\//
Cent. Eur. J. Med. * 4(1) « 2009 « 37-48
DOI: 10.2478/s11536-008-0085-z VERSITA

Central European Journal of Medicine

Determination and Modelling of Clinical
Laboratory Data of Healthy Individuals
and Patients with End-Stage Renal Failure

Research Article

Agelos Papaioannou’™, George Karamanis®, loannis Rigas®, Thomas Spanos?,
Zoe Roupa®
' Section of Clinical Chemistry and Biochemistry,

Department of Medical Laboratories, Faculty of Health and Care,
Technological and Education Institute of Larissa, 41110 Larissa, Greece

2 Biochemical Laboratory, General Hospital of Kavala,
65201 Kavala, Greece

3 Department of Animal Production, Technological and Education Institute of Larissa,
41110 Larissa, Greece

4 Education and Technological Institute of Kavala,
65403 Kavala, Greece

% Nursing Department, Technological and Education Institute of Larissa,
41110 Larissa, Greece

Received 9 June 2008; Accepted 21 October 2008

Abstract: The analyses of 18 biochemical parameters (alanine aminotransferase, albumin, aspartate aminotransferase, calcium, cholesterol,
chloride, creatinine, iron, glucose, y- glutamyl transferase, alkaline phosphatase, phosphorus, potassium, sodium, total protein, trig-
lycerides, uric acid, and urea nitrogen) were performed for 166 healthy individuals and 108 patients with end-stage renal failure
(ESRF). The application of cluster analysis proved that there were points of similarity among all 18 biochemical parameters that formed
major groups; these groups corresponded to the authors’ assumption of the existence of several overall patterns of biochemical pa-
rameters that may be termed “enzyme-specific”; “general health indicator”; “major component excretion”; “blood-specific indicator”;
and “protein-specific”. These patterns also appear in the subsets of males and females that were obtained by separation of the general
dataset. In addition, the performance of factor analysis similarly proved the validity of this assumption. This projection and modelling
method indicated the existence of seven latent factors, which explained 70.05% of the total variance in the system for healthy individu-
als and more than 72% of the total variance in the system for patients with ESRF. All these results support the probability that a general
health indicator could be constructed by taking into account the existing classification groups in the list of biochemical parameters.

Keywords: Healthy individuals  End-stage renal failure patients ¢ Biochemical parameters  Cluster analysis * Factor analysis

© Versita Warsaw and Springer-Verlag Berlin Heidelberg.

1_ |ntr0ducti0n and requires some form of renal replacement therapy
(such as dialysis) is called end-stage renal disease
(ESRD) [1-9].

ESRD is a complete or nearly complete failure of
the kidneys to excrete wastes, concentrate urine, and
regulate electrolytes. ESRD occurs when the kidneys
are no longer able to function at a level that is necessary
for daily life. It usually occurs when chronic renal failure

Chronic renal failure (CRF) is a slowly progressive loss
of renal function over a period of months or years and is
defined as an abnormally low glomerular filtration rate,
which is usually determined indirectly by the creatinine
level in blood serum. CRF that leads to severe iliness
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results in kidney function that is less than 10% of normal.
At that point, complications are multiple and severe,
and, without dialysis or kidney transplantation, death
will occur from bodily accumulation of fluids and waste
products [10].

Many diseases can irreversibly damage or injure
the kidneys. Acute kidney failure can become chronic if
function is not recovered after treatment. Therefore, any
process that can cause acute kidney failure can cause
chronic kidney failure. The most common causes of CRF
in North America and Europe are diabetic nephropathy,
hypertension, and glomerulonephritis. Together, these
cause approximately 75% of all cases in adults. Certain
geographic areas have a high incidence of human
immunodeficiency virus (HIV) nephropathy [11-15].

The patient with ESRD usually has a long history
of chronic renal failure that has progressed and may
have required dialysis to control. The urine volume may
decrease, or urine production may stop totally. There is
often evidence of complications. Creatinine and urea
levels are chronically high, and creatinine clearance
is very low. Blood tests are essential for diagnosis and
monitoring chronic renal failure, because the results
show an increase in levels of urea and creatinine,
metabolic waste products that are normally filtered out
by the kidneys. The level of potassium in the blood is
normal or only slightly increased, but it can become
dangerously high when kidney failure reaches an
advanced stage or if a large amount of potassium is
ingested. The level of triglycerides in the blood is likely
to be elevated; the calcium level decreases, and the
phosphorus level increases. Dialysis is the usual option
for ongoing treatment and is often used while waiting
for a suitable transplant opportunity. It is not as efficient
as a human kidney, so those with chronic kidney failure
usually need to restrict their intake of fluid and of
certain foods. They also require additional medication
such as iron supplements, phosphate binders, and
antihypertensive drugs. Despite the advent of dialysis,
most people with advanced kidney failure die within 5 to
10 years [16-21].

The prognosis for patients with chronic renal disease
is guarded, because epidemiologic data has shown that
all-cause mortality (the overall death rate) increases as
kidney function decreases. The leading cause of death
in patients with chronic renal disease is cardiovascular
disease, regardless of whether there is progression to
ESRD [22-25].

The aim of this study is to offer a simple multivariate
statistical strategy, in addition to the recommended
monitoring procedures, for interpretation and modelling
of the laboratory data usually determined in clinical and
biochemical laboratories.

2. Material and Methods

We studied the distribution patterns of some analytes
commonly assessed in clinical chemistry - biochemistry
laboratories for healthy individuals and for patients from
Greece with ESRF.

The way in which healthy individuals were selected
is described in detail elsewhere [26]. Patients with end-
stage renal failure undergoing hemodialysis were being
treated at the General Hospital of Kavala. A total of 166
healthy individuals from the Prefectures of Drama and
Kavala (females N=94, males N=72), aged 18 to 30
years, and 108 patients with ESRF from the General
Hospital of Kavala (females N=45, males N=63), aged
35 to85 years, were tested. The data in this study were
derived from the blood samples taken in the biochemical
laboratories of the General Hospital of Drama and
Kavala (Greece). During each sampling period, blood
specimens were collected between 07:30 and 10:00
hours. The subjects prepared by eating a light supper
the night before the tests, forgoing alcoholic beverages,
fasting overnight, consuming only water for breakfast
the day of the tests, and avoiding vigorous exercise.
The blood samples were collected in Vacutainer®
tubes (Becton Dickinson Co., Rutherford, NJ) free of
anticoagulant, according to international specifications
[27,28]. The Vacutainer tubes were left for a period of
time at ambient temperature in order for the blood clot.
The blood serum was separated by centrifugation at
1000 g for 20 minutes, and then the Olympus AU640
analyzer (general hospital of Drama) and Dimension
RXL (General Hospital of Kavala) determined the
selected concentrations for the biochemical parameters,
within a 2-hour period.

The analyses of 18 biochemical parameters [(alanine
aminotransferase (ALT), albumin (ALB), aspartate
aminotransferase (AST), calcium (Ca), cholesterol
(CHOL), chloride (CI), creatinine (CREA), iron (Fe),
glucose (GLU), y- glutamyl transferase (GGT), alkaline
phosphatase (ALP), phosphorus (P), potassium (K),
sodium (Na), total protein (TP), triglycerides (TG), uric
acid (UA), and urea nitrogen (UREA)] were performed
on an Olympus AU640 analyzer (Olympus, Japan) and
Dimension RXL at 37°C immediately after centrifugation,
according to the methods listed in Table 1.

Before each determination, calibration and internal
control of analyzers with calibrators and quality controls
proceeded according to the manufacturers’ instructions
and international literature [30,31]. The reagents
provided in commercial kits were used in the analyzer,
and the methods were adapted according to the
manufacturers’ instructions. The water, free from metal
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Table 1. Methods used for the determination of the different quantities (37°C).

Dimension method

Variable Olympus method
Alanine aminotransferase ALT IFCC w/o p-5"-p
Albumin ALB Bromocresol green
Aspartate aminotransferase AST IFCC w/o p-5'-p
Alkaline phosphatase ALP IFCC/AMP Buffer
Calcium Ca o-cresolphtalein-complex
Cholesterol  CHOL CHOD/PAP
Chloride CI ISE indirect
Creatinine  CREA Jaffe”

Glucose GLU Hexokinase
y-glutamyl transferase GGT SZASZ

Iron Fe TPTZ

Phosphorus P Phosphomolybdate
Potassium K ISE indirect
Sodium Na ISE indirect

Total Proteins Biuret

Triglycerides TG GRO/PAP

Uricacid  UA Uricase/PAP

Urea UREA Urease U.V.

IFCC with (P-5-P)

(BCP) purple

IFCC with (P-5-P)

AMP buffer
o-cresolphtalein-complex
CHOD/PAP 3 CHOD/POD
IMT Indirect

Jaffe”

Hexokinase (HK/G-6-PDH)
IFCC (adapted)

Ferene

Phosphomolybdate U.V.
IMT Indirect

IMT Indirect

Biuret

(CHOD/PAP or CHOD/POD)
Uricase/PAP or Uricase/POD
Urease/GLDH U.V.

ions, had a maximum receptivity of 18.2 Mohm cm at
25° C. Accuracy was checked (and achieved) by two
external quality control programs (Radox (RIQAS) and
Greece (ESEAP)).

The calculations were performed with the software
package STATISTICA 7.0 for Windows.

2.1. Statistical Analysis

Basic statistical and correlation calculations were carried
out to provide initial information about the biochemical
laboratory data. To evaluate the correlations between
the levels of biomarkers of each group, the Pearson
correlation coefficients were calculated.

To identify variables independently associated
with outcomes, cluster analyses and factor analyses
were used. Cluster analysis and factor analysis are
multivariate statistical techniques that can be used to
interpret biochemical data and assist in clinical laboratory
data monitoring and planning [32-41].

Cluster analysis is a data reduction method that
is used to classify entities with similar properties. The
method divides a large number of objects into a smaller
number of homogeneous groups on the basis of their
correlation structure. The objective of cluster analysis is
toidentify the complex nature of multivariate relationships
(by searching for natural groupings or types) among the
dataunderinvestigation, so as to foster further hypothesis
development about the phenomena being studied.

Cluster analysis was conducted to group biochemical
data (1) of healthy individuals and (2) of patients with

ESRF by the complete linkage method with squared
Euclidean distance measure. This type of analysis was
used to link variables in the configuration of a tree with
different branches; branches that have linkages closer
to each other indicate a stronger relationship among
variables or a cluster of variables. The dendrogram
generated from tree clustering provides a useful graphic
tool for determining the number of clusters that describe
underlying processes that lead to spatial variation.
Factor analysis is used to understand the correlation
structure of collected data and identify the mostimportant
factors contributing to the data structure. In factor
analysis, the relationship among a number of observed
quantitative variables is represented in terms of a few
underlying, independent variables called factors, which
may not be directly measured or even measurable.
Factor analysis is also used to find associations between
parameters, so that the number of measured parameters
can be reduced. Known associations are then used to
predict unmeasured biochemical quality parameters.
Although not commonly used in laboratory data
analysis, several studies have employed factor analysis
to interpret and to model the clinical laboratory data
[32,34,38,40]. The initial step was the determination
of the parameter correlation matrix, which was used
to account for the degree of mutually shared variability
between individual pairs of biochemical parameters.
The second step was the estimation of the eigenvalues
and factor loadings for the correlation matrix. Each
eigenvalue corresponded to an eigenfactor that
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Table 2. Basic statistics for the tested biochemical parameters for male and female healthy individuals (mean value, minimum and maximum
values within a certain variable, standard deviation of the mean).

Male healthy individuals

Female healthy individuals

Variable Mean Min Max SD
GLU 98 82 133 10
UREA 28.8 17.0 40.0 58
CREA 1.05 0.69 1.26 0.12

UA 5.4 3.3 8.0 1.0
CHOL 161 106 308 37
TG 94 27 331 51
AST 24.0 14.0 54.0 7.8
ALT 26.0 1.0 74.0 13.3
ALP 78.8 34.0 186.0 26.8
GGT 20.1 7.0 75.0 109
K 4.4 3.8 52 0.3
Na 1411 136.0 147.0 2.2
cl 103.1 84.0 108.0 3.6
Ca 9.8 8.8 10.8 0.5
Fe 98.9 41.0 184.0 38.3
P 4.0 2.6 55 0.7
P 7.69 6.30 8.50 0.37
ALB 5.11 3.80 5.90 0.35

Variable Mean Min Max SD
GLU 93 74 17 8
UREA 253 14.0 44.0 6.1
CREA 0.89 0.59 1.16 0.10

UA 3.8 2.2 7.2 0.8
CHOL 165 65 253 33
TG 76 31 207 34
AST 20.3 13.0 52.0 6.5
ALT 18.7 9.0 86.0 13.2
ALP 56.1 33.0 97.0 149
GGT 12.3 5.0 46.0 6.3
K 4.4 3.8 52 0.4
Na 139.3 132.0 144.0 2.4
@] 103.5 99.0 108.0 2.1
Ca 9.6 8.5 10.8 0.5
Fe 85.9 40.0 180.0 36.4
P 3.9 2.5 5.0 0.5
P 7.62 6.50 8.60 0.45
ALB 4.90 4.00 6.00 0.40

identified the groups of variables that were most highly
correlated among them. The first eigenfactor accounted
for the greatest variation among the observed variables,
while each subsequent eigenfactor was orthogonal to
all preceding factors and provided incrementally smaller
contributions to the overall descriptive ability of the
model. Because lower eigenvalues might contribute
little to the explanatory capability of the data, only the
first few factors were needed to account for much of the
parameter variability.

In this study, the factor extraction was performed
with the method of principal components. The most
widely used method for determining how many factors
to keep and how many to ignore is the Kaiser criterion,
which retains only those factors with eigenvalues >1.
This means that each retained factor provides as much
explanatory capability as one original variable.

Once the correlation matrix and eigenvalues were
obtained, factor loadings were used to measure the
correlation between variables and factors. Factor
rotation was used to facilitate interpretation by providing
simpler factor structure. The factors were rotated so that
the observed axes were aligned with a dominant set of
variables, which assisted in the understanding of how
factors were related to the observed variables. In this
study the varimax rotation, a standard rotation method,
was used.

3. Results

Basic statistical data (mean value, minimum and
maximum values, standard deviation) for the biochemical
parameters of the healthy individuals for both the male
and female categories are presented in Table 2.

The correlation between the different biochemical
test parameters of all 166 healthy individuals showed
that the overall significance of many was statistically
sound, according to the Pearson test. For several
parameters such as CREA/ALB (0.475, p<0.001), AST/
ALT (0.756, p<0.001), CREA/UA (0.624, p<0.001), UA/
GGT (0.442, p<0.001), UA/ALP (0.420, p<0.001), ALT/
GGT (0.611, p<0.001), and TP/ALB (0.743, p<0.001), a
real logical interpretation (r > 0.4) for significance could
be offered.

Similarly, basic statistics for the biochemical
parameters of the patients with ESRF for both males
and females are presented in Table 3.

According to the Pearson test (r>0.4), the correlated
couples of parameters for the 108 patients with ESRF
were: UREA/CREA (0.425, p<0.01); UREA/K (0.481,
p<0.01); UREA/P (0.499, p<0.01); AST/ALT (0.718,
p<0.01); and TP/ALB (0.686, p<0.01).

These correlations were used to identify groups of
highly correlated biochemical variables. It is evident that
the simple correlation analysis did not indicate specific
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Table 3. Basic statistics for the tested biochemical parameters for male and female patients with ESRF (mean value, minimum and maximum
values within a certain variable, standard deviation of the mean).

Male (ESRF) patients

Female (ESRF) patients

Variable Mean Min Max SD
GLU 110 51 449 54
UREA 181 43 301 44
CREA 9.4 0.7 14.8 2.8

UA 5.6 4.0 8.6 1.0
CHOL 145 79 216 31
TG 153 42 382 67
AST 14.3 3.0 53.0 7.9
ALT 31.3 21.0 72.0 7.6
ALP 81 38 281 38
GGT 40.2 15.0 205.0 30.6
Na 136 131 141 2
K 52 3.3 7.6 0.9
Cl 102 95 109 3
Ca 9.3 8.1 10.6 0.6
Fe 84 9 285 52
P 5.3 15 9.6 1.6
TP 6.8 41 8.4 0.6
ALB 3.4 1.9 41 0.3

Variable Mean Min Max SD
GLU 112 51 238 39
UREA 162 28 263 39
CREA 8.2 0.4 132 2.6

UA 5.4 0.9 7.5 1.2
CHOL 158 73 293 42
TG 171 45 388 93
AST 18.7 5.0 119.0 16.8
ALT 33.9 15.0 130.0 18.7
ALP 107 25 437 87
GGT 51.2 9.0 388.0 75.9
Na 137 129 148 3
K 5.3 42 7.0 0.7
CL 104 94 113 3
Ca 9.1 6.5 12.0 1.0
Fe 77 24 197 45
P 4.6 2.5 6.7 11
P 6.3 1.8 7.8 11
ALB 3.2 15 41 0.5

Figure 1. Hierarchical dendrogram of biochemical variables for all healthy individuals.
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studied.

In Figure 1, the hierarchical dendrogram for
the clustering of the biochemical parameters for all
investigated healthy subjects (N = 166) is plotted
(complete method of linkage, squared Euclidean distance
as similarity measure, standardization of the input data).
For clustering, a total of 18 clinical parameters were
chosen (Table 1).

From the hierarchical dendrogram of Figure 1, it
can be concluded that the parameters are principally
separated into two large clusters, each of them divided
into subclusters as follows:

parameters being

GGT ALT

AST ALP UA CREA TG CHOL Ca GLU

Cluster 1 (four parameters included): CI, K, P and
UREA.

Cluster 2 (fourteen parameters included): ALB, TP,
Fe, Na, GGT, ALT, AST, ALP, UA, CREA, TG, CHOL,
Ca, and GLU.

Subcluster 1: ALB, TP, Fe and Na; subcluster 2:
GGT, ALT, AST, ALP, UA and CREA; subcluster 3: TG,
CHOL, Ca and GLU.

Cluster analysis was also performed for the dataset
consisting of the biochemical parameters of only healthy
males, only healthy females, all patients with ESRF, only
males with ESRF, and only females with ESRF. The
respective hierarchical dendrograms for only healthy
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Figure 2. Hierarchical dendrogram of biochemical variables for
male healthy individuals
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Figure 4. Hierarchical dendrogram of biochemical variables for all
(ESRF) patients.
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Figure 6. Hierarchical dendrogram of biochemical variables for
female (ESRF).
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males, only healthy females, all patients with ESRF,
only males with ESRF, and only females with ESRF are
shown in Figures 2-6.

Similarly, from the hierarchical dendrogram of
Figure 4, it can be concluded that the parameters are
principally separated into two large clusters, each of
them divided into subclusters as follows:

Cluster 1 (four parameters included): ClI, Na, ALT
and AST.

Cluster 2 (fourteen parameters included): ALB,
CREA, UA, P, UREA, TP, Ca, Fe, K, GGT, ALP, TG,

Figure 3. Hierarchical dendrogram of biochemical variables for
female healthy individuals.
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Figure 5. Hierarchical dendrogram of biochemical variables for
male (ESRF) patients.
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Subcluster 1: ALB, CREA, UA, P and UREA;
subcluster 2: TP, Ca, Fe and K; and subcluster 3: GGT,
ALP, TG, CHOL and GLU.

The usual classification approach of clustering is
accompanied by factor analysis [principal components
analysis (PCA) method], which is a typical projection
and modelling approach. In general, the factor analysis
confirms the results obtained by cluster analysis. The
formation of seven latent factors, which are obviously
responsible for the data structure, is proved for each of
the different subsets: all healthy individuals, only healthy
males, only healthy females, all patients with ESRF, only
males with ESRF, and only females with ESRF.

The factor analysis (factor loading values) for all
healthy individuals and for all patients with ESRF
datasets is illustrated in Tables 5 and 7.

Table 4 provides the eigenvalues and the explanatory
capability for the biochemical data of the set of all
healthy individuals. The first and second factor, taken
together, accounted for 33.90% of the total variability,
whereas subsequent factors assisted in describing
the biochemical data, but with a rapid diminishment
in magnitude. The first seven factors each had an

00}.(xewapiuia)
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Table 4. Individual and cumulative eigenvalues of all healthy subjects
studied biochemical parameters.

No Eigenvalue Total Variance (%) Cumulative (%)
1 3,340105 18,55614 18,55614
2 2,762778 15,34877 33,90491
3 1,697529 9,43072 43,33563
4 1,383295 7,68497 51,02060
5 1,325409 7,36338 58,38398
6 1,052105 5,84503 64,22901
7 1,047298 5,81832 70,04733

eigenvalue >1, and, together, accounted for 70.05% of
the observed variation in biochemical data. Additional
factors provided marginally less explanatory capability
and were not examined further. Factor loadings reflect
the correlations between the variables and the extracted
factors. The factor loadings for the seven retained
eigenvalues are shown in Table 5.

Table 6 provides the eigenvalues and the explanatory
capability for the biochemical data of the set of all patients
with ESRF. The first three factors, together, accounted
for 43.58% of the total variability, whereas subsequent
factors assisted in describing the biochemical data,
but with a rapid diminishment in magnitude. The first
seven factors each had an eigenvalue >1, and together,
they accounted for 72.29% of the observed variation
in biochemical data. The factor loadings for the seven
retained eigenvalues are shown in Table 7.

Table 6. Individual and cumulative eigenvalues of all (ESRF) patients
studied biochemical parameters.

No Eigenvalue Total Variance (%)  Cumulative (%)
1 3,148894 17,49385 17,49385
2 2,623711 14,57617 32,07003
3 2,071526 11,50848 43,57851
4 1,516469 8,42483 52,00334
5 1,292168 7,17871 59,18205
6 1,211290 6,72939 65,91144
7 1,147481 6,37489 72,28633

4. Discussion

As can be seen from Table 2, there were slight differences
between the tested subgroups, e.g., higher averages
for healthy males as compared to healthy females.
There were also differences between male and female
patients with ESRF (Table 3); for example GLU, CHOL,
TG, AST, ALT, ALP, GGT, Na, K and CI parameters had
higher mean values in female than in male patients,
and the rest of the variables had greater mean values
in the male subgroup compared to those in the female
subgroup.

The comparison between healthy individuals and
patients with ESRF revealed significant differences
between the two groups. More specifically, the patients
had higher levels of serum UREA, CREA, TG, K, P,
GGT, ALT and ALP; lower levels of serum AST, TP and
ALB; and similar levels of serum CI, Ca, Fe, UA, CHOL,

Table 5. Factor loadings of all healthy subjects studied biochemical parameters.

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7
GLU -0,170764 0,070725 0,057579 -0,179320 0,860904 0,046765 0,013420
UREA -0,058119 0,028801 0,102571 0,023976 0,064269 0,854204 -0,021350
CREA 0,589859 0,150513 0,273731 -0,315124 0,012662 0,423971 -0,069663
UA 0,430803 0,482191 0,190828 -0,343712 0,149396 0,335915 -0,062451
CHOL -0,059223 0,069283 -0,428868 -0,609314 -0,031903 0,047536 0,262044
TG 0,034386 0,104007 -0,007138 -0,782219 0,137390 0,038074 0,009688
AST 0,067269 0,863484 -0,151596 0,086734 -0,079008 -0,043160 0,071987
ALT -0,040114 0,897659 -0,023665 -0,145638 -0,015211 -0,011431 0,091939
ALP 0,322808 0,375172 0,184624 0,161038 0,248655 0,088152 -0,484674
GGT -0,146218 0,696945 0,041375 -0,237412 0,327922 0,097622 -0,017308
Na 0,123928 -0,063414 -0,228337 0,490123 0,033725 0,367829 0,177911
K 0,263859 0,102066 0,751252 -0,013000 0,117036 0,173394 0,022527
CL -0,063852 -0,167894 0,731656 0,038738 -0,171072 -0,001491 -0,040298
Ca 0,394539 0,013216 -0,335007 0,111335 0,606589 0,084180 -0,028797
Fe 0,310708 0,128405 0,033448 0,034484 -0,087541 0,179966 0,669618
P 0,217319 -0,164786 0,045530 0,044256 -0,382999 0,332481 -0,666122
TP 0,842051 -0,058521 -0,038537 0,007287 -0,093535 -0,123261 0,085527
ALB 0,903933 -0,041821 0,101359 0,129891 0,018963 0,031162 -0,008436
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Table 7. Factor loadings of all (ESRF) patients studied biochemical parameters.

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

GLU 0,118387 0,037700 0,185718 -0,143922 0,341679 0,430262 0,437355
UREA 0,812356 -0,010036 0,039942 -0,016086 -0,231806 -0,154428 -0,023452
CREA 0,567557 0,062867 -0,133886 0,468063 -0,328154 0,044384 -0,105229
UA 0,589327 -0,172507 0,148050 0,259566 0,414863 0,193725 -0,019320
CHOL -0,071714 -0,207575 -0,075367 -0,045922 0,089570 0,761818 0,067508
TG 0,077993 -0,160204 0,084472 0,157046 -0,154719 0,811278 0,061530
AST -0,037350 0,044658 0,939847 -0,031678 0,088975 0,017708 -0,037266
ALT -0,009553 -0,268381 0,876538 0,093125 -0,094450 0,025576 -0,117875
ALP -0,027425 -0,897300 0,094589 0,038713 0,042529 0,169604 0,036115
GGT -0,050574 -0,880116 0,083346 -0,032022 0,009632 0,179305 0,164421

Na -0,133994 0,140440 0,155496 -0,154308 0,187353 0,023237 -0,886021
K 0,146157 -0,082316 -0,070391 0,031611 -0,723894 -0,079664 0,148301

CL 0,033409 0,092662 0,061192 -0,175503 -0,052533 -0,142697 -0,879791
Ca -0,244067 0,075208 0,082807 0,755411 0,031936 -0,075426 0,097749
Fe 0,056371 0,262818 0,237505 0,121797 -0,600906 0,298110 -0,167430
P 0,692515 0,130468 -0,083735 -0,014005 0,013797 0,072720 0,183097
TP 0,129188 -0,098660 0,062378 0,767587 0,030611 0,038498 0,170729
ALB 0,326288 0,013985 -0,089480 0,712239 -0,193353 0,132890 0,032554

Na and GLU compared to those of healthy individuals
(Student’s t-test, p<0.05).

The careful consideration of the content of the
clusters (Figure 1) offers some interesting conclusions
about the data classification when all healthy individuals
were considered. The first cluster included electrolytes
(CI and K) and blood-specific health parameters
including P and UREA. The second cluster involves
proteins (ALB and TP), blood components (Fe and Na),
enzymes (GGT, ALT, AST and ALP), parameters related
to metabolic excretion processes (UA, CREA), and
important general health parameters including levels of
glucose, calcium, cholesterol and triglycerides.

This data analysis suggests how single biochemical
parameters should be compared and related to each
other if treatment is based on the combined values
of the biochemical variables, not on individual ones.
For instance, within a group of healthy persons, there
is a stronger relation between the group of enzyme
parameters (ALT, AST and GGT) and parameters like
ALP, UA and CREA than to parameters like GLU, Ca, TG
and CHOL. Therefore, specific patterns of the classified
biochemical parameters can be seen (for the group of all
healthy individuals):

e Enzyme-specific (including ALT, AST, GGT, ALP
and two other parameters like UA and CREA)

e General health indicator (including glucose,
cholesterol, triglyceride and calcium levels)

e  Blood-specific indicator (including UREA, P, K and
Cl)

e  Protein-specific (including ALB, TP and two other
parameters like Fe and Na)

In principle, it appears possible to design a set of
substantial clinical parameters or a very specific health
indicator consisting of parameters chosen from each
pattern or from an average of several included in a
cluster that are similar statistically.

The grouping of the clinical parameters for only
healthy males (Figure 2) reveals differences compared
to that of all healthy persons. For example, there is a
difference in the linkage of the subcluster (ALT, AST and
GGT) to the group (ALP, UA and CREA) of the second
large cluster formed when all healthy individuals are
considered. This may mean that the parameters for
healthy males, when ALT and AST values are taken into
consideration, should be related to the blood-specific
indicator values (Fe and Na) rather than to GGT, ALP,
UA and CREA indicators. Again, several patterns
are formed, which correspond in principle to the idea
of enzyme-specific (including ALT and AST, and two
specific blood parameters like Fe and Na), general
health indicator (TG, CHOL, GLU and GGT), protein-
specific (ALB, TP and Ca), blood-specific indicator (Cl, P
and one enzyme ALP), and major component excretion
(UA, CREA, K and UREA) groups. This seems to be
a classification rule for biochemical parameters that is
specific to healthy males.

If the data for only healthy females are clustered
(Figure 3), there is again a change in arrangement of the
classification patterns. The careful inspection of Figure 3
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indicates the presence of a blood-specific group (Cl, K,
P, ALP and UREA), closely related to protein-specific
(ALB, TP, CREA) and general health indicator (Na, Ca
and GLU) groups. The enzyme-specific group (ALT,
AST, GGT and UA) is relatively stable in this situation
and includes one parameter from the major component
excretion group (like UA) that is closely related to a
blood-specific indicator (TG, CHOL and Fe) group.
This seems to be a classification rule for biochemical
parameters that is specific to healthy females.

It appears obvious that the possible introduction
of a more general indicator of health state has to be
sex-specific. This is a confirmation of the finding about
differences between the average values of the single
biochemical parameters between healthy males and
females.

When the clinical parameters for all patients with
ESRF (Figure 4) are grouped, again several patterns
are formed, which correspond in principle to the idea of
enzyme-specific (AST, ALT, with two other parameters
like ClI and Na), general health indicator (TG, CHOL,
GLU, GGT and ALP), blood-specific (TP, Ca, Fe and K),
and major component excretion (UA, UREA, CREA, P
and ALB) groups. This seems to be a classification rule
for biochemical parameters that is specific to patients
with ESRF.

If the data for only males or females with ESRF are
clustered, there are again significant changes in the
arrangement of the classification patterns among all
patients with ESRF, males with ESRF, and females with
ESREF, as can be seenin Figures 4, 5 and 6. Again, when
the biochemical data of only male patients are clustered,
several patterns are formed that correspond in principle
to the idea of blood-specific indicator (Cl, Na), protein-
specific (TP, ALB, Ca, Fe), major component excretion
(UREA, CREA, K), general health indicator (GLU, TG,
CHOL, UA and P), and enzyme-specific (ALT, AST, GGT
and ALP) groups. This seems to be a classification rule
for biochemical parameters that is specific to healthy
males. If only female data are clustered (Figure 6), there
are again changes in arrangement of the classification
patterns. For example, the careful inspection of Figure 6
indicates the presence of a blood-specific group (P,
UREA) that is closely related to the enzyme-specific
group; the enzyme-specific group resembles the
corresponding group with the same nomination, when
all patients with ESRF are considered; the general
health indicator group is exactly the same for the
corresponding group with the same nomination, when
all patients with ESRF are considered. This seems to be
a classification rule for biochemical parameters that is
specific to females with ESRF.

When the two groups (all healthy vs all patients with
ESRF) are compared, major differences can be seen in
the clustering of the biochemical variables in the study.
The major excretion indicator group includes (CREA,
UREA and UA) and two other parameters like (P and
ALB), when all patients with ESRF are considered. It
should be noted that the same pattern does not emerge
when all healthy individuals are considered.

By comparison, when all patients with ESRF are
considered, the enzyme-specific (ALT, AST, ALP
and GGT) group separates into two different cluster.
Moreover, there are differences in the linkage of the
subcluster (TG, CHOL) to the group of enzymes of the
second big cluster formed when all healthy individuals
are considered. That may mean that the parameters
for patients with ESRF should be related to enzyme
indicator values (GGT, ALP) rather than to ALT and
AST indicators, when TG and CHOL values are taken
into consideration. Similarly, differences in clustering
of biochemical parameters are also evident when male
healthy individuals are compared with male patients
with ESRF (Figures 2 and 5) and when female healthy
individuals are compared with female patients with
ESRF (Figures 3 and 6).

It seems obvious that the possible introduction of a
more general health state indicator has to be specific
to healthy persons. This is a confirmation of the finding
about differences between the average values of the
single biochemical parameters among healthy males,
healthy females, male patients with ESRF, and female
patients (Tables 2 and 3).

When all healthy individuals are considered, the
application of factor analysis reveals seven latent factors
that explain 70.05% of the total variance of the system,
which is an indication for the adequacy of the PCA
model. The marked loadings for all healthy individuals
(Table 5) are statistically significant, according to
Malinowski’s test. The first factor contains TP and ALB,
with a strong positive correlation between them. There
is also a lesser positive correlation of CREA with the
first factor. This factor could be conditionally named
“protein-specific” factor and corresponds to the cluster
with the same nomination. It explains 18.56% of the total
variance. The next level of total variance (over 15%) can
be explained by the second latent factor, which indicates
a high positive correlation (factor loadings values) for
AST, ALT and GGT and resembles the corresponding
subcluster in a dendrogram of healthy individuals.
Therefore, it could be conditionally named “enzyme-
specific’ factor. Additionally, there is slightly less of a
correlation of UA with the parameters of the second
factor. The third latent factor explains a substantial
part of the total variance (9.43%) and reveals a strong
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positive relation between the clinical parameters K and
Cl, which allows its conditional designation as “blood-
specific” factor. The latent factor four explains 7.68% of
the total variance, and due to the high negative loadings
of CHOL and TG, is logically designated as a “general
health indicator” factor. There is also slightly less of a
correlation of Na with the fourth factor. The fifth latent
factor, with high factor loadings for GLU and Ca, could
be conditionally named a “general health indicator”
factor and corresponds to the cluster with the same
nomination. It explains over 7% of the total variance. The
sixth latent factor explains a substantial part of the total
variance (5.84%) and involves the clinical parameter
UREA, which allows its conditional designation as a
“major component excretion” factor. Finally, the latent
factor seven explains almost 6% of the total variance
and, because of the high loadings of Fe and P, logically
is designated a “blood-specific indicator” factor. There is
also a slight correlation of ALP with factor seven.

The same method of analysis for all patients with
ESRF (Table 7) reveals that the first latent factor with
high positive factor loadings for UREA, CREA, UA and
P could be conditionally named a “major component
excretion” factor, corresponds to the cluster with the
same nomination, and explains over 17% of the total
variance. The next level of total variance (over 14%) can
be explained by the second latent factor, which indicates
a high negative correlation (factor loadings values) for
ALP and GGT. Therefore, it could be again conditionally
named an “enzyme specific’ factor. The third latent
factor explains a substantial part of the total variance
(11.51%) and reveals a strong positive relation between
the clinical parameters AST and ALT, which allows its
conditional designation as “enzyme-specific” factor. The
latent factor four explains over 8% of the total variance
and, because of the high positive loadings of TP, ALB
and Ca, logically is designated as “protein specific”
factor. The fifth latent factor explains a substantial part
of the total variance (over 7%) and reveals a strong
positive relation between the clinical parameters K and
Fe, which allows its conditional designation as a “blood-
specific indicator” factor. Latent factor six explains 6.73%
of the total variance and, because of the high positive
loadings of CHOL and TG, logically is designated as a
“general health indicator” factor. Moreover, there is a
slight positive correlation of GLU with factor six. Finally,
latent factor seven explains 6.37% of the total variance,
and because of the high loadings of Na and Cl, logically
is designated as a “blood specific indicator” factor.
Additionally, there is again a slight correlation of GLU
with factor seven.

It is readily apparent that the major groups of
biochemical parameters interpreted by cluster analysis

are also involved in the factor loadings presented
in Tables 5 and 7. Thus, the classification scheme
developed by cluster analysis is confirmed by factor
analysis. This confirmation is an important indication
that the biochemical laboratory parameters tested are,
in fact, related and form groups of similar indicative
properties.

In conclusion, the application of a typical classification
approach such as cluster analysis to data sets consisting
of the biochemical parameters of all healthy individuals
and the same parameters of all patients with ESRF
proved that there were points of similarity among all 18
biochemical parameters that formed major groups; these
groups corresponded to the authors’ assumption of the
existence of several overall patterns of biochemical
parameters that may be termed “enzyme-specific’;
“general health indicator”; “major component excretion”;
“blood-specific indicator”; and “protein-specific’. These
patterns also appeared when the general dataset was
subdivided into “male” and “female” categories.

The performance of another technique of multivariate
data analysis, factor analysis, proved the validity of
a similar assumption. This projection and modelling
method indicated the existence of seven latent factors,
which explained 70.05% of the total variance of the
system for all healthy individuals and more than 72%
of the total variance of the system for all patients with
ESRF, and, thus this analysis was responsible for the
overall data structure.

All these results support the idea that a general
health indicator could probably be constructed by taking
into account the existing classification groups in the list
of biochemical parameters.
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