

Central European Journal of Medicine

DOI: 10.2478/s11536-006-0023-x **Review article** CEJMed 1(3) 2006 179–204

NK cell-based immunotherapies against tumors

Jürgen Radons¹, Stefan Stangl², Gabriele Multhoff^{2*}

¹ Institute of Medical Biochemistry and Molecular Biology, University of Greifswald, Clinical Center Sauerbruchstraße, D-17487 Greifswald, Germany

Department of Hematology and Internistic Oncology, University Hospital of Regensburg, D-93053 Regensburg, Germany

Received 15 March 2006; accepted 12 August 2006

Abstract: Natural killer (NK) cells provide the first line of defence against pathogens and tumors. Their activation status is regulated by pro-inflammatory cytokines and by ligands that either target inhibitory or activating cell surface receptors belonging to the immunoglobulin-like, C-type lectin or natural cytotoxicity receptor families. Apart from non-classical HLA-E, membrane-bound heat shock protein 70 (Hsp70) has been identified as a tumor-specific recognition structure for NK cells expressing high amounts of the C-type lectin receptor CD94, acting as one component of an activating heterodimeric receptor complex. Full-length Hsp70 protein (Hsp70) or the 14-mer Hsp70 peptide T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD) in combination with pro-inflammatory cytokines enhances the cytolytic activity of NK cells towards Hsp70 membrane-positive tumors. Based on these findings cytokine/TKD-activated NK cells were adoptively transferred in tumor patients. These findings were compared to results of clinical trials using cytokine-activated NK cells.

© Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.

Keywords: Heat shock proteins, NK cells, cancer, immunostimulation, cell therapy

Abbreviations

AML Acute myelogenous leukemia APC Antigen presenting cells GrB Granzyme B GvHD Graft-versus-host disease GvL Graft versus leukemia

^{*} E-mail: gabriele.multhoff@klinik.uni-regensburg.de

HLA Human leukocyte antigen HSP Heat shock protein(s) MHC Major histocompatibility complex NF- κ B Nuclear factor-kappaB NK cell Natural killer cell IFN- γ Interferon-gamma IL-2(15) interleukin-2 PBL Peripheral blood lymphocytes TNF- α Tumor necrosis factor-alpha TLR Toll-like receptor(s) ULBP UL-16 binding protein(s)

1 Introduction

Heat shock proteins (HSP) are overexpressed in a broad range of human tumors and play crucial roles in tumor invasion, metastasis, cell proliferation, differentiation and death (for a review see ref [1]). In the past years HSP have attracted much attention as tumorspecific recognition structures for natural killer (NK) cells (summarized in refs [2, 3]). HSP are highly conserved proteins inhabiting nearly all subcellular compartments. Environmental stress as well as differentiation, proliferation, and maturation result in an increased HSP synthesis [4, 5]. Depending on their location, HSP either exert immune activation as danger signals in cancer immunity or protect cells from lethal damage induced by exogenous stress stimuli. Intracellularly, HSP function as molecular chaperones supporting folding and transport of a great variety of polypeptides and proteins under both, physiological conditions and following chemical or physical stress stimuli [6]. Hsp70, the major stress-inducible heat shock protein, is able to protect cells from a wide range of apoptotic and necrotic stimuli [7, 8]. This cell survival results from the inhibitory function of Hsp70 on lysosomal membrane permeabilization [9]. In contrast, extracellular or plasma membrane-bound HSP combined with pro-inflammatory cytokines have been found to elicit a potent anti-cancer immune response mediated either by the adaptive or innate immune system [10]. This review will focus briefly on the immunological roles of extracellular and membrane-bound HSP acting as potent stimulators of an immune response against cancer. We further present experimental evidence for the anti-tumoral activity of IL-2/TKD-activated NK cells in animal models. In a phase I clinical trial the adoptive transfer of ex vivo stimulated autologous NK cells in patients with progressive colorectal and non-small cell lung carcinoma, refractory to standard therapy, was found to be safe, feasible and well tolerated. Our data might thus have future clinical implications with respect to the development of an NK cell-based immunological approach as an adjuvant therapy for patients with progressive tumor disease and a high risk for developing distant metastases.

2 Extracellular heat shock proteins

Apart from their intracellular chaperoning functions, HSP have been found to play key roles in tumor immunity. Most immunotherapeutic approaches exploit the carrier function of HSP for tumor-derived antigenic peptides. Following cross-presentation of HSP-chaperoned peptides on MHC class I molecules [11–15], an antigen-specific CD8+ T cell response is initiated. Cross-presentation describes the transfer of exogenous peptides into the MHC class I pathway via an endosomal pathway. Uptake of HSP-peptide complexes by antigen presenting cells (APC) was found to be specific, saturable, and concentration-dependent [11, 22, 23]. Therefore, the existence of HSP receptors was hypothesized [14]. Toll-like receptors 2 (TLR2) and 4 (TLR4), either alone or in combination with the lipopolysaccharide (LPS) receptor CD14, were primarily identified as interacting partners for Hsp60 [24], Hsp70/Hsc70 [25, 26], and gp96 [27] on APC. Up to now, the list of putative HSP receptors has grown and actually includes the co-stimulatory molecule CD40 [28, 29], the scavenger receptor CD36 [14, 30], the LRP/ α_2 -macroglobulin receptor CD91 [13, 14, 31, 32], as well as other members of the scavenger receptor families, SR-A [33, 34] and LOX-1 [35, 36].

Even in the absence of immunogenic peptides, HSP act as danger signals for the host's cellular immune system [37]. APC and tumor cells have been identified as natural sources for extracellular HSP70. An active release of Hsc70 from tumor cells was observed following treatment of tumor cells with IFN- γ [38]. Exosomes have recently been discussed as export vehicles for HSP70 from the endosomal compartment into the extracellular milieu [39, 40].

Interaction of HSP70 with CD14 and/or TLR2/4 on APC results in the production and release of pro-inflammatory cytokines [25, 41, 42]. This effect is mediated by triggering the translocation of NF- κ B into the nucleus and thus initiating an important factor in the signal transduction pathway of immune responses [25]. More recent data revealed that not only full-length HSP but also endotoxin-free HSP peptides can initiate an immune response. Depending on the sequence from which the HSP peptides were derived they exert either tolerogenic or immunogenic functions [42, 43].

3 NK cells and tumor cell killing

NK cells comprise 5-20% of the peripheral blood lymphocytes (PBL) and are well known players in the control of bacteria, parasites, viruses and cancer [44]. For a long period of time, the low affinity $Fc\gamma$ receptor CD16 mediating the antibody-dependent cellular cytotoxicity (ADCC) [45], and the homophilic adhesion molecule CD56 were the only NK cell markers. More recently, it became obvious that the effector functions of NK cells are regulated by a number of killer cell inhibitory and activating receptors. These receptors either belong to the killer cell immunoglobulin-like (KIR), the immunoglobulin-like transcript (ILT), C-type lectin receptor [46], or the natural cytotoxicity receptor (NCR) families [47]. Depending on their intracellular immunoreceptor tyrosine-based inhibitory (ITIM)

or activation motifs (ITAM) these receptors mediate activating and inhibiting signals, respectively [47, 48]. A variety of different MHC class I allele groups including HLA-C were determined as regulatory ligands for NK cells. According to the "missing self" theory [49] tumor cells with altered or missing MHC expression pattern provide ideal targets for the cytolytic attack mediated by NK cells. However, evidence is accumulating that apart from "missing self" additional activating signals are necessary to enable an efficient activation of NK cells. For a group of NCRs including NKp30, NKp44, NKp46 and NKp80 with a varying expression pattern [47], tumor-specific activating ligands are discussed. For the homodimeric C-type lectin receptor NKG2D, non-classical stress-inducible MHC class Irelated chain (MIC)A and MICB glycoproteins, the glycosylphosphatidylinositol-linked UL-16 binding proteins (ULBP), the retinoic acid early inducible-1 (RAE-1) protein and HA60, a minor histocompatibility antigen, provide target structures [46, 50, 51]. Figure 1 summarizes the current understanding of how inhibitory and activating C-type lectin receptors CD94/NKG2A, CD94/NKG2C, and NKG2D operate in NK cells. CD94/NKG2A as a heterodimeric receptor mediates inhibitory signals via the tyrosine phosphatase SHP-1. Following contact with HLA-E a negative signal is mediated through its SH2 domain which enables dephosphorylation of multiple targets in the ITIM-activating pathway. In contrast, the positively charged transmembrane domain of the ITAM-containing adaptor molecule DAP-12 for NKG2C or DAP-10 for NKG2D triggers the downstream activation cascade following contact with HLA-E, MICA/B, and ULBP, respectively. For more detailed information on the structure and function of NK cell receptors see refs [52–54].

Under physiological conditions non-classical HLA-E molecules presenting leader peptides of HLA-A, -B, and -C alleles serve as ligands for the inhibitory heterodimeric receptor complex CD94/NKG2A. Following stress, an HSP60-derived signaling peptide competes with HLA leader peptides for binding to HLA-E. HLA-E/Hsp60-peptide complexes are no longer recognized by the inhibitory receptor complex CD94/NKG2A [56, 57]. These data provide evidence that environmental stress modulates the immune response of NK cells.

In line with these findings, we identified the major stress-inducible Hsp70 in combination with low dose IL-2 as additional triggering factors for CD94-positive NK cells [58, 59]. Mapping of the Hsp70 sequence revealed that the 14-mer peptide TKDNNLLGRFELSG (aa 450-463), which is termed Hsp70 peptide TKD, represents a part of the C-terminal substrate binding domain of Hsp70. In combination with IL-2, TKD has an identical immunostimulatory capacity on NK cells like full-length Hsp70 protein [60, 61]. These findings are in line with observations of the group of Mario Colombo demonstrating that genetically engineered tumors secreting the inducible Hsp70 displayed an increased immunogenicity against cancer in a mouse model [62]. However, the genetic manipulation of tumor cells did not affect the chaperone activity of Hsp70. Tumor rejection in these mice was mediated on the one hand via an increased amount of dendritic cells (DC) inducing a robust CD8+ T cell response, and on the other hand by an enhanced susceptibility towards NK cells [63].

Since binding of Hsp70 protein as well as Hsp70 peptide TKD to NK cells was sat-

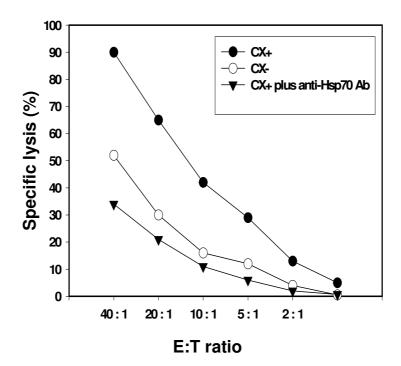


Fig. 1 Schematic representation of the operation mode of C-type lectin receptors in NK cells (adapted from [50, 55, 56]. C-type lectin receptors represent a heterogeneous group forming heterodimers of CD94 and certain members of the NKG2 family recognizing non-classical HLA-E molecules. CD94/NKG2A signals via tyrosine phosphatase SHP-1 through its SH2 domain enabling dephosphorylation of multiple targets in the ITIM-activating pathway resulting in negative signaling. NKG2C harbouring a positively charged transmembrane (TM) domain interacts with the negatively charged TM domain of the ITAM-containing adaptor molecule DAP-12 followed by binding and activation of the Syk family tyrosine kinases triggering the downstream activation cascade. In contrast, NKG2D forms homodimeric complexes to the exclusion of CD94 and binds MHC-like ligands MICA, MICB and ULBP family members. Activating signaling occurs via association with the adaptor molecule DAP-10 harboring a YXNK motif required for the binding of phosphatidyl inosital 3-kinase (PI3K).

urable and concentration-dependent [58, 59], a receptor-mediated interaction was hypothesized. In contrast to APC, the expression of HSP receptors including TLR and scavenger receptors were only weakly or not expressed on NK cells. In contrast, the cell surface density of the C-type lectin receptor CD94 was significantly up-regulated after co-incubation of NK cells either with Hsp70 protein or Hsp70 peptide TKD in combination with pro-inflammatory cytokines [64]. Concomitantly, the cytolytic and migratory capacity of NK cells towards Hsp70 membrane-positive tumor cells was found to be ini-

tiated [39]. Moreover, a CD94-specific antibody did not only block Hsp70 binding to NK cells but also the cytolytic activity towards Hsp70 membrane-positive tumor cells [59]. These data strongly suggest an involvement of CD94 in the interaction of NK cells with Hsp70 and Hsp70 peptide TKD.

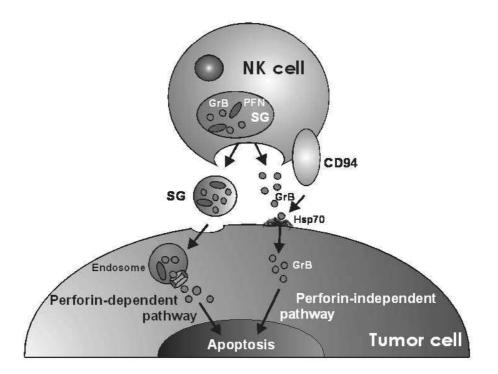
A broad screening program of human tumor biopsies in our laboratory revealed that Hsp70, the major stress-inducible member of the HSP70 group, is frequently expressed on the plasma membrane of colon, lung, pancreas, mammary, head and neck and metastases derived thereof [65–67]. Also bone marrow-derived leukemic blasts from patients with hematological malignancies are frequently Hsp70 membrane-positive [68]. Interestingly, most metastases and relapsed tumors revealed an even enhanced density of Hsp70 on their cell surface as compared to the primary tumor (unpublished observations). Since the corresponding normal tissues and bone marrow of healthy human individuals always exhibited an Hsp70 membrane-negative phenotype, membrane-bound Hsp70 can be considered as a tumor-selective marker. It is worth mentioning that only the inducible Hsp70 and the Hsp70 peptide TKD in combination with pro-inflammatory cytokines, but not the highly homologous (84% sequence homology) constitutive Hsc70 were able to stimulate the activity of NK cells.

Fig. 2 Selective kill of Hsp70 membrane-positive CX+ tumor cells, mediated by NK cells, is blockable by an Hsp70-specific monoclonal antibody recognizing the Hsp70 peptide sequence TKD.

The cell surface density of Hsp70 on tumors could be further enhanced by clinically applied reagents and procedures including membrane-interactive alkyl-lysophospholipids [69], cytostatic drugs including taxoides and vincristinsulfate [70], cyclooxygenase (COX-

1/2) inhibitors, acetyl salicyl acid, insulin sensitizers [71], hyperthermia [72], and photodynamic therapy [73]. This increased Hsp70 membrane expression might render them more sensitive to the cytolytic attack mediated by TKD-activated NK cells. Although a variety of other chaperones were found to be present on the plasma membrane of tumor cells [74], predominantly cell surface-expressed Hsp70 and also gp96, an ER-residing member of the HSP90 family, are able to stimulate the immune system [65, 66, 75]. In concert with the pro-inflammatory cytokine IL-2, Hsp70 and Hsp70 peptide TKD were able to initiate an Hsp70-reactivity in NK cells.

The C-type lectin receptor CD94 was found to be essential for the cross-talk of NK cells with Hsp70 membrane-positive tumor cells [59]. Previous data indicated that Hsp70 protein as well as Hsp70 peptide TKD bind to CD94 on NK cells at 4°C and are internalized after a temperature shift to 37°C [58, 59]. Following internalization the density of CD94 on the plasma membrane of NK cells is highly up-regulated. An incubation of CD94-positive NK cells with Hsp70 peptide TKD plus IL-2 for 4 days also resulted in an up-regulated production of granzyme B, as determined by intracellular granzyme B flow cytometry (unpublished observation). Contact of these NK cells with Hsp70 membrane-positive tumor cells causes an increased kill of the Hsp70 membrane-positive colon carcinoma cell line CX+ as compared to Hsp70 membrane-negative CX- cells (Fig. 2). Following secretion of granzyme B by NK cells the intracellular granzyme B levels dropped (unpublished observation). It is not completely clear yet whether a second stimulation is able to restore the intracellular granzyme B levels or whether a new generation of NK cells are activated for the first time.


The enhanced cytolytic activity of NK cells against Hsp70 membrane-positive tumor cells is blockable by an Hsp70-specific monoclonal antibody recognizing the Hsp70 epitope TKD ([59], see also Fig. 2). From these data we hypothesize that membrane-bound Hsp70 is a relevant target structure for these NK cells. An incubation of effector NK cells with an anti-CD94 monoclonal antibody also results in blocking of lysis of Hsp70 membrane-positive tumor cells [58, 59]. These data indicate that CD94 most likely in combination with NKG2C is involved in the cytolytic activity of IL-2/TKD-activated NK cells. Receptors including TLR2 and TLR4 which have been described to mediate interaction of Hsp70 with APC [26] are unlikely to be important for NK cell/Hsp70 interaction, since irrespectively of the stimulation their expression was always less than 2% on NK cells [58]. We therefore conclude that they do not have an impact on the interaction of NK cells with Hsp70 peptide TKD.

Our investigations identified an alternative mode of NK cell-mediated tumor cell killing. The mechanism of lysis of Hsp70 membrane-positive tumor cells was biochemically characterized as granzyme B-mediated but perforin-independent apoptosis [64]. A schematic representation of the mechanism how granzyme B can initiate apoptosis is shown in Figure 3. Classically, NK cell-mediated tumor cell killing involves the exocytosis of secretory granules (SG) containing perforin (PFN) and granzyme B (GrB) [76]. It was assumed that these vesicles enter the target cells either by endocytosis or by receptor-mediated uptake. The role of the mannose 6-phosphate receptor (MPR) in granzyme

B uptake was recently refuted, since MPR-negative cells were killed by granzyme Bmediated apoptosis [77–79]. After internalization of secretory vesicles, granzyme B is released via perforin, and rapid DNA fragmentation occurs within the target cell by a mechanism that is attributed to the apoptotic granzyme activity [80–85]. As summarized schematically in Figure 3, apart from a vesicular-mediated uptake of granzyme B which requires perforin, enzymatic active granzyme B can be taken up through an alternative pathway which is mediated through membrane-bound Hsp70. Full-length Hsp70 as well as the 14-mer Hsp70 peptide TKD (aa 450-463) which is exposed to the extracellular milieu of tumor cells [60], both have the capacity to bind granzyme B as determined by affinity chromatography [64]. Following interaction, granzyme B uptake is facilitated by Hsp70 molecules which appear to mediate a "channel activity" for granzyme B. The interaction of HSP with granzyme B is supported by work of the group of Judy Liebermann [86] showing that granzyme B-coupled columns precipitate Hsp70 and Hsp27 from tumor cell lysates. We further demonstrated that even in the absence of perforin, granzyme B is taken up by Hsp70 membrane-positive tumor cells and thus causes apoptosis of this cell type [64]. These data led us to the following working hypothesis: in a first step granzyme B binds to membrane-bound Hsp70 on tumors. After this interaction the uptake of granzyme B into tumors is facilitated and thus apoptosis is initiated. In vitro results from the group of Antonio DeMaio are supporting our hypothesis. They could show that HSP70 proteins spontaneously form channels in artificial lipid bilayers that mediate cation transfer [87]. Recently published data from different groups speculate about an interaction of Hsp70 in lipid microdomains, also termed lipid rafts [88]. Biochemical interaction of Hsp70 with phosphatidylserine has been shown by the group of Antonio DeMaio [89]. Although the function of Hsp70 in lipid bilayers and rafts remains to be elucidated in detail it became apparent that Hsp70 is residing within the plasma membrane as an integral protein. More information is available on the mechanism of release of Hsp70. An active, exosomal export of Hsp70 from viable tumor cells expressing Hsp70 on their plasma membranes has been determined by several laboratories [38–40].

4 From bench to bedsite

Previous reports on different animal models revealed that IL-2-activated NK cells are able to induce regression of established lung and liver tumors and metastases of different origin The control of tumors and metastases corresponded with an extended life expectancy. In contrast, the injection of IL-2 alone was much less efficient compared to an adoptive transfer of IL-2-activated NK cells. Previous investigations by the group of Lutz Uharek and Matthias Zeis identified allogeneic IL-2-activated NK cells as potent anti-leukemic effector cells after allogeneic bone marrow transplantation in mice [95–99]. More recently, the same group was able to identify CD56dim/CD16bright NK cells as being primarily responsible for the cytotoxic activity against tumors [100]. NK cells have also been identified as essential components in effective adjuvant intravesical bacillus Calmette-Guérin (BCG) therapy in the treatment of superficial bladder cancer

Fig. 3 Induction of apoptosis in Hsp70 membrane-positive tumor cells. Membrane-bound Hsp70 is selectively found on the surface of tumor cells but not on normal cells providing a target recognition structure for NK cells. Cross-talk between NK cells and Hsp70 membrane-positive tumor cells occurs via the C-type lectin receptor CD94 and the Hsp70 epitope TKD. On the one hand, the molecule stimulates production and delivery of granzyme B (GrB) by NK cells. On the other hand, it facilitates uptake of GrB selectively into Hsp70 membrane-positive tumors and thus causes apoptosis in a perforinindependent manner.

Abbreviations: SG, secretory granule; PFN, perforin.

in vitro and in vivo [101, 102]. The cytotoxic NK cell line NK-92 was shown to exhibit substantial anti-tumoral activity against a wide range of malignancies in vitro as well as in xenografted SCID mice. Tolerability, safety, and feasibility of repeated transfusions of irradiated NK-92 cells were shown in a phase I/II clinical trial in patients with advanced cancer [103]. Recently, the same group developed a protocol for clinical-use expansion of highly enriched and IL-2-stimulated NK cells. As demonstrated by the authors, ex vivo expansion of highly purified NK cells might be a new treatment option for pediatric patients with leukemia or solid tumors [104, 105]. The group of Theresa Whiteside and Ronald Herberman could convincingly demonstrate the beneficial effect of IL-2-activated NK cells in tumor cell killing [91, 106–108]. These data indicated that cytokine-stimulated NK cells exert beneficial effects on the control of tumors and distant metastases in immunocompetent and immunocompromised animals [109–111].

Cytokine-activated NK cells but not resting NK cells have been found to play an important role in the control of tumors and metastases [106, 112]. In the 1990s, Steve Rosenberg and Michael Lotze reported on a trend towards an increased survival in melanoma

patients treated with IL-2-activated NK cells [113]. A prospective randomized trial, performed six years later by the same group, in patients with metastatic melanoma comparing chemotherapy alone with an IL-2-based chemo-immunotherapy, did not reveal any survival benefit for patients receiving chemo-immunotherapy [114]. The administration of IL-2 alone to patients with acute myelogenous leukaemia (AML) in first complete remission was found to be tolerable, but only some AML patients showed clinical benefit [115]. A clinical trial in 23 patients with metastatic cancer demonstrated previously that the in vivo administration of low-dose IL-2 expanded the number of NK cells that could dramatically be augmented by additional IL-2 exposure in vitro [116]. However, the number of phase I/II clinical trials on adoptive immunotherapy using IL-2-activated NK cells is limited and does not allow firm conclusions, except to ascertain the feasibility and lack of toxicity of this therapeutic approach. A clinical phase I trial with 140 patients diagnosed for stage III colon carcinoma demonstrated a correlation between metastases-free survival rates and an enhanced NK cell activity in vitro [111]. These data indicate that the measurement of the NK cell activity might be relevant for the selection of patients at high risk for metastasis in advanced colon carcinomas.

As mentioned earlier, screening of primary tumors and metastases derived thereof revealed that Hsp70 is frequently expressed on the cell surface of malignant cell types. In contrast, the corresponding normal tissues were always found to be Hsp70 membrane-negative. Therefore, we hypothesized that membrane-bound Hsp70 acts as a tumor-specific recognition structure for the immune system. Since we observed that the cytolytic activity of NK cells in vitro could be further enhanced by incubation with IL-2 plus Hsp70 peptide TKD, we asked the question as to whether these NK cells might be superior in the eradication of tumors compared to NK cells that had been stimulated with IL-2 alone. In a xenograft SCID/beige mouse colon cancer model we studied the immunological effects of IL-2/TKD-activated NK cells [117]. A single injection of peripheral blood mononuclear cells containing about 10-20% of IL-2/TKD-activated NK cells resulted in a significant tumor regression. In the absence of the danger signal TKD, these effector cells were found to be significantly less efficient in the suppression of the growth of Hsp70 membrane-positive tumors [63].

We next studied the efficacy of IL-2/TKD-activated NK cells in eradication of pancreatic tumors in a xenograft SCID/beige mouse tumor model [118]. Pancreatic carcinoma is the fifth leading cause of cancer-related death in humans and refractory to conventional therapy. Phenotypical analysis revealed that Hsp70 is frequently present on the plasma membrane of pancreatic carcinomas including our model cell line Colo357. An orthotopic (o.t.) injection of Colo357 cells resulted in rapidly growing primary pancreatic tumors and in metastastic dissemination into the liver. In line with *in vitro* migration assays, IL-2/TKD-activated human NK cells had the capacity to infiltrate pancreatic tumors and liver metastases in tumor-bearing mice. These data are further supported by the group of Qin Yang who also showed the presence of cytokine-activated NK cells in lung metastases of immunocompetent mice [119].

We additionally analyzed life expectancy of tumor-bearing mice after a single i.v. in-

jection of pre-activated effector cells [118]. As shown in Fig. 4, immunodeficient control mice showed first signs of tumor disease from day 18 onwards; the maximum survival rate was 35 days. Adoptive transfer of pre-activated CD3+/CD94- T cells only marginally improved life expectancy with all animals dying from progressive tumor disease on day 37. In contrast, a single injection of TKD-activated CD3-/CD94+ NK cells significantly prolonged the survival of the mice, with more than 60% of the mice still alive on day 72. Thus, our *in vivo* mouse data imply that IL-2/TKD-activated NK cells might provide a novel therapeutic strategy for the treatment of therapy-refractory, Hsp70-positive pancreatic tumors. As shown recently [118], activation of NK cells with IL-2 alone resulted in death of all mice on day 52, indicating that Hsp70 peptide TKD is essential for the benefit in overall survival. Unstimulated NK cells and TKD-activated NK cells in the absence of IL-2 did not cause significant kill of Hsp70 membrane-positive tumors *in vitro* and thus were not tested in the xenograft tumor mouse model (unpublished observation).

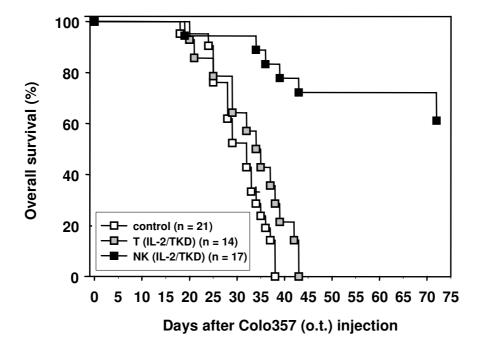


Fig. 4 Overall survival of tumor-bearing control mice and after treatment with TKD/IL-2-stimulated T and NK cells, respectively. 15 days after o.t. injection of Colo357 pancreas carcinoma cells, SCID/beige mice received a single i.v. injection of either medium (control), IL-2/TKD-activated CD3+/CD94- T or CD3-/CD94+ NK cells into the tail vein. The increased survival of mice injected with IL-2/TKD-activated NK cells was significant (p < 0.01) compared to control mice.

As mentioned before, a tumor-selective cell surface localization of Hsp70, the major heat-inducible member of the HSP70 group, could be correlated with an increased sensitivity to lysis mediated by IL-2/TKD-activated human NK cells, and therefore also might be of clinical relevance. We also could demonstrate that NK cells stimulated with IL-2/TKD have the capacity to eradicate Hsp70 membrane-positive tumors *in vitro* and

in tumor mouse models. These findings encouraged us to test these *ex vivo* IL-2/TKD-activated NK cells in a clinical trial. Patients with multiple metastasized colorectal and non-small cell lung carcinomas who failed standard therapy were enrolled into this phase I clinical trial [120].

The majority of patients showed a significant increase in the membrane expression of CD94 following ex vivo stimulation with IL-2/TKD. Concomitantly, the cytolytic activity towards Hsp70 membrane-positive tumor cells was augmented. Concerning tumor response, one patient was in stable disease during therapy by formal staging and another patient showed stable disease in one pulmonal metastasis and progression in another. This finding was not expected since all patients were in a progressive tumor stage and refractory to standard chemotherapy before entering the clinical trial. Taken together, the adoptive transfer of TKD-activated NK cells was feasible, safe and very well tolerated. Immunological results and clinical responses in two of five therapy-refractory, multiple metastasized patients warrant additional studies in patients with lower tumor burden and an established Hsp70 membrane-positive tumor stage. Within this context it is interesting to note that in human gastric carcinomas HSP70 immunoreactivity was found to correlate positively with the number of intratumoral NK cells [121]. The same report further demonstrated that HSP70 immunoreactivity is associated with advanced tumor stages and might function as a prognostic factor. Our findings are confirmed by several groups including those of Lutz Uharek and Theresa Whiteside showing that purified NK cells may be administered to tumor patients without adverse events and without inducing graft-versus-host disease (GvHD) [122–127] rendering NK cell-based adoptive immunotherapy an useful tool especially in situations where infusion of T cells is impractical such as in recipients of haploidentical stem cell transplantation from haploidentical donors [128]. Adoptive immunotherapy using ex vivo activated NK cells is of advantage with respect to their potential in preventing the incidence and severity of GvHD, promoting hematopoiesis, and augmenting numerous anti-tumor effects after bone marrow transplantation implying their crucial role in mediating graft-versus-tumor effects [129].

Allogeneic stem cell transplantation combined with donor lymphocyte infusion (DLI) provides a promising strategy in the therapy of recurrent chronic leukemia. However, therapeutic efficacy is limited by myelosuppression and transplant-related complications mainly caused by donor T lymphocytes. Recently, stem cell-derived, alloreactive NK cells have been found to mediate graft-versus-leukemia (GvL) effects without inducing GvHD [130, 131]. Efficiency has been demonstrated even in patients with advanced refractory disease following myeloablative regimens eliminating leukemic cells. Despite a strong anti-leukemic effect mediated by alloreactive donor lymphocytes, leading to a low relapse rate [132], transplant-related complications including GvHD [133] and immunosuppression increase mortality rates in these patients. GvHD can be modified by reducing the dose or by depleting donor-derived CD8-positive T cells [134] thus indicating that T cells are major mediators of transplant-associated complications. Unfortunately, a complete T cell depletion resulted in increased relapse and rejection rates. Therefore, an adoptive transfer of specific donor T lymphocyte subsets, pre- and post-transplantation, was investigated

[134–140]. However, a specific T cell subpopulation mediating only GvL without GvHD could not be isolated so far.

Regarding these results it became obvious that there is an urgent need for new therapeutic strategies improving the clinical outcome of allogeneic transplantation. In a mouse model the cytolytic potential of NK cells in adjuvant immunotherapy of hematological malignancies has been shown to reduce the risk for relapse without increasing GvHD [97, 141]. We could induce an NK cell-mediated anti-leukemic response by addition of Hsp70 peptide plus low dose IL-2 to patient-derived PBL [68]. The group of Bertram Glass and Lutz Uharek demonstrated a GvHD-independent GvL effect in NK cells [142]. Recently, the group of Andrea Velardi convincingly showed the beneficial effects of stem cell-derived, alloreactive NK cells in the treatment of AML patients [54, 143–145]. These NK cells did not only mediate GvL but also improved engraftment by a selective elimination of host-derived dendritic cells that might activate graft-reactive T cells. The anti-leukemic effect was dependent on the HLA-mismatch of donor and recipients, affecting the repertoire of killer cell inhibitory receptors (KIR). KIR-epitope mismatching in the graft-versus-host direction may confer unique potential for GvL effects and for engraftment [144] suggesting that infusion of alloreactive NK cells in humans will not cause GvHD [144]. The benefits of NK cell alloreactivity in mismatched hematopoietic transplantation has currently been highlighted by Michael Caligiuri and Andrea Velardi [147, 148]. Moreover, recent experimental and clinical data show the possibility of exploiting NK activity as a cell-based immunotherapy to treat cancer [149–152].

5 Conclusion

Within the last decade it became evident that NK cells, which were historically considered as non-specific killers, are highly sophisticated in distinguishing normal from tumor cells. The characterization of the molecular nature of a variety of NK cell receptors belonging either to the immunoglobulin-like, C-type lectin, or natural cytotoxicity receptor families and mediating either activatory or inhibitory signals provides an explanation for their mode of action. Together with the finding that NK cells provide the first line of defence it is very likely that NK cells have a high potential to become key players in the immunotherapy of cancer. A goal in the near future will be the development of protocols allowing an expansion of specific NK cell lines with anti-tumor activity. Another aim will be the elucidation of additional tumor-specific ligands that are recognized by activating NK cell receptors. Apart from non-classical, stress-inducible MHC molecules, recent studies indicated that a tumor-specific plasma membrane expression of Hsp70 serves as a recognition structure for NK cells that had been activated with Hsp70 peptide plus low dose IL-2. Feasibility, tolerability, and safety of ex vivo IL-2/TKD-activated, autologous NK cells was demonstrated in a phase I clinical trial in patients with locally advanced, metastasized colorectal and non-small cell lung carcinomas. Clinical responses were observed in patients receiving more than 4 repeated infusions of IL-2/TKD-activated NK cells. Therefore, we hypothesize that after surgical resection of an Hsp70 membranepositive tumor, patients with a high risk for metastatic dissemination might profit from an adoptive transfer of IL-2/TKD-activated NK cells.

Acknowledgment

This work was supported by grants from the Wilhelm-Sander-Stiftung, Deutsche Forschungsgemeinschaft (SFB-455; MU 1238/7-2; RA 999/3-1), European Union TRANSEUROPE (QOL-2001-3.1.3), Bundesministerium für Bildung und Forschung (BMBF), and multimmune GmbH. We gratefully acknowledge the technical assistance of Lydia Roßbacher and Gerald Thonigs.

References

- [1] D.R. Ciocca and S.K. Calderwood: "Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications", *Cell Stress Chaperones*, Vol. 10, (2005), pp. 86–103.
- [2] J. Radons and G. Multhoff: "Heat shock protein 70 (Hsp70) peptide elicits an NK cell-mediated immune response against cancer", In: R.M. Mohan (Ed.): Research Advances in Cancer, Vol. 5, Global Research Network, Kerala, 2005, pp. 77–86.
- [3] J. Radons and G. Multhoff: "Immunostimulatory functions of membrane-bound and exported heat shock protein 70", Exerc. Immunol. Rev., Vol. 11, (2005), pp. 17–33.
- [4] D.C. DeNagel and S.K. Pierce: "A case for chaperones in antigen processing", *Immunol. Today*, Vol. 13, (1992), pp. 86–89.
- [5] S. Lindquist and E.A. Craig: "The heat-shock proteins", Annu. Rev. Genet., Vol. 22, (1988), pp. 631–677.
- [6] F.U. Hartl: "Molecular chaperones in cellular protein folding", *Nature*, Vol. 381, (1996), pp. 571–579.
- [7] J. Nylandsted, K. Brand and M. Jäättelä: "Heat shock protein 70 is required for the survival of cancer cells", Ann. N. Y. Acad. Sci., Vol. 926, (2000), pp. 122–125.
- [8] M. Jäättelä, D. Wissing, K. Kokholm, T. Kallunki and M. Egeblad: "Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases", EMBO J., Vol. 17, (1998), pp. 6124–6134.
- [9] J. Nylandsted, M. Gyrd-Hansen, A. Danielewicz, N. Fehrenbacher, U. Lademann, M. Hoyer-Hansen, E. Weber, G. Multhoff, M. Rohde and M. Jäättelä: "Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization", J. Exp. Med., Vol. 200, (2004), pp. 425–435.
- [10] M. Gehrmann, J. Marienhagen, H. Eichholtz-Wirth, E. Fritz, J. Ellwart, Jäättelä, T. Zilch and G. Multhoff: "Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells", Cell Death Differ, Vol. 12, (2005), pp. 38–51.
- [11] D. Arnold-Schild, D. Hanau, D. Spehner, C. Schmid, H.G. Rammensee, H. de la Salle and H. Schild: "Cutting edge: receptor-mediated endocytosis of heat shock

- proteins by professional antigen-presenting cells", *J. Immunol.*, Vol. 162, (1999), pp. 3757–3760.
- [12] S. Basu, R.J. Binder, T. Ramalingam and P.K. Srivastava: "CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin", *Immunity.*, Vol. 14, (2001), pp. 303–313.
- [13] R.J. Binder, D.K. Han and P.K. Srivastava: "CD91: a receptor for heat shock protein gp96", Nat. Immunol., Vol. 1, (2000), pp. 151–155.
- [14] R.J. Binder, R. Vatner and P. Srivastava: "The heat-shock protein receptors: some answers and more questions", *Tissue Antigens*, Vol. 64, (2004), pp. 442–451.
- [15] H. Sondermann, T. Becker, M. Mayhew, F. Wieland and F.U. Hartl: "Characterization of a receptor for heat shock protein 70 on macrophages and monocytes", *Biol. Chem.*, Vol. 381, (2000), pp. 1165–1174.
- [16] R.J. Binder, N.E. Blachere and P.K. Srivastava: "Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules", J. Biol. Chem., Vol. 276, (2001), pp. 17163–17171.
- [17] A.D. Doody, J.T. Kovalchin, M.A. Mihalyo, A.T. Hagymasi, C.G. Drake and A.J. Adler: "Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function", *J. Immunol.*, Vol. 172, (2004), pp. 6087–6092.
- [18] H. Schild, D. Arnold-Schild, E. Lammert and H.G. Rammensee: "Stress proteins and immunity mediated by cytotoxic T lymphocytes", *Curr. Opin. Immunol.*, Vol. 11, (1999), pp. 109–113.
- [19] H. Singh-Jasuja, R.E. Toes, P. Spee, C. Münz, N. Hilf, S.P. Schoenberger, P. Ricciardi-Castagnoli, J. Neefjes, H.G. Rammensee, D. Arnold-Schild and H. Schild: "Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis", J. Exp. Med., Vol. 191, (2000), pp. 1965–1974.
- [20] P.K. Srivastava, A. Menoret, S. Basu, R.J. Binder and K.L. McQuade: "Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world", *Immunity*, Vol. 8, (1998), pp. 657–665.
- [21] A.D. Wells and M. Malkovsky: "Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view", *Immunol. Today*, Vol. 21, (2000), pp. 129–132.
- [22] R.J. Binder, M.L. Harris, A. Menoret and P.K. Srivastava: "Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells", *J. Immunol.*, Vol. 165, (2000), pp. 2582–2587.
- [23] C. Habich, K. Baumgart, H. Kolb and V. Burkart: "The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins", *J. Immunol.*, Vol. 168, (2002), pp. 569–576.
- [24] R.M. Vabulas, P. Ahmad-Nejad, C. Da Costa, T. Miethke, C.J. Kirschning, H. Hacker and H. Wagner: "Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and

- TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells", J. Biol. Chem., Vol. 276, (2001), pp. 31332–31339.
- [25] A. Asea, S.K. Kraeft, E.A. Kurt-Jones, M.A. Stevenson, L.B. Chen, R.W. Finberg, G.C. Koo and S.K. Calderwood: "HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine", Nat. Med., Vol. 6, (2000), pp. 435–442.
- [26] A. Asea, M. Rehli, E. Kabingu, J.A. Boch, O. Bare, P.E. Auron, M.A. Stevenson and S.K. Calderwood: "Novel signal transduction pathway utilized by extracellular HSP70: role of Toll-like receptor (TLR) 2 and TLR4", J. Biol. Chem., Vol. 277, (2002), pp. 15028–15034.
- [27] R.M. Vabulas, S. Braedel, N. Hilf, H. Singh-Jasuja, S. Herter, P. Ahmad-Nejad, C.J. Kirschning, C. Da Costa, H.G. Rammensee, H. Wagner and H. Schild: "The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway", J. Biol. Chem., Vol. 277, (2002), pp. 20847–20853.
- [28] T. Becker, F.U. Hartl and F. Wieland: "CD40, an extracellular receptor for binding and uptake of Hsp70 peptide complexes", *J. Cell Biol.*, Vol. 158, (2002), pp. 1277–1285.
- [29] Y. Wang, C.G. Kelly, J.T. Karttunen, T. Whittall, P.J. Lehner, L. Duncan, P. MacAry, J.S. Younson, M. Singh, W. Oehlmann, G. Cheng, L. Bergmeier and T. Lehner: "CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines", *Immunity*, Vol. 15, (2001), pp. 971–983.
- [30] T. Nakamura, J. Hinagata, T. Tanaka, T. Imanishi, Y. Wada, T. Kodama and T. Doi: "HSP90, HSP70, and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors", *Biochem. Biophys. Res. Commun.*, Vol. 290, (2002), pp. 858–864.
- [31] R.J. Binder, D. Karimeddini and P.K. Srivastava: "Adjuvanticity of alpha 2-macroglobulin, an independent ligand for the heat shock protein receptor CD91", J. Immunol., Vol. 166, (2001), pp. 4968–4972.
- [32] R.J. Binder and P.K. Srivastava: "Essential role of CD91 in re-presentation of gp96-chaperoned peptides", *Proc. Natl. Acad. Sci. U. S. A*, Vol. 101, (2004), pp. 6128–6133.
- [33] B. Berwin, J.P. Hart, S. Rice, C. Gass, S.V. Pizzo, S.R. Post and C.V. Nicchitta: "Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells", *EMBO J.*, Vol. 22, (2003), pp. 6127–6136.
- [34] R. Haworth, N. Platt, S. Keshav, D. Hughes, E. Darley, H. Suzuki, Y. Kurihara, T. Kodama and S. Gordon: "The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock", J. Exp. Med., Vol. 186, (1997), pp. 1431–1439.
- [35] Y. Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, J. Aubry, K. Nakamura, N. Kawakami-Honda, L. Goetsch, T. Sawamura, J. Bonnefoy and P. Jeannin: "Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation", *Immunity*, Vol. 17, (2002), pp. 353–362.

- [36] J.R. Theriault, S.S. Mambula, T. Sawamura, M.A. Stevenson and S.K. Calderwood: "Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells", *FEBS Lett.*, Vol. 579, (2005), pp. 1951–1960.
- [37] P. Matzinger: "The danger model: a renewed sense of self", *Science*, Vol. 296, (2002), pp. 301–305.
- [38] M.A. Bausero, R. Gastpar, G. Multhoff and A. Asea: "Alternative mechanism by which IFN- γ enhances tumor recognition: active release of Hsp72", *J. Immunol.*, Vol. 175, (2005), pp. 2900–2912.
- [39] R. Gastpar, M. Gehrmann, M.A. Bausero, A. Asea, C. Gross, J.A. Schroeder and G. Multhoff: "Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells", *Cancer Res.*, Vol. 65, (2005), pp. 5238–5247.
- [40] G.I. Lancaster and M.A. Febbraio: "Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins", J. Biol. Chem., Vol. 280, (2005), pp. 23349–23355.
- [41] T. Lehner, Y. Wang, T. Whittall, E. McGowan, C.G. Kelly and M. Singh: "Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity", *Biochem. Soc. Trans.*, Vol. 32, (2004), pp. 629–632.
- [42] Y. Wang, C.G. Kelly, M. Singh, E.G. McGowan, A.S. Carrara, L.A. Bergmeier and T. Lehner: "Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70", J. Immunol., Vol. 169, (2002), pp. 2422–2429.
- [43] O.S. Birk, S.L. Gur, D. Elias, R. Margalit, F. Mor, P. Carmi, J. Bockova, D.M. Altmann and I.R. Cohen: "The 60-kDa heat shock protein modulates allograft rejection", *Proc. Natl. Acad. Sci. U. S. A*, Vol. 96, (1999), pp. 5159–5163.
- [44] G. Trinchieri: "Biology of natural killer cells", Adv. Immunol., Vol. 47, (1989), pp. 187–376.
- [45] L.L. Lanier, J.J. Ruitenberg and J.H. Phillips: "Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes", *J. Immunol.*, Vol. 141, (1988), pp. 3478–3485.
- [46] L.L. Lanier, B. Corliss, J. Wu and J.H. Phillips: "Association of DAP12 with activating CD94/NKG2C NK cell receptors", *Immunity*, Vol. 8, (1998), pp. 693–701.
- [47] A. Moretta, C. Bottino, M. Vitale, D. Pende, C. Cantoni, M.C. Mingari, R. Biassoni and L. Moretta: "Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis", *Annu. Rev. Immunol.*, Vol. 19, (2001), pp. 197–223.
- [48] E.O. Long: "Regulation of immune responses through inhibitory receptors", *Annu. Rev. Immunol.*, Vol. 17, (1999), pp. 875–904.
- [49] H.G. Ljunggren and K. Karre: "In search of the 'missing self': MHC molecules and NK cell recognition", *Immunol. Today*, Vol. 11, (1990), pp. 237–244.
- [50] S. Bauer, V. Groh, J. Wu, A. Steinle, J.H. Phillips, L.L. Lanier and T. Spies: "Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA",

- Science, Vol. 285, (1999), pp. 727–729.
- [51] D. Cosman, J. Mullberg, Fanslow W, R. Armitage, W. Chin and I. Cassiano: "The human cytomegalivirus (HCMV) glycoprotein, UL16, binds to the MHC class I-related protein, MICB/PERB11, and to two novel, MHC class I related molecules ULBP1 and ULBP2", FASEB J., Vol. 14, (2004), pp. 1018–1023.
- [52] C. Bottino, L. Moretta and A. Moretta: "NK cell activating receptors and tumor recognition in humans", Curr. Top. Microbiol. Immunol., Vol. 298, (2006), pp. 175– 182.
- [53] J.S. Orange and Z.K. Ballas: "Natural killer cells in human health and disease", *Clin. Immunol.*, Vol. 118, (2006), pp. 1–10.
- [54] S.S. Farag, T.A. Fehniger, L. Ruggeri, A. Velardi and M.A. Caligiuri: "Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect", *Blood*, Vol. 100, (2002), pp. 1935–1947.
- [55] V.M. Braud, D.S. Allan, C.A. O'Callaghan, K. Soderstrom, A. D'Andrea, G.S. Ogg, S. Lazetic, N.T. Young, J.I. Bell, J.H. Phillips, L.L. Lanier and A.J. McMichael: "HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C", *Nature*, Vol. 391, (1998), pp. 795–799.
- [56] J. Michaëlsson, C. Teixeira de Matos, A. Achour, L.L. Lanier, K. Kaerre and K. Söderström: "A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition", *J. Exp. Med.*, Vol. 196, (2002), pp. 1403–1414.
- [57] H.D. Hickman-Miller and W.H. Hildebrand: "The immune response under stress: the role of HSP-derived peptides", *Trends Immunol.*, Vol. 25, (2004), pp. 427–433.
- [58] C. Gross, D. Hansch, R. Gastpar and G. Multhoff: "Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94", *Biol. Chem.*, Vol. 384, (2003), pp. 267–279.
- [59] C. Gross, I.G. Schmidt-Wolf, S. Nagaraj, R. Gastpar, J. Ellwart, L.A. Kunz-Schughart and G. Multhoff: "Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells", Cell Stress Chaperones, Vol. 8, (2003), pp. 348–360.
- [60] C. Botzler, G. Li, R.D. Issels and G. Multhoff: "Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response", *Cell Stress Chaperones*, Vol. 3, (1998), pp. 6–11.
- [61] G. Multhoff, L. Mizzen, C.C. Winchester, C.M. Milner, S. Wenk, G. Eissner, H.H. Kampinga, B. Laumbacher and J. Johnson: "Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells", Exp. Hematol., Vol. 27, (1999), pp. 1627–1636.
- [62] C. Massa, C. Guiducci, I. Arioli, M. Parenza, M.P. Colombo and C. Melani: "Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70", Cancer Res., Vol. 64, (2004), pp. 1502–1508.
- [63] G. Multhoff, K. Pfister, C. Botzler, A. Jordan, R. Scholz, H. Schmetzer, R. Burgstahler and W. Hiddemann: "Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing

- tumors", Int. J. Cancer, Vol. 88, (2000), pp. 791–797.
- [64] C. Gross, W. Koelch, A. DeMaio, N. Arispe and G. Multhoff: "Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B", J. Biol. Chem., Vol. 278, (2003), pp. 41173– 41181.
- [65] X. Chen, Q. Tao, H. Yu, L. Zhang and X. Cao: "Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity", *Immunol. Lett.*, Vol. 84, (2002), pp. 81–87.
- [66] G. Multhoff, C. Botzler, M. Wiesnet, E. Muller, T. Meier, W. Wilmanns and R.D. Issels: "A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells", *Int. J. Cancer*, Vol. 61, (1995), pp. 272–279.
- [67] G. Multhoff, C. Botzler, M. Wiesnet, G. Eissner and R. Issels: "CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells", *Blood*, Vol. 86, (1995), pp. 1374–1382.
- [68] M. Gehrmann, H. Schmetzer, G. Eissner, T. Haferlach, W. Hiddemann and G. Multhoff: "Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells", *Haematologica*, Vol. 88, (2003), pp. 474–476.
- [69] C. Botzler, H.J. Kolb, R.D. Issels and G. Multhoff: "Noncytotoxic alkyllysophospholipid treatment increases sensitivity of leukemic K562 cells to lysis by natural killer (NK) cells", *Int. J. Cancer*, Vol. 65, (1996), pp. 633–638.
- [70] M. Gehrmann, K. Pfister, P. Hutzler, R. Gastpar, B. Margulis and G. Multhoff: "Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels", *Biol. Chem.*, Vol. 383, (2002), pp. 1715–1725.
- [71] M. Gehrmann, M. Brunner, K. Pfister, A. Reichle, E. Kremmer and G. Multhoff: "Differential up-regulation of cytosolic and membrane-bound heat shock protein 70 in tumor cells by anti-inflammatory drugs", *Clin. Cancer Res.*, Vol. 10, (2004), pp. 3354–3364.
- [72] V. Milani and E. Noessner: "Effects of thermal stress on tumor antigenicity and recognition by immune effector cells", *Cancer Immunol. Immunother.*, Vol. 55, (2006), pp. 312–319.
- [73] M. Korbelik, J. Sun and I. Cecic: "Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response", *Cancer Res.*, Vol. 65, (2005), pp. 1018–1026.
- [74] B.K. Shin, H. Wang, A.M. Yim, F. Le Naour, F. Brichory, J.H. Jang, R. Zhao, E. Puravs, J. Tra, C.W. Michael, D.E. Misek and S.M. Hanash: "Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function", J. Biol. Chem., Vol. 278, (2003), pp. 7607–7616.
- [75] L. Pilla, P. Squarcina, J. Coppa, V. Mazzaferro, V. Huber, D. Pende, C. Maccalli, G. Sovena, L. Mariani, C. Castelli, G. Parmiani and L. Rivoltini: "Natural killer and

- NK-like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96", Cancer Res., Vol. 65, (2005), pp. 3942–3949.
- [76] J.A. Trapani, M.J. Smyth, V.A. Apostolidis, M. Dawson and K.A. Browne: "Granule serine proteases are normal nuclear constituents of natural killer cells", *J. Biol. Chem.*, Vol. 269, (1994), pp. 18359–18365.
- [77] R. Dressel, S.M. Raja, S. Höning, T. Seidler, C.J. Froelich, K. von Figura and E. Günther: "Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells", *J. Biol. Chem.*, Vol. 279, (2004), pp. 20200–20210.
- [78] F.C. Kurschus, R. Bruno, E. Fellows, C.S. Falk and D.E. Jenne: "Membrane receptors are not required to deliver granzyme B during killer cell attack", *Blood*, Vol. 105, (2005), pp. 2049–2058.
- [79] J.A. Trapani, V.R. Sutton, K.Y. Thia, Y.Q. Li, C.J. Froelich, D.A. Jans, M.S. Sandrin and K.A. Browne: "A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death", J. Cell Biol., Vol. 160, (2003), pp. 223–233.
- [80] G. Berke: "The CTL's kiss of death", Cell, Vol. 81, (1995), pp. 9–12.
- [81] C.J. Froelich, V.M. Dixit and X. Yang: "Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases", *Immunol. Today*, Vol. 19, (1998), pp. 30–36.
- [82] L. Shi, C.M. Kam, J.C. Powers, R. Aebersold and A.H. Greenberg: "Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions", J. Exp. Med., Vol. 176, (1992), pp. 1521–1529.
- [83] L. Shi, R.P. Kraut, R. Aebersold and A.H. Greenberg: "A natural killer cell granule protein that induces DNA fragmentation and apoptosis", *J. Exp. Med.*, Vol. 175, (1992), pp. 553–566.
- [84] S. Shresta, T.A. Graubert, D.A. Thomas, S.Z. Raptis and T.J. Ley: "Granzyme A initiates an alternative pathway for granule-mediated apoptosis", *Immunity*, Vol. 10, (1999), pp. 595–605.
- [85] J. Tschopp and M. Nabholz: "Perforin-mediated target cell lysis by cytolytic T lymphocytes", Annu. Rev. Immunol., Vol. 8, (1990), pp. 279–302.
- [86] P.J. Beresford, M. Jaju, R.S. Friedman, M.J. Yoon and J. Liebermann: "A role for heat shock protein 27 in CTL-mediated cell death", J. Immunol., Vol. 161, (1998), pp. 161–167.
- [87] N. Arispe and A. De Maio: "ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes", *J. Biol. Chem.*, Vol. 275, (2000), pp. 30839–30843.
- [88] N. Arispe, M. Doh, O. Simakova, B. Kurganov and A. De Maio: "Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability", FASEB J., Vol. 18, (2004), pp. 1636–1645.
- [89] A.H. Broquet, G. Thomas, J. Masliah, G. Trugnan and M. Bachelet: "Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with

- its membrane delivery and release", $J.\ Biol.\ Chem.$, Vol. 278, (2003), pp. 21601–21606.
- [90] P.J. Kuppen, A. Gorter, M. Hagenaars, L.E. Jonges, K.M. Giezeman-Smits, J.F. Nagelkerke, G. Fleuren and C.J. van de Velde: "Role of NK cells in adoptive immunotherapy of metastatic colorectal cancer in a syngeneic rat model", *Immunol. Rev.*, Vol. 184, (2001), pp. 236–243.
- [91] S. Yasumura, W.C. Lin, H. Hirabayashi, N.L. Vujanovic, R.B. Herberman and T.L. Whiteside: "Immunotherapy of liver metastases of human gastric carcinoma with interleukin 2-activated natural killer cells", Cancer Res., Vol. 54, (1994), pp. 3808–3816.
- [92] N.L. Vujanovic, S. Yasumura, H. Hirabayashi, W.C. Lin, S. Watkins, R.B. Herberman and T.L. Whiteside: "Antitumor activities of subsets of human IL-2-activated natural killer cells in solid tissues", *J. Immunol.*, Vol. 154, (1995), pp. 281–289.
- [93] R.E. Schwarz, N.L. Vujanovic and J.C. Hiserodt: "Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by their adherence to plastic", *Cancer Res.*, Vol. 49, (1989), pp. 1441–1446.
- [94] T.L. Whiteside, M.W. Sung, S. Nagashima, K. Chikamatsu, K. Okada and N.L. Vujanovic: "Human tumor antigen-specific T lymphocytes and interleukin-2-activated natural killer cells: comparisons of antitumor effects in vitro and in vivo", *Clin. Cancer Res.*, Vol. 4, (1998), pp. 1135–1145.
- [95] M. Zeis, L. Uharek, B. Glass, T. Gaska, W. Gassmann and W. Mueller-Ruchholtz: "Induction of graft-versus-leukemia (GVL) activity in murine leukemia models after IL-2 pretreatment of syngeneic and allogeneic bone marrow grafts", *Bone Marrow Transplant.*, Vol. 14, (1994), pp. 711–715.
- [96] L. Uharek, M. Zeis, B. Glass, J. Steinmann, P. Dreger, W. Gassmann, N. Schmitz and W. Muller-Ruchholtz: "High lytic activity against human leukemia cells after activation of allogeneic NK cells by IL-12 and IL-2", *Leukemia*, Vol. 10, (1996), pp. 1758–1764.
- [97] M. Zeis, L. Uharek, B. Glass, J. Steinmann, P. Dreger, W. Gassmann and N. Schmitz: "Allogeneic MHC-mismatched activated natural killer cells administered after bone marrow transplantation provide a strong graft-versus-leukaemia effect in mice", *Br. J. Haematol.*, Vol. 96, (1997), pp. 757–761.
- [98] L. Uharek, B. Glass, T. Gaska, M. Zeiss, W. Gassmann, H. Loffler and W. Muller-Ruchholtz: "Natural killer cells as effector cells of graft-versus-leukemia activity in a murine transplantation model", *Bone Marrow Transplant.*, Vol. 12, Suppl 3, (1993), pp. S57–S60.
- [99] M. Zeis, L. Uharek, B. Glass, T. Gaska, J. Steinmann, W. Gassmann, H. Loffler and W. Muller-Ruchholtz: "Allogeneic NK cells as potent antileukemic effector cells after allogeneic bone marrow transplantation in mice", *Transplantation*, Vol. 59, (1995), pp. 1734–1736.
- [100] O. Penack, C. Gentilini, L. Fischer, A.M. Asemissen, C. Scheibenbogen, E. Thiel and L. Uharek: "CD56dimCD16neg cells are responsible for natural cytotoxicity

- against tumor targets", Leukemia, Vol. 19, (2005), pp. 835–840.
- [101] S. Brandau, J. Riemensberger, M. Jacobsen, D. Kemp, W. Zhao, X. Zhao, D. Jocham, T.L. Ratliff and A. Bohle: "NK cells are essential for effective BCG immunotherapy", *Int. J. Cancer*, Vol. 92, (2001), pp. 697–702.
- [102] S. Brandau and A. Bohle: "Activation of natural killer cells by Bacillus Calmette-Guerin", Eur. Urol., Vol. 39, (2001), pp. 518–524.
- [103] T. Tonn, S. Becker, R. Esser, D. Schwabe and E. Seifried: "Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92", *J. Hematother. Stem Cell Res.*, Vol. 10, (2001), pp. 535–544.
- [104] U. Koehl, J. Sorensen, R. Esser, S. Zimmermann, H.P. Gruttner, T. Tonn, C. Seidl, E. Seifried, T. Klingebiel and D. Schwabe: "IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation", *Blood Cells Mol. Dis.*, Vol. 33, (2004), pp. 261–266.
- [105] U. Koehl, R. Esser, S. Zimmermann, T. Tonn, R. Kotchetkov, T. Bartling, J. Sorensen, H.P. Gruttner, P. Bader, E. Seifried, H. Martin, P. Lang, J.R. Passweg, T. Klingebiel and D. Schwabe: "Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children", Klin. Padiatr., Vol. 217, (2005), pp. 345–350.
- [106] T.L. Whiteside, N.L. Vujanovic and R.B. Herberman: "Natural killer cells and tumor therapy", Curr. Top. Microbiol. Immunol., Vol. 230, (1998), pp. 221–244.
- [107] H. Rabinowich, D. Vitolo, S. Altarac, R.B. Herberman and T.L. Whiteside: "Role of cytokines in the adoptive immunotherapy of an experimental model of human head and neck cancer by human IL-2-activated natural killer cells", *J. Immunol.*, Vol. 149, (1992), pp. 340–349.
- [108] R.B. Herberman: "Cancer immunotherapy with natural killer cells", Semin. Oncol., Vol. 29, (2002), pp. 27–30.
- [109] P.H. Basse, T.L. Whiteside, W. Chambers and R.B. Herberman: "Therapeutic activity of NK cells against tumors", *Int. Rev. Immunol.*, Vol. 20, (2001), pp. 439–501.
- [110] K. Koda, N. Saito, K. Oda, K. Seike, E. Kondo, M. Ishizuka, N. Takiguchi and M. Miyazaki: "Natural killer cell activity and distant metastasis in rectal cancers treated surgically with and without neoadjuvant chemoradiotherapy", J. Am. Coll. Surg., Vol. 197, (2003), pp. 254–260.
- [111] E. Kondo, K. Koda, N. Takiguchi, K. Oda, K. Seike, M. Ishizuka and M. Miyazaki: "Preoperative natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon cancer", *Dig. Surg.*, Vol. 20, (2003), pp. 445–451.
- [112] P.A. Albertsson, P.H. Basse, M. Hokland, R.H. Goldfarb, J.F. Nagelkerke, U. Nannmark and P.J. Kuppen: "NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity", *Trends Immunol.*, Vol. 24, (2003), pp. 603–609.
- [113] S.A. Rosenberg, M.T. Lotze, J.C. Yang, S.L. Topalian, A.E. Chang, D.J. Schwartzentruber, P. Aebersold, S. Leitman, W.M. Linehan, C.A. Seipp, D.E. White

- and S.M. Steinberg: "Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer", J. Natl. Cancer Inst., Vol. 85, (1993), pp. 622–632.
- [114] S.A. Rosenberg, J.C. Yang, D.J. Schwartzentruber, P. Hwu, F.M. Marincola, S.L. Topalian, C.A. Seipp, J.H. Einhorn, D.E. White and S.M. Steinberg: "Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alfa-2b", J. Clin. Oncol., Vol. 17, (1999), pp. 968–975.
- [115] J.E. Cortes, H.M. Kantarjian, S. O'Brien, F. Giles, M.J. Keating, E.J. Freireich and E.H. Estey: "A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission", *Cancer*, Vol. 85, (1999), pp. 1506–1513.
- [116] R.J. Soiffer, C. Murray, C. Shapiro, H. Collins, S. Chartier, S. Lazo and J. Ritz: "Expansion and manipulation of natural killer cells in patients with metastatic cancer by low-dose continuous infusion and intermittent bolus administration of interleukin 2", Clin. Cancer Res., Vol. 2, (1996), pp. 493–499.
- [117] C. Moser, C. Schmidbauer, U. Gürtler, C. Gross, M. Gehrmann, G. Thonigs, K. Pfister and G. Multhoff: "Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells", Cell Stress. Chaperones., Vol. 7, (2002), pp. 365–373.
- [118] S. Stangl, A. Wortmann, U. Guertler and G. Multhoff: "Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells", *J. Immunol.*, Vol. 176, (2006), pp. 6270–6276.
- [119] Q. Yang, M.E. Hokland, J.L. Bryant, Y. Zhang, U. Nannmark, S.C. Watkins, R.H. Goldfarb, R.B. Herberman and P.H. Basse: "Tumor-localization by adoptively transferred, interleukin-2-activated NK cells leads to destruction of well-established lung metastases", Int. J. Cancer, Vol. 105, (2003), pp. 512–519.
- [120] S.W. Krause, R. Gastpar, R. Andreesen, C. Gross, H. Ullrich, G. Thonigs, K. Pfister and G. Multhoff: "Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial", Clin. Cancer Res., Vol. 10, (2004), pp. 3699–3707.
- [121] Ö. Canöz, O. Belenli and T.E. Patiroglu: "General features of gastric carcinomas and comparison of HSP70 and NK cell immunoreactivity with prognostic factors", *Pathol. Oncol. Res.*, Vol. 8, (2002), pp. 262–269.
- [122] M. deMagalhaes-Silverman, A. Donnenberg, B. Lembersky, E. Elder, J. Lister, W. Rybka, T. Whiteside and E. Ball: "Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer", J. Immunother., Vol. 23, (2000), pp. 154–160.
- [123] P.H. Basse, T.L. Whiteside and R.B. Herberman: "Use of activated natural killer cells for tumor immunotherapy in mouse and human", *Methods Mol. Biol.*, Vol. 121, (2000), pp. 81–94.

- [124] C. Frohn, C. Doehn, C. Durek, A. Bohle, P. Schlenke, D. Jocham and H. Kirchner: "Feasibility of the adoptive transfusion of allogenic human leukocyte antigen-matched natural killer cells in patients with renal cell carcinoma", *J. Immunother.*, Vol. 23, (2000), pp. 499–504.
- [125] T. Hercend, F. Farace, D. Baume, F. Charpentier, J.P. Droz, F. Triebel and B. Escudier: "Immunotherapy with lymphokine-activated natural killer cells and recombinant interleukin-2: a feasibility trial in metastatic renal cell carcinoma", J. Biol. Response Mod., Vol. 9, (1990), pp. 546–555.
- [126] E. Ishikawa, K. Tsuboi, K. Saijo, H. Harada, S. Takano, T. Nose and T. Ohno: "Autologous natural killer cell therapy for human recurrent malignant glioma", *Anticancer Res.*, Vol. 24, (2004), pp. 1861–1871.
- [127] J.R. Passweg, M. Stern, U. Koehl, L. Uharek and A. Tichelli: "Use of natural killer cells in hematopoetic stem cell transplantation", *Bone Marrow Transplant.*, Vol. 35, (2005), pp. 637–643.
- [128] F. Aversa, A. Terenzi, R. Felicini, A. Carotti, F. Falcinelli, A. Tabilio, A. Velardi and M.F. Martelli: "Haploidentical stem cell transplantation for acute leukemia", *Int. J. Hematol.*, Vol. 76, Suppl 1, (2002), pp. 165–168.
- [129] C.Y. Koh, L.A. Welniak and W.J. Murphy: "Adoptive cellular immunotherapy: NK cells and bone marrow transplantation", *Histol. Histopathol.*, Vol. 15, (2000), pp. 1201–1210.
- [130] R.J. Jones: "Biology and treatment of chronic myeloid leukemia", Curr. Opin. Oncol., Vol. 9, (1997), pp. 3–7.
- [131] E. Jourdan, D. Maraninchi, J. Reiffers, E. Gluckman, B. Rio, J.P. Jouet, M. Michallet, L. Molina, E. Archimbaud, J.L. Harousseau, N. Ifrah, M. Attal, F. Guilhot, M. Kuentz, D. Guyotat, J.L. Pico, C. Dauriac, M. Legros, F. Dreyfus, P. Bordigoni, V. Leblond, N. Gratecos, B. Varet, C. Auzanneau and D. Blaise: "Early allogeneic transplantation favorably influences the outcome of adult patients suffering from acute myeloid leukemia. Societe Francaise de Greffe de Moelle (SFGM)", Bone Marrow Transplant., Vol. 19, (1997), pp. 875–881.
- [132] L.F. Verdonck, A.W. Dekker, H.M. Lokhorst, E.J. Petersen and H.K. Nieuwenhuis: "Allogeneic versus autologous bone marrow transplantation for refractory and recurrent low-grade non-Hodgkin's lymphoma", *Blood*, Vol. 90, (1997), pp. 4201–4205.
- [133] K.G. Lerner, G.F. Kao, R. Storb, C.D. Buckner, R.A. Clift and E.D. Thomas: "Histopathology of graft-vs.-host reaction (GvHR) in human recipients of marrow from HL-A-matched sibling donors", *Transplant. Proc.*, Vol. 6, (1974), pp. 367–371.
- [134] H.J. Kolb and E. Holler: "Adoptive immunotherapy with donor lymphocyte transfusions", Curr. Opin. Oncol., Vol. 9, (1997), pp. 139–145.
- [135] L.S. de, V, N. Riche, G. Dorothe and M. Bruley-Rosset: "CD8+ cytotoxic T cell repertoire implicated in grafts-versus-leukemia effect in a murine bone marrow transplantation model", *Bone Marrow Transplant.*, Vol. 23, (1999), pp. 951–958.
- [136] E. Holler, B. Ertl, R. Hintermeier-Knabe, M.G. Roncarolo, G. Eissner, F. Mayer, P. Fraunberger, U. Behrends, W. Pfannes, H.J. Kolb and W. Wilmanns: "Inflam-

- matory reactions induced by pretransplant conditioning an alternative target for modulation of acute GvHD and complications following allogeneic bone marrow transplantation?", *Leuk. Lymphoma*, Vol. 25, (1997), pp. 217–224.
- [137] C. Ibisch, G. Gallot, R. Vivien, E. Diez, F. Jotereau, R. Garand and H. Vie: "Recognition of leukemic blasts by HLA-DPB1-specific cytotoxic T cell clones: a perspective for adjuvant immunotherapy post-bone marrow transplantation", *Bone Marrow Transplant.*, Vol. 23, (1999), pp. 1153–1159.
- [138] B.D. Johnson, E.E. Becker and R.L. Truitt: "Graft-vs.-host and graft-vs.-leukemia reactions after delayed infusions of donor T-subsets", *Biol. Blood Marrow Trans-plant.*, Vol. 5, (1999), pp. 123–132.
- [139] S. Slawin, E. Naparstek, A. Nagler, A. Ackerstein, J. Kapelushnik and R. Or: "Allogeneic cell therapy for relapsed leukemia after bone marrow transplantation with donor peripheral blood lymphocytes", *Exp. Hematol.*, Vol. 23, (1995), pp. 1553–1562.
- [140] M. Zeis, L. Uharek, B. Glass, W. Vosskotter, P. Dreger, N. Schmitz and J. Steinmann: "Eradication of residual disease by administration of leukemia-specific T cells after experimental allogeneic bone marrow transplantation", Exp. Hematol., Vol. 26, (1998), pp. 1068–1073.
- [141] Y. Yan, P. Steinherz, H.G. Klingemann, D. Dennig, B.H. Childs, J. McGuirk and R.J. O'Reilly: "Antileukemia activity of a natural killer cell line against human leukemias", *Clin. Cancer Res.*, Vol. 4, (1998), pp. 2859–2868.
- [142] B. Glass, L. Uharek, M. Zeis, H. Loeffler, W. Mueller-Ruchholtz and W. Gassmann: "Graft-versus-leukaemia activity can be predicted by natural cytotoxicity against leukaemia cells", *Br. J. Haematol.*, Vol. 93, (1996), pp. 412–420.
- [143] S.S. Farag, T. Fehniger, L. Ruggeri, A. Velardi and M.A. Caligiuri: "Natural killer cells: biology and application in stem-cell transplantation", *Cytotherapy*, Vol. 4, (2002), pp. 445–446.
- [144] L. Ruggeri, M. Capanni, M. Casucci, I. Volpi, A. Tosti, K. Perruccio, E. Urbani, R.S. Negrin, M.F. Martelli and A. Velardi: "Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation", *Blood*, Vol. 94, (1999), pp. 333–339.
- [145] L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W.D. Shlomchik, A. Tosti, S. Posati, D. Rogaia, F. Frassoni, F. Aversa, M.F. Martelli and A. Velardi: "Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants", Science, Vol. 295, (2002), pp. 2097–2100.
- [146] L. Ruggeri, M. Capanni, M.F. Martelli and A. Velardi: "Cellular therapy: exploiting NK cell alloreactivity in transplantation", *Curr. Opin. Hematol.*, Vol. 8, (2001), pp. 355–359.
- [147] M.A. Caligiuri, A. Velardi, D.A. Scheinberg and I.M. Borrello: "Immunotherapeutic approaches for hematologic malignancies", *Hematology. Am. Soc. Hematol. Educ. Program*, (2004), pp. 337–353.
- [148] A. Velardi, L. Ruggeri, M. Capanni, A. Mancusi, K. Perruccio, F. Aversa and M.F. Martelli: "Immunotherapy with alloreactive natural killer cells in haploidentical

- haematopoietic transplantation", Hematol. J., Vol. 5, Suppl 3, (2004), pp. S87–S90.
- [149] S. Arai and H.G. Klingemann: "Natural killer cells: can they be useful as adoptive immunotherapy for cancer?", *Expert. Opin. Biol. Ther.*, Vol. 5, (2005), pp. 163–172.
- [150] H.G. Klingemann: "Relevance and potential of natural killer cells in stem cell transplantation", *Biol. Blood Marrow Transplant.*, Vol. 6, (2000), pp. 90–99.
- [151] H.G. Klingemann: "Natural killer cell-based immunotherapeutic strategies", Cytotherapy, Vol. 7, (2005), pp. 16–22.
- [152] I.A. Voutsadakis: "NK cells in allogeneic bone marrow transplantation", Cancer Immunol. Immunother., Vol. 52, (2003), pp. 525–534.