), aged 18 to 30 
years, and 108 patients with ESRF from the General 
Hospital of Kavala (females N=45, males N=63), aged 
35 to85 years, were tested. The data in this study were 
derived from the blood samples taken in the biochemical 
laboratories of the General Hospital of Drama and 
Kavala (Greece). During each sampling period, blood 
specimens were collected between 07:30 and 10:00 
hours. The subjects prepared by eating a light supper 
the night before the tests, forgoing alcoholic beverages, 
fasting overnight, consuming only water for breakfast 
the day of the tests, and avoiding vigorous exercise. 
The blood samples were collected in Vacutainer® 
tubes (Becton Dickinson Co., Rutherford, NJ) free of 
anticoagulant, according to international specifications 
[27,28]. The Vacutainer tubes were left for a period of 
time at ambient temperature in order for the blood clot. 
The blood serum was separated by centrifugation at 
1000 g for 20 minutes, and then the Olympus AU640 
analyzer (general hospital of Drama) and Dimension 
RXL (General Hospital of Kavala) determined the 
selected concentrations for the biochemical parameters, 
within a 2-hour period.

The analyses of 18 biochemical parameters [(alanine 
aminotransferase (ALT), albumin (ALB), aspartate 
aminotransferase (AST), calcium (Ca), cholesterol 
(CHOL), chloride (Cl), creatinine (CREA), iron (Fe), 
glucose (GLU), γ- glutamyl transferase (GGT), alkaline 
phosphatase (ALP), phosphorus (P), potassium (K), 
sodium (Na), total protein (TP), triglycerides (TG), uric 
acid (UA), and urea nitrogen (UREA)] were performed 
on an Olympus AU640 analyzer (Olympus, Japan) and 
Dimension RXL at 37°C immediately after centrifugation, 
according to the methods listed in Table 1. 

Before each determination, calibration and internal 
control of analyzers with calibrators and quality controls 
proceeded according to the manufacturers’ instructions 
and international literature [30,31]. The reagents 
provided in commercial kits were used in the analyzer, 
and the methods were adapted according to the 
manufacturers’ instructions. The water, free from metal 
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ions, had a maximum receptivity of 18.2 Mohm cm at 
25° C. Accuracy was checked (and achieved) by two 
external quality control programs (Radox (RIQAS) and 
Greece (ESEAP)). 

The calculations were performed with the software 
package STATISTICA 7.0 for Windows. 

2.1. Statistical Analysis
Basic statistical and correlation calculations were carried 
out to provide initial information about the biochemical 
laboratory data. To evaluate the correlations between 
the levels of biomarkers of each group, the Pearson 
correlation coefficients were calculated. 

To identify variables independently associated 
with outcomes, cluster analyses and factor analyses 
were used. Cluster analysis and factor analysis are 
multivariate statistical techniques that can be used to 
interpret biochemical data and assist in clinical laboratory 
data monitoring and planning [32-41]. 

Cluster analysis is a data reduction method that 
is used to classify entities with similar properties. The 
method divides a large number of objects into a smaller 
number of homogeneous groups on the basis of their 
correlation structure. The objective of cluster analysis is 
to identify the complex nature of multivariate relationships 
(by searching for natural groupings or types) among the 
data under investigation, so as to foster further hypothesis 
development about the phenomena being studied. 

Cluster analysis was conducted to group biochemical 
data (1) of healthy individuals and (2) of patients with 

ESRF by the complete linkage method with squared 
Euclidean distance measure. This type of analysis was 
used to link variables in the configuration of a tree with 
different branches; branches that have linkages closer 
to each other indicate a stronger relationship among 
variables or a cluster of variables. The dendrogram 
generated from tree clustering provides a useful graphic 
tool for determining the number of clusters that describe 
underlying processes that lead to spatial variation. 

Factor analysis is used to understand the correlation 
structure of collected data and identify the most important 
factors contributing to the data structure. In factor 
analysis, the relationship among a number of observed 
quantitative variables is represented in terms of a few 
underlying, independent variables called factors, which 
may not be directly measured or even measurable. 
Factor analysis is also used to find associations between 
parameters, so that the number of measured parameters 
can be reduced. Known associations are then used to 
predict unmeasured biochemical quality parameters. 

Although not commonly used in laboratory data 
analysis, several studies have employed factor analysis 
to interpret and to model the clinical laboratory data 
[32,34,38,40]. The initial step was the determination 
of the parameter correlation matrix, which was used 
to account for the degree of mutually shared variability 
between individual pairs of biochemical parameters. 
The second step was the estimation of the eigenvalues 
and factor loadings for the correlation matrix. Each 
eigenvalue corresponded to an eigenfactor that 

Variable Olympus method Dimension method

Alanine aminotransferase ALT IFCC w/o p-5’-p IFCC with (P-5-P)

Albumin  ALB Bromocresol green (BCP) purple

Aspartate aminotransferase AST IFCC w/o p-5’-p IFCC with (P-5-P)

Alkaline phosphatase ALP IFCC/AMP Buffer AMP buffer

Calcium  Ca o-cresolphtalein-complex o-cresolphtalein-complex

Cholesterol     CHOL CHOD/PAP CHOD/PAP ή CHOD/POD

Chloride   Cl ISE indirect IMT Indirect

Creatinine     CREA Jaffe´ Jaffe´

Glucose GLU Hexokinase Hexokinase (HK/G-6-PDH)

γ-glutamyl transferase GGT SZASZ IFCC (adapted)

Iron Fe TPTZ Ferene

Phosphorus   P Phosphomolybdate Phosphomolybdate U.V.

Potassium K ISE indirect IMT Indirect

Sodium Na ISE indirect IMT Indirect

Total Proteins Biuret Biuret

Triglycerides   TG GRO/PAP (CHOD/PAP or CHOD/POD)

Uric acid      UA Uricase/PAP Uricase/PAP or Uricase/POD

Urea    UREA Urease U.V. Urease/GLDH U.V.

Table 1. Methods used for the determination of the different quantities (37oC). 
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identified the groups of variables that were most highly 
correlated among them. The first eigenfactor accounted 
for the greatest variation among the observed variables, 
while each subsequent eigenfactor was orthogonal to 
all preceding factors and provided incrementally smaller 
contributions to the overall descriptive ability of the 
model. Because lower eigenvalues might contribute 
little to the explanatory capability of the data, only the 
first few factors were needed to account for much of the 
parameter variability. 

In this study, the factor extraction was performed 
with the method of principal components. The most 
widely used method for determining how many factors 
to keep and how many to ignore is the Kaiser criterion, 
which retains only those factors with eigenvalues >1. 
This means that each retained factor provides as much 
explanatory capability as one original variable. 

Once the correlation matrix and eigenvalues were 
obtained, factor loadings were used to measure the 
correlation between variables and factors. Factor 
rotation was used to facilitate interpretation by providing 
simpler factor structure. The factors were rotated so that 
the observed axes were aligned with a dominant set of 
variables, which assisted in the understanding of how 
factors were related to the observed variables. In this 
study the varimax rotation, a standard rotation method, 
was used.  

3. Results
Basic statistical data (mean value, minimum and 
maximum values, standard deviation) for the biochemical 
parameters of the healthy individuals for both the male 
and female categories are presented in Table 2. 

The correlation between the different biochemical 
test parameters of all 166 healthy individuals showed 
that the overall significance of many was statistically 
sound, according to the Pearson test. For several 
parameters such as CREA/ALB (0.475, p<0.001), AST/
ALT (0.756, p<0.001), CREA/UA (0.624, p<0.001), UA/
GGT (0.442, p<0.001), UA/ALP (0.420, p<0.001), ALT/
GGT (0.611, p<0.001), and TP/ALB (0.743, p<0.001), a 
real logical interpretation (r > 0.4) for significance could 
be offered.

Similarly, basic statistics for the biochemical 
parameters of the patients with ESRF for both males 
and females are presented in Table 3.

According to the Pearson test (r>0.4), the correlated 
couples of parameters for the 108 patients with ESRF 
were: UREA/CREA (0.425, p<0.01); UREA/K (0.481, 
p<0.01); UREA/P (0.499, p<0.01); AST/ALT (0.718, 
p<0.01); and TP/ALB (0.686, p<0.01). 

These correlations were used to identify groups of 
highly correlated biochemical variables. It is evident that 
the simple correlation analysis did not indicate specific 

Male healthy individuals Female healthy individuals

Variable Mean Min Max SD Variable Mean Min Max SD

GLU 98 82 133 10 GLU 93 74 117 8

UREA 28.8 17.0 40.0 5.8 UREA 25.3 14.0 44.0 6.1

CREA 1.05 0.69 1.26 0.12 CREA 0.89 0.59 1.16 0.10

UA 5.4 3.3 8.0 1.0 UA 3.8 2.2 7.2 0.8

CHOL 161 106 308 37 CHOL 165 65 253 33

TG 94 27 331 51 TG 76 31 207 34

AST 24.0 14.0 54.0 7.8 AST 20.3 13.0 52.0 6.5

ALT 26.0 11.0 74.0 13.3 ALT 18.7 9.0 86.0 13.2

ALP 78.8 34.0 186.0 26.8 ALP 56.1 33.0 97.0 14.9

GGT 20.1 7.0 75.0 10.9 GGT 12.3 5.0 46.0 6.3

K 4.4 3.8 5.2 0.3 K 4.4 3.8 5.2 0.4

Na 141.1 136.0 147.0 2.2 Na 139.3 132.0 144.0 2.4

Cl 103.1 84.0 108.0 3.6 Cl 103.5 99.0 108.0 2.1

Ca 9.8 8.8 10.8 0.5 Ca 9.6 8.5 10.8 0.5

Fe 98.9 41.0 184.0 38.3 Fe 85.9 40.0 180.0 36.4

P 4.0 2.6 5.5 0.7 P 3.9 2.5 5.0 0.5

TP 7.69 6.30 8.50 0.37 TP 7.62 6.50 8.60 0.45

ALB 5.11 3.80 5.90 0.35 ALB 4.90 4.00 6.00 0.40

Table 2. Basic statistics for the tested biochemical parameters for male and female healthy individuals (mean value, minimum and maximum 
values within a certain variable, standard deviation of the mean). 
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links between the biochemical parameters being 
studied.

In Figure 1, the hierarchical dendrogram for 
the clustering of the biochemical parameters for all 
investigated healthy subjects (N = 166) is plotted 
(complete method of linkage, squared Euclidean distance 
as similarity measure, standardization of the input data). 
For clustering, a total of 18 clinical parameters were 
chosen (Table 1).

From the hierarchical dendrogram of Figure 1, it 
can be concluded that the parameters are principally 
separated into two large clusters, each of them divided 
into subclusters as follows:

Cluster 1 (four parameters included): Cl, K, P and 
UREA.

Cluster 2 (fourteen parameters included): ALB, TP, 
Fe, Na, GGT, ALT, AST, ALP, UA, CREA, TG, CHOL, 
Ca, and GLU.

Subcluster 1: ALB, TP, Fe and Na; subcluster 2: 
GGT, ALT, AST, ALP, UA and CREA; subcluster 3: TG, 
CHOL, Ca and GLU.

Cluster analysis was also performed for the dataset 
consisting of the biochemical parameters of only healthy 
males, only healthy females, all patients with ESRF, only 
males with ESRF, and only females with ESRF. The 
respective hierarchical dendrograms for only healthy 

Male (ESRF) patients Female (ESRF) patients

Variable Mean Min Max SD Variable Mean Min Max SD

GLU 110 51 449 54 GLU 112 51 238 39

UREA 181 43 301 44 UREA 162 28 263 39

CREA 9.4 0.7 14.8 2.8 CREA 8.2 0.4 13.2 2.6

UA 5.6 4.0 8.6 1.0 UA 5.4 0.9 7.5 1.2

CHOL 145 79 216 31 CHOL 158 73 293 42

TG 153 42 382 67 TG 171 45 388 93

AST 14.3 3.0 53.0 7.9 AST 18.7 5.0 119.0 16.8

ALT 31.3 21.0 72.0 7.6 ALT 33.9 15.0 130.0 18.7

ALP 81 38 281 38 ALP 107 25 437 87

GGT 40.2 15.0 205.0 30.6 GGT 51.2 9.0 388.0 75.9

Na 136 131 141 2 Na 137 129 148 3

K 5.2 3.3 7.6 0.9 K 5.3 4.2 7.0 0.7

Cl 102 95 109 3 CL 104 94 113 3

Ca 9.3 8.1 10.6 0.6 Ca 9.1 6.5 12.0 1.0

Fe 84 9 285 52 Fe 77 24 197 45

P 5.3 1.5 9.6 1.6 P 4.6 2.5 6.7 1.1

TP 6.8 4.1 8.4 0.6 TP 6.3 1.8 7.8 1.1

ALB 3.4 1.9 4.1 0.3 ALB 3.2 1.5 4.1 0.5

Table 3. Basic statistics for the tested biochemical parameters for male and female patients with ESRF (mean value, minimum and maximum 
values within a certain variable, standard deviation of the mean). 
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Figure 1. Hierarchical dendrogram of biochemical variables for all healthy individuals.
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males, only healthy females, all patients with ESRF, 
only males with ESRF, and only females with ESRF are 
shown in Figures 2-6.

Similarly, from the hierarchical dendrogram of 
Figure  4, it can be concluded that the parameters are 
principally separated into two large clusters, each of 
them divided into subclusters as follows:

Cluster 1 (four parameters included): Cl, Na, ALT 
and AST.

Cluster 2 (fourteen parameters included): ALB, 
CREA, UA, P, UREA, TP, Ca, Fe, K, GGT, ALP, TG, 

CHOL and GLU.
Subcluster 1: ALB, CREA, UA, P and UREA; 

subcluster 2: TP, Ca, Fe and K; and subcluster 3: GGT, 
ALP, TG, CHOL and GLU.

The usual classification approach of clustering is 
accompanied by factor analysis [principal components 
analysis (PCA) method], which is a typical projection 
and modelling approach.  In general, the factor analysis 
confirms the results obtained by cluster analysis. The 
formation of seven latent factors, which are obviously 
responsible for the data structure, is proved for each of 
the different subsets: all healthy individuals, only healthy 
males, only healthy females, all patients with ESRF, only 
males with ESRF, and only females with ESRF. 

The factor analysis (factor loading values) for all 
healthy individuals and for all patients with ESRF 
datasets is illustrated in Tables 5 and 7.    

Table 4 provides the eigenvalues and the explanatory 
capability for the biochemical data of the set of all 
healthy individuals. The first and second factor, taken 
together, accounted for 33.90% of the total variability, 
whereas subsequent factors assisted in describing 
the biochemical data, but with a rapid diminishment 
in magnitude. The first seven factors each had an 
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Figure 2. Hierarchical dendrogram of biochemical variables for 
male healthy individuals
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Figure 3. Hierarchical dendrogram of biochemical variables for 
female healthy individuals.
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Figure 4. Hierarchical dendrogram of biochemical variables for all 
(ESRF) patients.
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Figure 5. Hierarchical dendrogram of biochemical variables for 
male (ESRF) patients.

Figure 6. Hierarchical dendrogram of biochemical variables for 
female (ESRF).
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eigenvalue >1, and, together, accounted for 70.05% of 
the observed variation in biochemical data. Additional 
factors provided marginally less explanatory capability 
and were not examined further. Factor loadings reflect 
the correlations between the variables and the extracted 
factors. The factor loadings for the seven retained 
eigenvalues are shown in Table 5. 

Table 6 provides the eigenvalues and the explanatory 
capability for the biochemical data of the set of all patients 
with ESRF. The first three factors, together, accounted 
for 43.58% of the total variability, whereas subsequent 
factors assisted in describing the biochemical data, 
but with a rapid diminishment in magnitude. The first 
seven factors each had an eigenvalue >1, and together, 
they accounted for 72.29% of the observed variation 
in biochemical data. The factor loadings for the seven 
retained eigenvalues are shown in Table 7. 

4. Discussion
As can be seen from Table 2, there were slight differences 
between the tested subgroups, e.g., higher averages 
for healthy males as compared to healthy females. 
There were also differences between male and female 
patients with ESRF (Table 3); for example GLU, CHOL, 
TG, AST, ALT, ALP, GGT, Na, K and Cl parameters had 
higher mean values in female than in male patients, 
and the rest of the variables had greater mean values 
in the male subgroup compared to those in the female 
subgroup. 

The comparison between healthy individuals and 
patients with ESRF revealed significant differences 
between the two groups. More specifically, the patients 
had higher levels of serum UREA, CREA, TG, K, P, 
GGT, ALT and ALP; lower levels of  serum AST, TP and 
ALB; and similar levels of serum Cl, Ca, Fe, UA, CHOL, 

No Eigenvalue Total Variance (%) Cumulative (%)

1 3,340105 18,55614 18,55614

2 2,762778 15,34877 33,90491

3 1,697529 9,43072 43,33563

4 1,383295 7,68497 51,02060

5 1,325409 7,36338 58,38398

6 1,052105 5,84503 64,22901

7 1,047298 5,81832 70,04733

Table 4. Individual and cumulative eigenvalues of all healthy subjects 
studied biochemical parameters. 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

GLU -0,170764 0,070725 0,057579 -0,179320 0,860904 0,046765 0,013420

UREA -0,058119 0,028801 0,102571 0,023976 0,064269 0,854204 -0,021350

CREA 0,589859 0,150513 0,273731 -0,315124 0,012662 0,423971 -0,069663

UA 0,430803 0,482191 0,190828 -0,343712 0,149396 0,335915 -0,062451

CHOL -0,059223 0,069283 -0,428868 -0,609314 -0,031903 0,047536 0,262044

TG 0,034386 0,104007 -0,007138 -0,782219 0,137390 0,038074 0,009688

AST 0,067269 0,863484 -0,151596 0,086734 -0,079008 -0,043160 0,071987

ALT -0,040114 0,897659 -0,023665 -0,145638 -0,015211 -0,011431 0,091939

ALP 0,322808 0,375172 0,184624 0,161038 0,248655 0,088152 -0,484674

GGT -0,146218 0,696945 0,041375 -0,237412 0,327922 0,097622 -0,017308

Na 0,123928 -0,063414 -0,228337 0,490123 0,033725 0,367829 0,177911

K 0,263859 0,102066 0,751252 -0,013000 0,117036 0,173394 0,022527

CL -0,063852 -0,167894 0,731656 0,038738 -0,171072 -0,001491 -0,040298

Ca 0,394539 0,013216 -0,335007 0,111335 0,606589 0,084180 -0,028797

Fe 0,310708 0,128405 0,033448 0,034484 -0,087541 0,179966 0,669618

P 0,217319 -0,164786 0,045530 0,044256 -0,382999 0,332481 -0,666122

TP 0,842051 -0,058521 -0,038537 0,007287 -0,093535 -0,123261 0,085527

ALB 0,903933 -0,041821 0,101359 0,129891 0,018963 0,031162 -0,008436

Table 5. Factor loadings of all healthy subjects studied biochemical parameters.

No Eigenvalue Total Variance (%) Cumulative (%)

1 3,148894 17,49385 17,49385

2 2,623711 14,57617 32,07003

3 2,071526 11,50848 43,57851

4 1,516469 8,42483 52,00334

5 1,292168 7,17871 59,18205

6 1,211290 6,72939 65,91144

7 1,147481 6,37489 72,28633

Table 6. Individual and cumulative eigenvalues of all (ESRF) patients 
studied biochemical parameters. 
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Na and GLU compared to those of healthy individuals 
(Student’s t-test, p<0.05). 

The careful consideration of the content of the 
clusters (Figure 1) offers some interesting conclusions 
about the data classification when all healthy individuals 
were considered. The first cluster included electrolytes 
(Cl and K) and blood-specific health parameters 
including P and UREA. The second cluster involves 
proteins (ALB and TP), blood components (Fe and Na), 
enzymes (GGT, ALT, AST and ALP), parameters related 
to metabolic excretion processes (UA, CREA), and 
important general health parameters including levels of 
glucose, calcium, cholesterol and triglycerides. 

This data analysis suggests how single biochemical 
parameters should be compared and related to each 
other if treatment is based on the combined values 
of the biochemical variables, not on individual ones. 
For instance, within a group of healthy persons, there 
is a stronger relation between the group of enzyme 
parameters (ALT, AST and GGT) and parameters like 
ALP, UA and CREA than to parameters like GLU, Ca, TG 
and CHOL. Therefore, specific patterns of the classified 
biochemical parameters can be seen (for the group of all 
healthy individuals):

Enzyme-specific (including ALT, AST, GGT, ALP yy
and two other parameters like UA and CREA)
General health indicator (including glucose, yy
cholesterol, triglyceride and calcium levels)
Blood-specific indicator (including UREA, P, K and yy
Cl)

Protein-specific (including ALB, TP and two other yy
parameters like Fe and Na)

In principle, it appears possible to design a set of 
substantial clinical parameters or a very specific health 
indicator consisting of parameters chosen from each 
pattern or from an average of several included in a 
cluster that are similar statistically. 

The grouping of the clinical parameters for only 
healthy males (Figure 2) reveals differences compared 
to that of all healthy persons. For example, there is a 
difference in the linkage of the subcluster (ALT, AST and 
GGT) to the group (ALP, UA and CREA) of the second 
large cluster formed when all healthy individuals are 
considered. This may mean that the parameters for 
healthy males, when ALT and AST values are taken into 
consideration, should be related to the blood-specific 
indicator values (Fe and Na) rather than to GGT, ALP, 
UA and CREA indicators.  Again, several patterns 
are formed, which correspond in principle to the idea 
of enzyme-specific (including ALT and AST, and two 
specific blood parameters like Fe and Na), general 
health indicator (TG, CHOL, GLU and GGT), protein-
specific (ALB, TP and Ca), blood-specific indicator (Cl, P 
and one enzyme ALP), and major component excretion 
(UA, CREA, K and UREA) groups. This seems to be 
a classification rule for biochemical parameters that is 
specific to healthy males. 

If the data for only healthy females are clustered 
(Figure 3), there is again a change in arrangement of the 
classification patterns. The careful inspection of Figure 3 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

GLU 0,118387 0,037700 0,185718 -0,143922 0,341679 0,430262 0,437355

UREA 0,812356 -0,010036 0,039942 -0,016086 -0,231806 -0,154428 -0,023452

CREA 0,567557 0,062867 -0,133886 0,468063 -0,328154 0,044384 -0,105229

UA 0,589327 -0,172507 0,148050 0,259566 0,414863 0,193725 -0,019320

CHOL -0,071714 -0,207575 -0,075367 -0,045922 0,089570 0,761818 0,067508

TG 0,077993 -0,160204 0,084472 0,157046 -0,154719 0,811278 0,061530

AST -0,037350 0,044658 0,939847 -0,031678 0,088975 0,017708 -0,037266

ALT -0,009553 -0,268381 0,876538 0,093125 -0,094450 0,025576 -0,117875

ALP -0,027425 -0,897300 0,094589 0,038713 0,042529 0,169604 0,036115

GGT -0,050574 -0,880116 0,083346 -0,032022 0,009632 0,179305 0,164421

Na -0,133994 0,140440 0,155496 -0,154308 0,187353 0,023237 -0,886021

K 0,146157 -0,082316 -0,070391 0,031611 -0,723894 -0,079664 0,148301

CL 0,033409 0,092662 0,061192 -0,175503 -0,052533 -0,142697 -0,879791

Ca -0,244067 0,075208 0,082807 0,755411 0,031936 -0,075426 0,097749

Fe 0,056371 0,262818 0,237505 0,121797 -0,600906 0,298110 -0,167430

P 0,692515 0,130468 -0,083735 -0,014005 0,013797 0,072720 0,183097

TP 0,129188 -0,098660 0,062378 0,767587 0,030611 0,038498 0,170729

ALB 0,326288 0,013985 -0,089480 0,712239 -0,193353 0,132890 0,032554

Table 7. Factor loadings of all (ESRF) patients studied biochemical parameters. 
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indicates the presence of a blood-specific group (Cl, K, 
P, ALP and UREA), closely related to protein-specific 
(ALB, TP, CREA) and general health indicator (Na, Ca 
and GLU) groups. The enzyme-specific group (ALT, 
AST, GGT and UA) is relatively stable in this situation 
and includes one parameter from the major component 
excretion group (like UA) that is closely related to a 
blood-specific indicator (TG, CHOL and Fe) group. 
This seems to be a classification rule for biochemical 
parameters that is specific to healthy females.

It appears obvious that the possible introduction 
of a more general indicator of health state has to be 
sex-specific. This is a confirmation of the finding about 
differences between the average values of the single 
biochemical parameters between healthy males and 
females.

When the clinical parameters for all patients with 
ESRF (Figure 4) are grouped, again several patterns 
are formed, which correspond in principle to the idea of 
enzyme-specific (AST, ALT, with two other parameters 
like Cl and Na), general health indicator (TG, CHOL, 
GLU, GGT and ALP), blood-specific (TP, Ca, Fe and K), 
and major component excretion (UA, UREA, CREA, P 
and ALB) groups. This seems to be a classification rule 
for biochemical parameters that is specific to patients 
with ESRF.

If the data for only males or females with ESRF are 
clustered, there are again significant changes in the 
arrangement of the classification patterns among all 
patients with ESRF, males with ESRF, and females with 
ESRF, as can be seen in Figures 4, 5 and 6. Again, when 
the biochemical data of only male patients are clustered, 
several patterns are formed that correspond in principle 
to the idea of blood-specific indicator (Cl, Na), protein-
specific (TP, ALB, Ca, Fe), major component excretion 
(UREA, CREA, K), general health indicator (GLU, TG, 
CHOL, UA and P), and enzyme-specific (ALT, AST, GGT 
and ALP) groups. This seems to be a classification rule 
for biochemical parameters that is specific to healthy 
males. If only female data are clustered (Figure 6), there 
are again changes in arrangement of the classification 
patterns. For example, the careful inspection of Figure 6 
indicates the presence of a blood-specific group (P, 
UREA) that is closely related to the enzyme-specific 
group; the enzyme-specific group resembles the 
corresponding group with the same nomination, when 
all patients with ESRF are considered; the general 
health indicator group is exactly the same for the 
corresponding group with the same nomination, when 
all patients with ESRF are considered. This seems to be 
a classification rule for biochemical parameters that is 
specific to females with ESRF.

When the two groups (all healthy vs all patients with 
ESRF) are compared, major differences can be seen in 
the clustering of the biochemical variables in the study. 
The major excretion indicator group includes (CREA, 
UREA and UA) and two other parameters like (P and 
ALB), when all patients with ESRF are considered. It 
should be noted that the same pattern does not emerge 
when all healthy individuals are considered.

By comparison, when all patients with ESRF are 
considered, the enzyme-specific (ALT, AST, ALP 
and GGT) group separates into two different cluster. 
Moreover, there are differences in the linkage of the 
subcluster (TG, CHOL) to the group of enzymes of the 
second big cluster formed when all healthy individuals 
are considered. That may mean that the parameters 
for patients with ESRF should be related to enzyme 
indicator values (GGT, ALP) rather than to ALT and 
AST indicators, when TG and CHOL values are taken 
into consideration. Similarly, differences in clustering 
of biochemical parameters are also evident when male 
healthy individuals are compared with male patients 
with ESRF (Figures 2 and 5) and when female healthy 
individuals are compared with female patients with 
ESRF (Figures 3 and 6).

It seems obvious that the possible introduction of a 
more general health state indicator has to be specific 
to healthy persons. This is a confirmation of the finding 
about differences between the average values of the 
single biochemical parameters among healthy males, 
healthy females, male patients with ESRF, and female 
patients (Tables 2 and 3).

When all healthy individuals are considered, the 
application of factor analysis reveals seven latent factors 
that explain 70.05% of the total variance of the system, 
which is an indication for the adequacy of the PCA 
model. The marked loadings for all healthy individuals 
(Table 5) are statistically significant, according to 
Malinowski’s test.  The first factor contains TP and ALB, 
with a strong positive correlation between them. There 
is also a lesser positive correlation of CREA with the 
first factor. This factor could be conditionally named 
“protein-specific” factor and corresponds to the cluster 
with the same nomination. It explains 18.56% of the total 
variance. The next level of total variance (over 15%) can 
be explained by the second latent factor, which indicates 
a high positive correlation (factor loadings values) for 
AST, ALT and GGT and resembles the corresponding 
subcluster in a dendrogram of healthy individuals. 
Therefore, it could be conditionally named “enzyme-
specific” factor. Additionally, there is slightly less of a 
correlation of UA with the parameters of the second 
factor. The third latent factor explains a substantial 
part of the total variance (9.43%) and reveals a strong 
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positive relation between the clinical parameters K and 
Cl, which allows its conditional designation as “blood-
specific” factor. The latent factor four explains 7.68% of 
the total variance, and due to the high negative loadings 
of CHOL and TG, is logically designated as a “general 
health indicator” factor. There is also slightly less of a 
correlation of Na with the fourth factor. The fifth latent 
factor, with high factor loadings for GLU and Ca, could 
be conditionally named a “general health indicator” 
factor and corresponds to the cluster with the same 
nomination. It explains over 7% of the total variance. The 
sixth latent factor explains a substantial part of the total 
variance (5.84%) and involves the clinical parameter 
UREA, which allows its conditional designation as a 
“major component excretion” factor. Finally, the latent 
factor seven explains almost 6% of the total variance 
and, because of the high loadings of Fe and P, logically 
is designated a “blood-specific indicator” factor. There is 
also a slight correlation of ALP with factor seven.

The same method of analysis for all patients with 
ESRF (Table 7) reveals that the first latent factor with 
high positive factor loadings for UREA, CREA, UA and 
P could be conditionally named a “major component 
excretion” factor, corresponds to the cluster with the 
same nomination, and explains over 17% of the total 
variance. The next level of total variance (over 14%) can 
be explained by the second latent factor, which indicates 
a high negative correlation (factor loadings values) for 
ALP and GGT. Therefore, it could be again conditionally 
named an “enzyme specific” factor. The third latent 
factor explains a substantial part of the total variance 
(11.51%) and reveals a strong positive relation between 
the clinical parameters AST and ALT, which allows its 
conditional designation as “enzyme-specific” factor. The 
latent factor four explains over 8% of the total variance 
and, because of the high positive loadings of TP, ALB 
and Ca, logically is designated as “protein specific” 
factor. The fifth latent factor explains a substantial part 
of the total variance (over 7%) and reveals a strong 
positive relation between the clinical parameters K and 
Fe, which allows its conditional designation as a “blood-
specific indicator” factor. Latent factor six explains 6.73% 
of the total variance and, because of the high positive 
loadings of CHOL and TG, logically is designated as a 
“general health indicator” factor. Moreover, there is a 
slight positive correlation of GLU with factor six. Finally, 
latent factor seven explains 6.37% of the total variance, 
and because of the high loadings of Na and Cl, logically 
is designated as a “blood specific indicator” factor. 
Additionally, there is again a slight correlation of GLU 
with factor seven.

It is readily apparent that the major groups of 
biochemical parameters interpreted by cluster analysis 

are also involved in the factor loadings presented 
in Tables 5 and 7. Thus, the classification scheme 
developed by cluster analysis is confirmed by factor 
analysis. This confirmation is an important indication 
that the biochemical laboratory parameters tested are, 
in fact, related and form groups of similar indicative  
properties.

In conclusion, the application of a typical classification 
approach such as cluster analysis to data sets consisting 
of the biochemical parameters of all healthy individuals 
and the same parameters of all patients with ESRF 
proved that there were points of similarity among all 18 
biochemical parameters that formed major groups; these 
groups corresponded to the authors’ assumption of the 
existence of several overall patterns of biochemical 
parameters that may be termed “enzyme-specific”; 
“general health indicator”; “major component excretion”; 
“blood-specific indicator”; and “protein-specific”. These 
patterns also appeared when the general dataset was 
subdivided into “male” and “female” categories. 

The performance of another technique of multivariate 
data analysis, factor analysis, proved the validity of 
a similar assumption. This projection and modelling 
method indicated the existence of seven latent factors, 
which explained 70.05% of the total variance of the 
system for all healthy individuals and more than 72% 
of the total variance of the system for all patients with 
ESRF, and, thus this analysis was  responsible for the 
overall data structure.

All these results support the idea that a general 
health indicator could probably be constructed by taking 
into account the existing classification groups in the list 
of biochemical parameters.
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