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Abstract: Erythropoietin (EPO) is one of the main cytokines involved in the regulation of
erythropoiesis. The main site of EPO production are the kidneys. An altered EPO production leads
to pathological conditions such as anemia and polycythaemia. Due to the progressive loss of renal
peritubular cells, patients with chronic kidney disease (CKD) have low EPO plasma levels. This decreases
erythron stimulation with the direct consequence of developing anemia. Before the introduction in
the clinical practice of rHuEpo, in the late 1980s, the only solution for treating this type of anemia
were blood transfusions and anabolic steroids. Even rHuEpo has proven to be safe and effective
for treatment of anemias, there are some concerns about its cost, the need for frequent parenteral
administration, and development of anti-EPO antibodies. These inconveniences prompted the search
for novel erythropoiesis stimulating agents. Different strategies lead to isolation or chemical synthesis of
such agents as darbepoetin alfa and EPO mimetics. In this review, we present some general aspects of
EPO biology, with emphasis on chronic renal failure, and expose some of the alternatives to EPO used
for anemia correction.
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1 Introduction

Erythropoietin is a cytokine that regulates red blood cell production (erythropoiesis) by

direct interaction with a specific receptor expressed by erythroid progenitor cells. EPO

is distinct among hematopoietic growth factors because it is produced primarily in the

kidneys rather than the bone marrow.

The first hypothesis sustaining the idea of a humoral factor that controls erythro-

poiesis was proposed in 1906, and at that time it was coined the term “haemopoietin” [1].

Bondsdorff and Jalvisto who linked EPO solely with red blood cell production introduced

the term “erythropoietin” in 1948 [2]. In 1950s Jacobson and colleagues established that

the kidney is the main site of EPO production [3]. Later the liver was identified as an-

other source of EPO production [4]. Purification in 1977 of EPO isolated from urine

collected from patients suffering of aplastic anemia [5], enabled sequencing of human

EPO gene in 1985 [6]. Later EPO gene was cloned and was developed a transfected CHO

cell line to provide recombinant human EPO (rHuEpo) for use in treatment of different

anemias [7]. The first clinical trial with rHuEpo began in 1989 in uremic patients [8].

Currently rHuEpo is approved for use in the treatment of anemias of different etiology:

(i) anemia of chronic renal failure; (ii) anemia associated with HIV patients treated with

AZT; (iii) anemia associated with cancer chemotherapy. In the later years, a number of

compounds with EPO mimetic properties have been developed.

2 Erythropoietin and erythropoietin receptor

2.1 Erythropoietin structure and EPO gene regulation

EPO is a 30.4 kDa glycoprotein belonging to the cytokine family of proteins. The human

EPO gene is located on chromosome 7q11-22, and consists of five exons and four introns.

In the 3’ enhancer region of EPO gene are located specific DNA sequences, 5’-RCGTG-3’,

termed hypoxia response elements (HRE) [9]. They are recognized by hypoxia-inducible

transcription factors (HIF), which are involved in regulation of gene expression under

hypoxic conditions.

HIF is a dimer of alpha and beta subunits, for each of which there are three iso-

forms numbered 1 to 3. The most studied to date is HIF-1, which is composed by a α

subunit (HIF-1 , 120 kDa) and a β subunit (HIF-1β, 91-94 kDa) [10]. All three HIF-α

isoforms, HIF-1α, HIF-2α and HIF-3α are continuously translated, but not detectable un-

der normoxic conditions, and have specific expression patterns [11]. By contrast, HIF-β

is constitutively synthesized and its stability is not influenced by O2 level [12].

Oxygen regulates both HIF activity and stability through hydroxylation on specific

Pro and Asn residues. These reactions are catalyzed by specific prolyl-4-hydroxylases

(HIF-PHDs), and an HIF-α-specific asparaginyl hydroxylase, termed factor inhibiting

HIF-1 (FIH) [10]. There are known 3 HIF-PHDs isoforms that regulate HIF-α in a non-

redundant manner. All of the 3 HIF-PHDs require 2-oxoglutarate as a co-substrate, and
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Fe(II) and ascorbate as co-factors.

In normoxia, HIF-1 is hydroxylated on Pro564 and Pro402 residues belonging to an

O2-dependent degradation domain (ODDD) [13]. Hydroxylated HIF-1α will interact

with von Hippel-Lindau tumor suppressor protein (pVHL) forming a complex that is

polyubiquitinilated by an E3 ligase with subsequent proteasomal degradation [14–16].

By contrast, in hypoxia, HIF-PHDs became less active leading to HIF-1α stabilization.

HIF-1α translocates into nucleus where it heterodimerizes with HIF-β forming the active

HIF-1, which will bind to DNA HRE motifs [17]. HIF-1 induces transcription of genes that

will ameliorate the effects of hypoxia (transferrin and transferrin receptor gene, glycolytic

enzymes, glucose transporters like GLUT-1 and GLUT-3 etc).

Hydroxylation of HIF-1α by FIH on Asn803 blocks its transcription activity by in-

hibiting interaction with co-activator CBP/p300. In hypoxia, FIH also became inactive

enabling hydroxylation and subsequent interaction between HIF-1α and CBP/p300 [18].

It was found that HIF-2 is the primary transcription factor responsible for induction

of EPO and EPO-R genes expression under hypoxic condition [19].

The final product of the EPO gene is a single polypeptide chain containing 193 amino

acids, which undergoes post-translational modifications: (i) glycosylation, (ii) disulphide

bond generation, (iii) removal of a 27 amino acid hydrophobic secretory sequence, and

(iv) cleavage of C-terminal arginine (Arg166 ) [20, 21]. The carbohydrate moiety contains

three N-linked oligosaccharides (Asp24, Asp38 and Asp83 ) and one O-linked oligosaccha-

ride (Ser126). Human EPO has two disulphide bonds (Cys7-Cys161 and Cys29-Cys33 ).

Glycosylation and disulphide bond patterns maintain the correct conformation needed for

in vivo biological activity and interaction with EPO receptor [22, 23]. Deglycosylation

retains full biological activity of EPO but leads to a very rapid plasma clearance by the

liver [24].

2.2 Erythropoietin receptor

EPO-R is a 72-78 kDa glycosylated transmembrane protein belonging to the superfamily

of cytokine receptors. Interaction of EPO with EPO-R leads to receptor homodimerisa-

tion, followed by its phosphorylation and activation of Janus kinase 2 (Jak-2) [25]. Jak-2

is a tyrosine kinase constitutively associated with the cytosolic domain of EPO-R. Ac-

tivated Jak-2 promotes activation of a number of signaling pathways, including signal

transducer and activator of transcription 5 (STAT-5), mitogen-activated protein kinase

(MAPK), and the phosphoinositol 3 kinase (PI3K)/Akt with anti-apoptotic and mito-

genetic general effects [26–29]. The PI3K pathway through Akt is widely viewed to be

essential to the EPO’s antiapoptotic action.

The carbohydrate moiety of EPO is thought to prevent EPO-R binding through elec-

trostatic interactions, and as a consequence, the affinity for receptor decreases with EPO

glycosylation level [30].

EPO-receptor is expressed in various degrees by erythroid cell progenitors. The num-

ber of EPO-R per cell gradually decreases along erythroid cell line differentiation, reticulo-
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cytes and mature RBCs lacking EPO-R [31, 32]. EPO-R is expressed primarily between

CFU-E and pronormoblast stage of erythroid cell development [31, 32]. A very small

number of EPO-R is also expressed by BFU-E [31]. The overall action of EPO on ery-

throid progenitors is to rescue them from apoptosis, sustaining their proliferation and

differentiation [33].

3 Renal failure and rHuEpo

3.1 Renal failure

Renal failure can be either acute (sudden and rapid onset) or chronic (gradual onset).

Without treatment, both forms lead to end-stage renal failure, requiring dialysis or trans-

plantation. Therapy of renal failure aims to ameliorate one or more risk factors or to

compensate the decline in renal function.

Anemia is a common consequence of chronic renal failure. It can significantly affect

morbidity, mortality and quality of life of chronic kidney disease patients. The World

Health Organization defines anemia as a hemoglobin concentration lower than 13 g/dL

in men and post-menopausal women, and lower than 12 g/dL in other women.

Different factors are reported to contribute to the anemia in CKD patients among

which blood loss during hemodialysis session, shortened RBCs life span, vitamin deficien-

cies, uraemia per se, EPO and iron deficiencies, and inflammation are most prominent [34].

However, little is known by which extent these different factors contribute to the disease

etiology.

Renal anemia has been associated with cardiovascular complications, including left

ventricular hypertrophy, congestive heart failure, reduced cognitive and mental function,

impaired quality of life, and the need for regular transfusions [35–39].

There are different studies suggesting that EPO can also reduce the renal dysfunction

and injury caused by oxidative stress, hypoxia, and haemorrhagic shock, generally by

reducing caspase activation and apoptotic cell death [40–44]. Identification of EPO-R on

renal tubule cells suggests that EPO could have non-haemopoietic roles in kidney [45].

By promoting mitogenesis, EPO could have renoprotective effects.

Before the availability of rHuEpo, the only treatment for patients with anemia of

chronic renal failure was blood transfusion, a solution with many side effects like iron

overload and immune response. The first clinical trials on humans showed that rHuEpo

restored packed cell volume, abrogated the need for regular blood transfusions in patients

requiring dialysis, and improved the overall wellbeing [46–48]. As a consequence of these

results in 1988 rHuEpo was granted with a license as a therapeutic agent for patient with

anemia of chronic renal failure.
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3.2 Forms of rHuEpo

There are currently four different rHuEpo forms: alpha, beta, delta, and omega. However,

until recently, only EPO-alfa and EPO-beta were commercially available. As mentioned

above glycosylation pattern is very important for maintaining and influencing biologi-

cal activity. There are minimal differences in respect to glycosylation pattern between

natural EPO, EPO-alfa and EPO-beta depending upon the cell type used for their pro-

duction [49]. These differences are reflected by differences in both pharmacokinetic and

pharmacodynamic profiles between the natural and the recombinant forms, and among

the recombinant forms. Both EPO-alfa and EPO-beta have similar turnover times in the

plasma with a half-life of about 7 to 8 hours.

In CKD patients receiving hemodialysis rHuEpo could be administered by intravenous

and subcutaneous route [50]. Subcutaneous route has some advantages versus intra-

venous: (i) it does not require any venous access; (ii) significantly prolongs the increase

of serum EPO, thus sustaining the stimulation of erythropoiesis. One major side effect

was pure red cell aplasia (PRCA), an immunological complication encountered in some

patients receiving recombinant erythropoiesis-stimulating agents (see later in the text).

In these situations it is recommend changing the route of rHuEpo administration from

subcutaneous to intravenous [51]. The frequency of administration depends upon clinical

status of the patient: from one to three times daily, and from once to twice weekly.

One strategy to delay drug clearance was to increase the glycosylation degree. The

potential benefit of such modification is a less frequent administration of the drug by

prolonging the half-life of EPO in circulation. By site mutagenesis were introduced in the

polypeptide backbone of EPO two additionally N-glycosylation sites. The glycoprotein

generated in this manner was called darbepoetin alfa. Darbepoetin alfa is considered to be

a second-generation erythropoietic stimulating agent. It has five sites for N-glycosylation

and a 3-fold increased half-life in plasma [52]. In July 2002 the US Food and Drug

Administration approved the use of darbepoetin alfa for treatment of chemotherapy-

associated anemia in patients with nonmyeloid malignancies. Based on clinical trials

it is recommended the administration of darbepoetin alfa once weekly or once every

two weeks [53]. In a recent trial it was showed that darbepoetin alfa, administrated

once monthly, is able to maintain hemoglobin level in most dialysis patients stabilized

previously on once every two weeks dosing [54].

3.3 Hyporesponsiveness to erythropoietin

Although introduction in clinical use of rHuEpo and darbepoetin alfa was a major break-

through in the management of anemia in CKD patients, it was found that approximately

5-10% of patients show a suboptimal response. US guidelines define hyporesponsiveness

as a failure, in the presence of adequate iron stores, to achieve and maintain the target

hemoglobin level at a rHuEpo dose of 450 IU/kg/week when administered intravenously

or 300 IU/kg/week when administered subcutaneously [55].
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There are many potential causes of EPO hyporesponsiveness including iron deficiency,

persistent infections, inflammation, chronic blood loss, aluminium overload, vitamin de-

ficiencies (folic acid, vitamin B12, and vitamin C) etc, some of these causes being inter-

connected [56, 57]. Among all of these factors, we will briefly present two of them.

Patients with CKD have a chronic inflammatory response characterized by sustained

chronic release of pro-inflammatory cytokines IL-1β, IFN-γ, TNF-α, IL-6 and IL-12.

These pro-inflammatory cytokines inhibit the development on erythroid lineage at dif-

ferent stages leading to an overall suppressive effect upon erythropoiesis [58–60]. It was

also found that pro-inflammatory cytokines could act in vitro as direct inhibitors of EPO

secretion [61].

Direct inhibition of EPO synthesis and counteracting EPO effect on erythrocyte pro-

genitors are causes of anemia in CKD patients.

Another major cause of EPO hyporesponsiveness in CKD patients is iron deficiency.

Transferrin saturation (TSAT) and ferritin are the most valuable serum tests used to

evaluate iron stores. Iron deficiency could be absolute (TSAT < 20% and ferritin serum

concentration is less than 100 ng/mL) and functional (when TSAT < 20−30% and serum

ferritin concentration is greater than 100 ng/mL) [62].

Chronic inflammation and iron deficiency are linked through hepcidin. Hepcidin,

a small antimicrobial peptide expressed by the liver, has a central position in iron

metabolism and homeostasis regulation [63]. Hepcidin synthesis is induced in response

to inflammation. In hepatocytes IL-6 promotes activation of STAT-3 which in turn will

enhance transcription of hepcidin gene [64–66]. Hepcidin interact with ferroprotin, the

main iron export protein in mammal cells, down-regulating iron efflux from enterocytes

and macrophages [67]. As a consequence erythron compartment will not have sufficient

iron for erythropoiesis and EPO treatment will fail to raise hemoglobin level.

4 Novel erythropoietin mimetics

In recent years, the development of different erythropoietin stimulating agents (ESA) was

an attempt to overcome the limitations of rHuEpo use: efficiency, duration of activity,

route of administration, and the deal with concomitant iron deficiency and inflammation.

These agents belong to the third generation erythropoietin stimulating agents, and include

continuous erythropoiesis receptor activator and erythropoietin mimetic peptides. Some

of these ESA are polyethylene glycol conjugates of EPO (PEGylated EPO).

4.1 Continuous erythropoies receptor activator

Continuous erythropoiesis receptor activator (CERA) was created by insertion in the EPO

molecule of a methoxy-polyethylene glycol polymer (PEGylated EPO) [68]. The polymer

could be linked to the N-terminal amino group, to the ε-amino of Lys52 or Lys45. This

modification reduces the clearance of the product, leading to a half-life of 70− 122 hours

after intravenous administration and 102− 147 hours after subcutaneous administration.
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These variations in the half-life of CERA depend upon the dose. Administration of a

single dose of CERA on healthy human volunteers results in a dose-dependent rise in

reticulocytes with a maximal response after approximately 7 days. The clinical trials

available to date showed that CERA has a few if significant adverse effects in healthy

individuals or patients. These studies demonstrate the absence of an immune response

in humans, and subsequent absence of CERA antibodies. CERA has passed all phases of

clinical trials and now is waiting for US Food and Drug Administration approbation.

4.2 Erythropoietin mimetic peptides

Erythropoietin mimetic peptides are a group of peptides, discovered by phage display

technology, which are able to mimic erythropoietin activity. For the prototype of these

peptides the proposed trade name is Hematide. Hematide is a synthetic peptide without

any sequence homology to rHuEpo [69]. It is highly PEGylated to increase stability and

extend the plasma half-life. Hematide has both in vitro and in vivo EPO-like activity

(binding to EPO-R, induction of cell proliferation and differentiation). Administration

in CKD patients of a single dose of 0.05 mg/kg of Hematide once monthly, lead to an

increase of hemoglobin level similar with the increase observed in healthy volunteers after

a 0.1 mg/kg dose of Hematide. It was observed that antibodies directed to EPO, isolated

from patients with pure red cell aplasia (PRCA), did not cross react with Hematide. This

observation raised the possibility of treating anemia in CKD patients with PRCA that

fall to respond to rHuEpo or analogues [70]. Hematide has passed the phase I clinical

trials and now are ongoing phase II studies in CKD and oncology patients.

4.3 Polymer modified erythropoiesis protein

Synthetic erythropoiesis protein (SEP) is a 51 kDa chemically synthesized protein con-

sisting of a 166 amino acids polypeptide backbone [71]. Two non-coded amino acids

[Lys24 (N -levulinyl) and Lys126 (N -levulinyl)] are attachment sites for polymer chains

with a controlled length and a total of eight negative charges. Due to the absence of gly-

cosylation, SEP is not recognized by asialoglycoprotein receptor, which is predominantly

responsible for renal EPO clearance [72, 73]. As a consequence SEP has plasma half-time

two to three times longer than EPO [71]. In the same study, it was showed that SEP has

a superior hematopoietic activity than EPO.

4.4 Inhibitors of HIF prolyl hydroxylases

HIF-PHDs inhibitors represent a novel class of molecules with high potential clinical

applications in the treatment of congenital and acquired anemias (i.e., anemia of CKD).

A series of small molecular mass HIF-PHDs have been developed. These compounds

inhibit HIF-PHDs preventing HIF-α subunit degradation.
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One such compound is FG-2216. A recent study indicated FG-2216 as a potent and

reversible inducer of endogenous Epo in non-human primates [74]. It was also found that

induction of Epo was followed by a robust increased of hemoglobin level. This observa-

tion could be explained by the fact that some of the genes coding for proteins involved in

iron metabolism and EPO gene are regulated in a coordinated manner by HIF transcrip-

tion factorv [75]. HIF down-regulates hepcidin gene and up-regulates ferroportin and

EPO genes enabling iron transfer to the erythron with subsequent hemoglobin synthesis

stimulation.

Recently was identified a compound that increase viability and exercise performances

under hypoxic conditions in mice [76]. Ethyl-3,4-dihydroxybenzoate (EDHB) treatment

of mice was followed by elevation of HIF-1α in liver and EPO concentration in serum.

5 EPO gene therapy

Gene therapy is an attractive alternative to the use of therapeutic serum proteins. Al-

though rHuEpo and darbepoetin alfa considerably improved the management of anemia

in CKD patients, there are some undesirable aspects, which can be overcome using gene

therapy. There are descriptions of different approaches in this subject.

An approach was the generation of engineered cells that could release EPO depending

on the pO2 [77]. This was achieved using a vector that contains human EPO cDNA placed

under the control of the hypoxia-responsive phosphoglycerate kinase promoter.

Recently it was designed an adenovector which contains EPO gene placed under the

control of the cytomegalovirus promoter [78]. In this study, a tissue protein factory

based on dermal cores (Biopump) was developed. The dermal cores, harvested from

patients with CKD, were transduced ex vivo with the adenovector and then implanted in

an autologous manner. EPO serum concentration increased significantly to therapeutic

levels from day 1 after implantation and it reached a peak during the first week of follow-

up. Despite the absence of significant drug-related side effects, gradually EPO expression

decreased, and this decrease was correlated with an accumulation of CD8 cytotoxic T

cells in derma.

The use of simple recombined vectors for delivering EPO gene for anemic subjects

has some risks. In a study, adeno-associated virus vectors containing EPO gene were

intramuscularly delivered to macaques. Some animals developed a severe autoimmune

anemia [79].

Another proposed solution was to combine stem cell therapy with gene therapy [80].

In this study bone marrow stromal cells harvested from mice with chronic renal failure

anemia were genetically engineered ex vivo to secrete EPO at a rate of approximately

3-4 EPO units/106 cells/24 hours. These cells were embedded in a collagen-based matrix

and then implanted subcoutaneously in donor mice. Noted was an increase of hematocrit

value. A major advantage of this therapy is avoidance of autoimmune complications that

usually are associated with immunogenic vector systems.
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6 Erythropoiesis - stimulating agents (ESA) and anemia cor-

rection - some observations

Despite the fact that rHuEpo was introduced in clinical practice in the late 1980s, there

are still controversies in regards to the hemoglobin level at which ESA therapy should be

initiated and the targeted hemoglobin level. Current evidence suggest that a hemoglobin

level greater than 11 g/dL is associated with increase in physical performance, with

reduced risk for hospitalization and with a significant regression of left ventricular hyper-

trophy of uremic patients with anemia. One important question is to what extent anemia

in CKD patients could be corrected without negative effects upon these patients.

The recent recommendations National Kidney Foundation Kidney Disease Outcomes

Quality Initiative (K/DOQI) suggest that ESA therapy should be initiated when hemoglobin

level falls bellow 9.0 g/dL [81]. These recommendations also suggest that the target

hemoglobin level should be 11.0 g/dL or greater, with cautions when hemoglobin level is

intentionally maintained at 13.0 g/dL.

Paoletti et al. analyzing results of different randomized studies showed that normal-

ization of hemoglobin level is associated with an improvement of the quality of life but

not with reduced mortality and hospitalization rate in uremic patients [82].

A recent Canadian study indicated that a level of hemoglobin between 12 and 14 g/dL

had no effect upon left ventricular hypertrophy [83].

Trying to completely correct anemia with ESA therapy could have a negative effect due

to increase of the hematocrit level, which will lead to increase blood pressure, hypertension

and risk of thrombosis.

Two recent studies tried to address the issue of relation between anemia correction and

cardiovascular outcome and risks: (i) the Cardiovascular Risk Reduction by Early Anemia

Treatment with Epoetin Beta (CREATE) [84] trial and (ii) the Correction of Hemoglobin

and Outcomes in Renal Insufficiency (CHOIR) [85]. The CHOIR trial reported that using

target hemoglobin level of 13.5 g/dL increases the risk of death caused by cardiovascular

events among patients with CKD anemia. On the other hand, the CREATE study

reported that between two groups of CKD patients (stage 3 or 4) were no differences in

regard to the risk of cardiovascular events when using a target hemoglobin levels of 13.0

to 15.0 g/dL, and respectively a lower target range of 10.5 to 11.5 g/dL. Also, in the

CREATE study it was found that high target hemoglobin levels did not ameliorate left

ventricular hypertrophy.

Both CREATE and CHOIR studies proved that a high target hemoglobin level is

not beneficial for CKD patients as they increase the risk of cardiovascular events and

mortality. As a consequence, both studies recommend a partial correction of anemia in

uremic patients.
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6.1 Side effects generated by administration of rHuEpo and its analogues

Initially it was believed that EPO-R expression is confined to the erythroid progenitors,

and so it was appreciate that rHuEpo therapy will have a high degree of specificity with

few if any nonerythropoietic effects. Further studies showed that EPO-R is expressed by

a very large number of normal and tumoral cells, suggesting more pleiotropic functions

for EPO [45, 86–88]. This observation raised the question of potential side effects of

high doses of rHuEpo or analogues outside of the erythron. The fact that EPO induces,

through interaction with EPO-R, angiogenesis [89, 90] and enhancement of cancer cells

growth is a major concern about clinical use of rHuEpo and analogues [91]. Therefore,

more studies are required to fully understand if human EPO (rHuEpo and analogues) is

able to induce tumor growth, as present studies offer controversial results.

Although rHuEpo and its analogues have proved to be very effective in treating ane-

mias of different etiologies, there are also some side effects such as hyperthension, throm-

bosis and allergic reactions. One of the most important side effects is a condition known

as pure red cell aplasia (PRCA).

PRCA is defined by the absence of erythroblasts in the bone marrow. Antibodies

generated against rHuEpo will neutralize not only the recombinant protein, but also the

native erythropoietin, leading to the absence of red cell precursors in the bone marrow.

In these conditions patients will develop an EPO-resistant anemia and will need blood

transfusions. The immunological mechanism for developing antibody-mediated PRCA

is unknown, but there are some factors incriminated for increasing immunogenicity of

EPO and analogues and EPO-mimetics. Such factors could be the degree and nature

of glycosylation, the manufacturing process, handling and storage, and components and

properties of the product formulation.

The rates of antibody-mediated PRCA in CKD patients treated with epoetin alfa

and epoetin beta were similar between 1989 and 1998 [92]. After 1999 the frequency of

antibody-mediated PRCA increased significantly in the case of an epoetin-alfa formula-

tion (EprexTM) [93]. It was suggested that the cause was the removal of human serum

albumin (HSA) from one epoetin alfa formulation in 1998 [94]. Those formulations of

EprexTM where HSA had not been removed lead to a very low incidence of antibody-

mediated PRCA. In those formulations where HSA was removed it was replaced with

polysorbat 80 and glycine. These compounds had lead to a reduction of protein stability

and an increase of immunogenicity [95].

7 Conclusions

The full understanding of the EPO gene regulation, of the EPO - EPO-R interaction,

and of how this interaction activates different signaling pathways will permit the rational

design of new erythropoietic agents. These new agents could be used to correct the anemia

of different etiologies and to improve the overall state of wellbeing of patients affected by

anemia. An important aspect of future studies on erythropoietic agents is their selective
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action upon erythron, without stimulation of other types of cells, in particular cancer

cells.
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