

Central European Journal of Biology

Biological activity of microalgae can be enhanced by manipulating the cultivation temperature and irradiance

Review Article

Gergana V. Gacheva, Liliana G. Gigova*

Department of Experimental Algology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

Received 22 October 2013; Accepted 26 March 2014

Abstract: The escalating levels of antibiotic resistance among pathogenic bacteria and the side effects of chemotherapeutic drugs in use forced the efforts of scientists to search for natural antimicrobial and anticancer substances with novel structures and unique mechanism of action. Focusing on bioproducts, recent trends in drug research have shown that microalgae (including the cyanobacteria) are promising organisms to furnish novel and safer biologically active compounds. Many microalgal metabolites have been found to possess potent antibacterial, antifungal, antiviral, anticancer and antiinflammatory activities, as well as antioxidant, enzyme inhibiting and immunostimulating properties. In this paper, the studies on the biological activity of microalgae associated with potential medical and pharmaceutical applications are briefly presented. Attention is focused on the impact of cultivation temperature, irradiance and growth stage on the biomass accumulation, activity and pathways of cell metabolism and the possibilities of using these variable factors to increase the diversity and quantity of biologically active substances synthesized by microalgae.

Keywords: Antibacterial • Anticancer • Antifungal • Biologically Active Metabolites • Growth Stage

© Versita Sp. z o.o.

1. Introduction

Microalgae are a large and heterogenous group photoautotrophic microorganisms, includina species from different phyla - Cyanophyta (bluegreen algae, cyanoprokaryotes, cyanobacteria), Chlorophyta (green algae), Rhodophyta (red algae), Cryptophyta, Haptophyta, Pyrrophyta, Streptophyta, Heterokontophyta. Microalgae exhibit remarkable ecological plasticity, namely the ability to adapt to changing and frequently extreme environmental conditions such as temperature, light, salinity, pH and moisture, which defines their worldwide distribution [1,2]. To survive in a complex and competitive environment, these organisms have developed adaptive and defense strategies that are related to the synthesis of various, some of which are unique, compounds from different metabolic pathways. Due to their extraordinary and diverse biosynthetic potential, and the possibility for controlled cultivation, microalgae are increasingly being used for biomass production and as a source of a vast range of valuable substances of industrial, ecological and pharmaceutical interest (reviewed by [3-5]).

2. Studies on the biological activity of microalgae associated with potential medical and pharmaceutical applications

A substance with antibacterial activity was first isolated from *Chlorella* in 1944. A fatty acid mixture, named "chlorellin" was shown to inhibit the growth of both

Gram-positive and Gram-negative bacteria [6]. Since then, microalgae have become the focus of extensive screening of extracts and metabolites with potent biological activities that could lead to discovery of useful natural pharmacological agents.

Among cyanobacteria, the most studied for their biological activities are Arthrospira platensis, Aphanizomenon flos-aquae and representatives of the genera Anabaena, Fischerella, Hapalosiphon, Leptolyngbya, Nodularia, Nostoc, Oscillatoria, Phormidium, Synechococcus, Synechocystis, Stigonema, Tolypothrix and Symploca. Biologically active metabolites in cyanobacteria belong to the groups of peptides, lipopeptides, fatty acids, polyketides, amides, lactones, alkaloids, terpenes, carbohydrates, amino acid derivatives, terpenoids, aromatic substances, etc. The majority of these metabolites are accumulated in cells but some are released into the medium. Examples of biologically active extracellular metabolites are: five antibacterial diterpenoids from Nostoc commune, one of which having also cytotoxic and molluscicidal activities [7] (Table 1), a brominated indole alkaloid of Anabaena constricta that possesses antimicrobial activity [8], antifungal peptides from Tolypotrix byssoidea [9], or the broad spectrum antibacterial and antifungal substance "parsiguine" excreted by Fischerella ambigua, collected from paddy fields [10]. Brazilian cyanobacterial isolates produce antimicrobial nonribosomal peptides [11]. Antimicrobial fatty acids and volatiles have been detected in lipophilic extracts from Synechocystis sp. [12]. The cell-free culture liquids, water and ethanol cellular extracts, fatty acid mixtures and polysaccharides from Synechocystis sp., Gloeocapsa sp. and Nostoc entophytum inhibit the growth of selected pathogenic bacteria and fungus Candida albicans, with the exopolysaccharides having the strongest activity [13]. C-phycocyanin, a light-harvesting protein pigment, isolated from Synechocystis sp. and Arthrospira fusiformis has activity against S. typhimurium and C. albicans [13]. Arthronema africanum synthesizes high amounts of C-phycocyanin which shows antitumor action [Gardeva et al., submitted for publication]. The C-PC from Spirulina (Arthrospira) platensis is known to have various biological activities and pharmacological properties, such as antibacterial [14], antifungal, antiviral [15] and anticancer [16] activities, anti-inflammatory, fibrinolytic [17], antidiabetic [18], anti-oxidant and free radical scavenging properties [19]. The isolated free fatty acids of Gloeocapsa sp. and Synechocystis sp. are found to have high activity against a human cervical carcinoma cell line (HeLa), with IC_{50} values lower than 15 μg mL-1 [20]. The acidic polysaccharide "nostoflan" has been isolated as an antiviral agent (against HSV-

1) from Nostoc flagelliforme [21]. A lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii NIES-204 potently inhibits HIV replication in MT-4 cells [22]. The cosmopolitan freshwater cyanobacterium Heteroleiblenia kuetzingii produce intracellular and extracellular compounds, toxic to several mouse and fish cell lines [23]. Dolastatins (pseudopeptides) are an interesting group of biologically active metabolites, isolated from marine cyanoprokaryotes, mainly from the genera Lyngbya, Oscillatoria and Symploca [24]. Dolastatins are the basis for the development of synthetic drug analogues having better pharmacological and pharmacokinetic properties in the treatment of different cancer types [25]. Largazole, the most powerful known natural inhibitor of class I histone deacetylases, is a cyclic depsipeptide isolated from Symploca. It shows remarkable in vivo anticancer and osteogenic activities [26].

Chlorophytic microalgae are also rich sources of substances with antimicrobial, antiviral, cytotoxic and immunostimulating activities (Table 1). El Semary et al. [27] have reported on the antibacterial activity of lipophilic extracts from Chlorococcum sp. and defined palmitic (hexadecanoic) acid as the active agent. The phenolic compounds and main pigments (β-carotene and chlorophyll) of Chlorococcum himicola cells show a osedependent negative effect on microbial growth [28]. Water and ethanol extracts from ten green microalgae of the genera Chlorella, Desmococcus and Scenedesmus exhibit significant antibacterial (against Gram-positive and Gram-negative bacteria) and antitumor (against four tumor cell lines) activities [29]. The authors have found variation in the activity among the strains from the same species and suggested this is due to strain differences or to the different physiological state of the cultures. The fatty acid mixtures from the Bulgarian isolates Chlorella sp. and Coelastrella sp. are shown to have significant activity against the HeLa cells [20]. Water, ethanol and hexane extracts and polysaccharide rich fraction of Haematococcus pluvialis and Dunaliella salina, widely used as carotenoid sources, are active against HSV-1 [30]. The antiviral activity of the ethanol extracts was linked to the presence of short-chain fatty acids, β-ionone, neophytadiene, phytol, palmitic and α-linolenic acids. The astaxanthin rich extract from H. pluvialis inhibit the growth of five cancer cell lines-HCT-116, HT-29, LS-174, WiDr and SW-480 [31]. Carotenoids from Chlorella ellipsoidea and Chlorella vulgaris also inhibit the proliferation of HCT-116 tumor cells with low values of the concentration, required for 50% inhibition (IC₅₀ of 40.73 \pm 3.71 and 40.31 \pm 4.43 μg mL-1, respectively) [32]. Violaxanthin, a pigment isolated from *Dunaliella tetriolecta*, has a dose-dependent

 Table 1. Microalgae, active compounds which they produce, and biological activities and pharmacological properties of these compounds.

phylum/species	active compound	activity	reference
Cyanophyta			
Nostoc commune	diterpenoids	antibacterial, molluscicidal	[7]
Anabaena constricta	indole alkaloid	antimicrobial	[8]
Tolypotrix byssoidea	peptides	antifungal	[9]
Fischerella ambigua	"parsiguine"	antibacterial, antifungal	[10]
Brazilian isolates	nonribosomal peptides	antimicrobial	[11]
Synechocystis sp.	fatty acids, volatiles	antimicrobial	[12]
Gloeocapsa sp.	exopolysaccharide fatty acid mixture	antibacterial, antifungal anticancer anticancer	[13] [20] [20]
Synechocystis sp.	exopolysaccharide C-phycocyanin fatty acid mixture	antibacterial, antifungal antibacterial, antifungal anticancer	[13] [13] [20]
Spirulina platensis	C-phycocyanin	antibacterial antifungal, antiviral anticancer anti-inflammatory, fibrinolytic antidiabetic	[14] [15] [16] [17] [18]
Nostoc flagelliforme	"nostoflan" (polysaccharide)	antiviral (HSV-1)	[21]
Oscillatoria agardhii	lectin	antiviral (HIV)	[22]
Lyngbya, Symploca, Oscillatoria	dolastatins (pseudopeptides)	anticancer	[24]
Symploca	largazole (cyclic depsipeptide)	anticancer, osteogenic	[26]
Chlorophyta			
Chlorella	"chlorellin" (fatty acid mixture)	antibacterial (Gram+ and Gram-)	[6]
Chlorococcum sp.	palmitic acid	antibacterial	[27]
Chlorococcum himicola	phenolic compounds, β-carotene, chlorophyll	antibacterial	[28]
Chlorella, Desmococcus, Scenedesmus	water and ethanol extracts	antibacterial, antitumor	[29]
Chlorella sp., Coelastrella sp.	fatty acid mixture	anticancer	[20]
Haematococcus pluvialis, Dunaliella salina	β-ionone, phytol, neophytadiene, palmitic acid, α-linolenic acid	antiviral (HSV-1)	[30]
Haematococcus pluvialis	astaxanthin exopolysaccharide	anticancer immune stimulating	[31] [35]
Chlorella ellipsoidea, Chlorella vulgaris	carotenoids	anticancer	[32]
Dunaliella tetriolecta	violaxanthin	anticancer	[33]
Chlorella vulgaris	glycoprotein	antimetastatic and immunopotentiating	[34]
Rhodophyta			
Porphyridium sp.	exopolysaccharide	antiretroviral antiinflammatory	[36] [39]
Porphyridium cruentum	exopolysaccharide	anticancer	[37]
	B-phycoerythrin	antidiabetic antibacterial, antifungal antitumor	[38] [13] [41]
		artitarioi	[]
Rhodella reticulata	exopolysaccharide	antibacterial, antifungal antioxidant anticancer	[13] [40] [37]

Table 1. Microalgae, active compounds which they produce, and biological activities and pharmacological properties of these compounds.

Heterokontophyta			
Phaeodactylum tricornutum	hexadecenoic and hexadecatrienoic acids eicosapentaenoic acid	antibacterial (Gram ⁺) antibacterial	[43] [44]
Cymbella sp.	phlorotannins	antibacterial	[45]
Haslea ostrearia	marennine	antitumor antiviral, anticancer	[46] [47]
Melosira, Amphora, Phaeodactylum, Nitzschia	aqueous extracts	anticancer, antithrombogenic	[48]
Navicula directa	"naviculan" (polysaccharide)	antiviral	[49]

suppressing effect on MCF-7 cancer cells even at a very low concentration (0.1 µg mL-1) [33]. A glycoprotein prepared from Chlorella vulgaris protective supernatant exhibits activity against tumor metastasis and chemotherapy-induced immunosuppression in mice [34]. The sulfated exopolysaccharide Haematococcus of lacustris (H. pluvialis) is reported to have potent early innate immune stimulating activities by enhancing the expression of TNF-α, COX-2 and iNOS in murine macrophage cells [35].

The highly sulfated polysaccharides produced by the red microalgae *Porphyridium cruentum* and/ or *Rhodella reticulata* are known to be active against pathogenic bacteria and the fungus *Candida albicans* [13], retroviruses [36], MCF-7 and HeLa human cell lines [37], and diabetes in mice [38] (Table 1). Their anti-inflammatory [39] and antioxidant potential [40] is also known. Minkova *et al.* [41] have established high selective *in vitro* activity of B-phycoerythrin from *Porphyridium cruentum* against the cells of myeloid Graffi tumor in hamsters. This biliprotein pigment has also a promising antibacterial and antifungal potential [13]. It has been reported that R-phycoerythrin of *Gracilaria lemaneiformis* can scavenge free radicals and exhibits antitumor activity [42].

Extracts from the marine diatom *Phaeodactylum tricornutum* exhibit antibacterial activity. Hexadecanoic and hexadecatrienoic fatty acids are responsible for growth inhibition of Gram-positive bacteria [43] (Table 1.), while the eicosapentaenoic fatty acid is active against a range of both Gram-positive and Gram-negative bacteria, including multi-resistant *Staphylococcus aureus* [44]. Similarly, organic and aqueous extracts from *Cymbella* sp. and the isolated phlorotannins show activity against six different species of pathogenic microorganisms [45]. Marennine, a hydrosoluble bluegreen pigment synthesised and excreted by *Haslea ostrearia* has an antiproliferative effect on three solid tumor cell lanes [46], and also exhibits antibacterial (*Vibrio aesturianus*), antiviral (HSV1) and anticancer

activities [47]. Extracts from marine benthic diatoms of the genera *Melosira*, *Amphora*, *Phaeodactylum* and *Nitzschia* are reported to induce leukemia cell death and to contain inhibitors of blood platelet activation [48]. Naviculan, a sulfated polysaccharide isolated from the deep-sea water diatom *Navicula directa* has a broad antiviral spectrum against enveloped viruses [49].

Literature review and the representative examples listed in Table 1 show that the polysaccharides, fatty acids and pigments/pigment derivatives synthesized by microalgae from different phyla exhibit biological activity. However, when prepared from a variety of sources, each of these compounds shows a different potential and spectrum of activity. This is associated with the interspecies difference in the physicochemical characteristics of the compound, such as molecular weight, composition, chain conformation, as well as the specificity of the experimental test models. On the other hand, the production of certain bioactive compounds is determined by the taxonomic position of microalgae. Phycobiliproteins (phycoerythrins and phycocyanins), for example, are accessory light-harvesting protein pigments, characteristic of Cyanophyta, Rhodophyta and Cryptophyta. Cyanoprokaryotes are a source of structurally novel cyclic peptides and depsipeptides (reviewed in [50]). Phlorotannins are a type of tannins that is found in some Heterokontophyta algae. Only the diatom Haslea ostrearia is shown to synthesize the pigment marennine.

Some of the studies on biological activity have been conducted with microalgae collected directly from their natural habitat. Often this biomass is a mixture of several species, making uncertain the origin of each isolated natural product. Using cultured microalgae has several advantages over field collections. Controlled culture conditions allow investigation of species that cannot reach adequate density in nature; ensure purity of the unialgal biological material; provide a possibility for fast and repetitive biomass production, as well as an opportunity to explore and use the effect of cultivation conditions on biomass accumulation, its biochemical

composition, and most importantly, on the synthesis of bioactive metabolites.

3. Effect of cultivation temperature, irradiance and their interaction on the growth and metabolic activity of microalgae

The effects of environmental factors on the growth of microalgae, their physiological and metabolic responses are determined by biochemical processes under genetic control [51,52]. The main physical factors regulating cell growth and metabolic activity are temperature and light intensity.

The effect of temperature is associated mainly with changes in cellular structural components (especially lipids and proteins) and reaction rates. As a consequence of these primary effects, there are also secondary effects on metabolic regulatory mechanisms, specificity of enzyme reactions, cell permeability and cell composition [53]. Low temperatures lead to a decrease in enzyme activity, membrane fluidity and electron transfer in electron transport chains thus resulting in a decrease of photosynthesis, respiration and subsequently in the growth reduction of algal cultures [1]. To survive, cells trigger different mechanisms such as an increase in enzyme synthesis [54], restoring the fluidity of membranes by increasing the proportion of unsaturated to saturated fatty acids, an increase of cis-double bonds and shortening of fatty acid chains [55,56]. Reduction of algal growth at high temperatures is related to denaturation and degradation of some proteins [57], disturbed functions of cell membranes due to changes in their composition and physical state [58], reduced functionality of the photosynthetic machinery especially of photosystem II (PSII) [59], decreased RUBISCO activity and/or its activase and stimulated respiration [60].

Photosynthetically active radiation (light) is the driving force for photosynthesis. Changes in light intensity induce a physiological response, called photoacclimation, in the course of which algal cells undergo dynamic changes in their ultrastructure, composition, biophysical and physiological properties, to optimize light harvesting and energy utilization [61,62]. At low light intensities, cells maximize the use of available light by increasing cellular pigmentation [62-64]. To avoid the harmful effects of excess energy at high irradiance, cells decrease their chlorophyll and accessory pigment contents [62], increase the amount of photoprotective carotenoids [65], and accumulate storage compounds [61,66]. In addition to the downregulation of photosystem I (PSI) content,

some cyanobacteria have developed an interesting mechanism to decrease intracellular light energy by synthesizing effective "sun-blocking" pigments such as the indole-alkaloid scytonemin and myxoxanthophyll.

Although the interaction between light intensity and temperature plays an important role for algal growth and metabolic regulation, the knowledge of this interaction is limited. The influence of temperature on growth and biochemical composition depends on the irradiance level and vice versa [63,67-69]. For most algae, the combinations of high temperatures with high light intensities or low temperatures with high irradiance levels are unfavorable conditions at which negligible growth is observed. In general, changes in temperature and irradiance affect photosynthesis, thus altering carbon fixation and the allocation of carbon into different types of macromolecules. The effects of environmental factors, including temperature and light, as well as their cross-interactions on the biochemical composition of microalgae have been recently reviewed in Juneja et al. [70]. Species-specific responses of cultured algae are observed, indicating different metabolic regulation that may reflect differences in the growth conditions of the native habitats of each species.

4. Effects of cultivation temperature, irradiance and growth phase on the biological activity of microalgae

4.1 Effects of temperature, irradiance and their interaction on the cyanobacterial biological activity

The effects of the temperature and irradiance on the growth and synthesis of biologically active substances are best studied in the cyanoprokaryotes. The response to changing temperatures and light intensities is found to be species-dependent and even strain-specific. Some species produce the greatest amount of bioactive metabolites at optimal growth temperature and/or irradiance. The optimal temperature for growth and synthesis of toxins in Planktothrix agardhii is 25°C [71]. In Microcystis aeruginosa (Kützing, UTEX 2667) maximum growth and production of microcystins are reached at 26°C and light intensity of 2×112 µmol m⁻² s⁻¹ [72]. Noaman et al. [73] report that the optimal temperature for growth and production of an antimicrobial substance in Synechococcus leopoliensis is 35°C. Extracellular filtrates from Anabaena sp. and Calothrix sp., cultivated at the most favorable conditions for growth of light intensity (90-100 µmol photons m-2 s-1) and temperature (40±2°C) show the highest activity against the phytopathogens Rhizoctonia bataticola and Pythium debaryanum [74]. When the cultivation temperature is lowered, the inhibiting effect of Anabaena sp. filtrate on R. bataticola is weaker (at 27°C) or even absent (at 20°C). A similar effect of temperature decrease on the fungicidal activity of several Anabaena strains is described by Chaudhary et al. [75]. For two Nodularia spumigena strains [76] and Microcystis aeruginosa [77] the highest toxin concentration and the best growth are observed at the same irradiance. In Spirulina sp. isolated from Wadi El Natron lake, Egypt, the best growth is registered at 30°C and 48.4 µmol photons m⁻² s⁻¹, which coincides with the maximum accumulation of some bioactive compounds (ß-carotene and phycobiliproteins), while the content of total lipids is enhanced by the lower light intensity (14.52) μ mol photons m⁻² s⁻¹) [78].

However, the conditions for optimal growth often do not coincide with the optimal conditions for the production of bioactive substances. Many authors have found that the optimal temperature for synthesis of biologically active metabolites is lower than the optimal growth temperature. Maximal concentration of cylindrospermopsin in Cylindrospermopsis raciborskii cultures is detected at 20°C but optimal growth is achieved at 35°C [79]. Oscillatoria angustissima and Calothrix parietina produce antibiotics, inhibiting the growth of natural isolates of cyanobacteria and green algae, several bacteria and fungi. High amounts of the antibiotic substances (70.9 and 82.5 mg g-1 biomass for O. angustissima and C. parietina, respectively) are synthesized at 25°C, while algal biomass, chlorophyll a and protein content increase with temperature increase up to 30°C [80]. Suboptimal growth temperatures (15-26°C) stimulate antibacterial activity and citotoxicity against HeLa cells of the exopolysaccharides (EPS) from Gloeocapsa sp. The higher activity is related not only to increased quantity of high molecular weight polysaccharides, but also to qualitative changes in the EPS obtained under these conditions [81]. Gloeocapsa sp., grown at three different temperatures (15, 34 and 38°C) under two light intensities (132 and 2×132 µmol photons m⁻² s⁻¹), has identical fatty acid profiles, but the relative content of individual fatty acids varies among cultivation conditions. The fatty acid mixtures, obtained at 15°C under both irradiance levels, contain higher amounts of alpha-linolenic and stearic acids compared to other samples and show highest activity against bacteria and HeLa cells [81]. Like Gloeocapsa sp., in Phormidium sp. the suboptimal growth temperature (30°C) is associated with growth retardance and considerable production of extracellular biologically active compounds [82]. Novel compounds, the cyanothecamides A, B and C, are detected in Cyanothece PCC 7425 only when the strain is subjected to a heat shock at 37°C for 24 h [83]. Maximal toxin production at light intensity lower than that needed for maximal growth is also described. Anabaena strain 90 produces three types of bioactive peptides, namely microcystins, anabaenopeptilides and anabaenopeptines [84]. The highest peptide concentration is achieved after 13-day cultivation under light intensity of 23 µmol photons m⁻² s⁻¹, while growth is better under higher irradiance and prolonged cultivation. The biomass of Planktothrix agardhii does not change significantly under different illumination levels, while the intracellular concentration of toxins is higher at lower light intensities (12-24 µmol m⁻² s⁻¹) [71]. A similar effect of irradiance on production of microcystin (MC) and nostophycin (NP) from Nostoc sp. strain 152 was observed by Kurmayer [85]. Both intra- and extracellular MC and NP concentrations are negatively correlated with irradiance. The antibacterial activity of water cellular extract and EPS from Synechocystis sp. R10, and the toxicity of its fatty acids against HeLa cells, are enhanced by lower light intensities that are less favorable for growth (132 µmol photons m⁻² s⁻¹). In contrast, the cytotoxicity of water extracts and culture liquids of Synechocystis sp. R10 is greater after cultivation at higher (doubled) light intensity [86]. In Scytonema, increasing irradiance levels gradually increases antibiotic production [87]. The increase of light intensity stimulates the secretion of polymeric substances from Arthrospira platensis [68] and improves its carotenoid content [88].

The combination of temperature and irradiance also significantly affects toxin content in cultures and the expression of biological activity of cyanobacteria. The highest content of extracellular toxin from Nodularia spumigena is detected at the highest values of both parameters (30°C, 80 µmol m⁻² s⁻¹) [89]. In contrast, for Anabaena sp. strains high temperatures (25-30°C) together with higher light intensity (100 µmol m⁻² s⁻¹) reduces the amount of cellular toxins [90]. Low light intensity (10 µmol m⁻² s⁻¹) in combination with low temperature (10°C) significantly enhances the production of inhibitory metabolites by Fischerella muscicolla UTEX 1829 [91]. Synechocystis sp. R10, grown at 26 and 32°C (temperatures that are optimal under low light intensity and suboptimal at high light intensity) exhibits the strongest bioactivity [86].

4.2 Effects of growth phase on the biological activity of cyanoprokaryotes

The relationship between synthesis of biologically active substances and growth phase is also species-dependent.

Saker and Griffiths [79] have reported a considerable cylindrospermopsin enhancement of production and excretion in two isolates of Cylindrospermopsis raciborskii when entering stationary phase. Chaudhary et al. [75], showed that their oldest (4-week-old) Anabaena cultures incubated under continuous light and high temperature (40°C) had highest fungicidal and hydrolytic enzyme activity. Anabaena laxa synthesizes a cyclic peptide, responsible for fungicidal activity against Pythium debaryanum, and its production increases when the cyanobacterium reaches stationary phase (28d) [92]. Volk [93] reported changes in the content of exometabolites of the cyanobacterium Nostoc insulare with growth phase. During the exponential growth phase, a nontoxic metabolite is prevalent, while in the stationary phase the content of antimicrobial, cytotoxic metabolites increases. Aging is determined as an important factor for increasing EPS production by Phormidium tenue [94]. Maximal antimicrobial activity of Synechococcus leopoliensis [73] and Oscillatoria and Calothrix [80] is detected in the post-exponential growth stage. A more continuous cultivation of Gloeocapsa sp. results in increased antibacterial, antifungal and cytotoxic activities of its EPS [81]. For Synechocystis sp. R10, entering the stationary growth phase is related to a broader antimicrobial spectrum and enhanced activity of the intracellular water soluble metabolites against microbes and HeLa cells, while the substances excreted in the medium have a weaker antimicrobial potential in comparison to samples from the exponential phase [86]. The freshwater cyanobacteria Oscillatoria sp. BTCC/ A0004 and Scytonema sp. TISTR 8208 release into the medium a pink pigment that inhibits the growth of the green microalgae Chlorella fusca and Chlamydomonas reinhardtii. The synthesis of this pigment occurs during active cell growth for both strains and it decreases with prolonged cultivation [95]. An extracellular substance from Oscillatoria sp. suppresses the green alga Chlorella vulgaris and this allelopathic action is stronger in the early growth stages of the cyanoprokaryote [96]. Linear dependence between the production rate of anabaenopeptines and microviridin I and growth rate of Planktothrix agardhii determines growth activity as being an important regulator of production of these bioactive oligopeptides [97].

4.3 Effects of cultivation temperature, irradiance and growth phase on biological activity of eukaryotic microalgae

The effect of temperature and/or irradiance and growth stage on the synthesis of bioactive metabolites in eukaryotic microalgae has also been studied, although to a lesser extent. Light intensity is a determining factor for biosynthesis and accumulation of both EPS and phycobiliproteins in Porphyridium purpureum [98] where a direct linear dependence between biosynthesis of EPS and light intensity (from 1.3 g L⁻¹ at 120 µmol m⁻² s⁻¹ to 4.5 g L-1 at 240 µmol m-2 s-1) was found. In contrast, a four- to tenfold increase in each of the phycobiliprotein compounds (phycoerythrin, R-phycocyanin and allophycocyanin) occurred when light irradiance was reduced from 240 to 120 µmol m⁻² s⁻¹. Haematococcus pluvialis grown at low light intensity accumulates biomass rapidly, but no significant production of carotenoids in the growing cells is observed. Under stress conditions such as high temperature, high light intensity, salt stress or nutrient deficiency, cell proliferation is suppressed and resting spores (aplanospores) are formed, accompanied by intensive production of carotenoids (mainly astaxanthin) [99,100]. High temperature (38.5°C) and high light intensity (770 µmol m⁻² s⁻¹) favour the accumulation of β-carotene in Dunaliella salina [101]. Mendoza et al. [102] reported the induction of carotenogenesis and accumulation of polyunsaturated fatty acids in Dunaliella salina subjected to a suboptimal (18°C) growth temperature. Growth-limiting temperature (33°C) is found to stimulate carotenogenesis in Muriellopsis sp. as the lutein content per cell increases about sixfold compared to the optimal temperature (28°C) [103]. Sánchez et al. [104] studied the influence of interactions between irradiance and temperature on growth and lutein content of Scenedesmus almeriensis. Maximum biomass productivity was reached at 33°C and 1700 μmol m⁻² s⁻¹, while 44°C and 1233 μmol m⁻² s⁻¹ are the optimal conditions for lutein accumulation. In Chlorella zofingiensis strain CCAP 211/14, however, the optimal temperatures for accumulation of total carotenoids coincide with those for optimal growth (between 24°C and 28°C), with a maximum value at 24°C for astaxanthin and at 28°C for lutein. Astaxanthin is most abundant at light intensities optimal for cell growth (460 and 920 µmol photons m⁻² s⁻¹). In contrast, lutein content was about 2-fold higher in cells cultured at a lower (90 µmol photon m⁻² s⁻¹) irradiance. Lutein is the prevalent carotenoid during early stages of cultivation of C. zofingiensis (over 4 mg g⁻¹ dry weight), whereas astaxanthin accumulates progressively, to reach a maximum (1.5 mg g-1 dry weight) in the late stationary phase [105]. Accumulation of polysaccharides in the microalga Porphyridium cruentum is highly stimulated in the late exponential to stationary phase [106]. In outdoor mass cultivation of Parietochloris incisa, which is considered the greatest plant producer of arachidonic acid (AA), light intensity of 250 µmol photons m-2 s-1 limits growth but favors accumulation of AA, while at high irradiance levels

(2 500 µmol photons m⁻² s⁻¹) growth is stimulated but the AA content is low [107]. Solovchenko et al. [108] found that changes in lipid metabolism under the combined impact of lower light intensity and nitrogen deficiency are crucial for the synthesis of AA from that green microalga. At higher irradiances (200 and 400 µmol m⁻² s-1) on complete medium, Parietochloris incisa displays a higher growth rate and an increase in the carotenoid content, especially that of β-carotene and lutein [109]. Compared to low light, high light conditions increase the proportion of PUFAs in the diatom Thalassiosira pseudonana [110]. In contrast, in the eustigmatophycean microalga Trachydiscus minutus the proportion of PUFAs decreases when light intensity and also temperature is increased [111]. Highest biomass and eicosapentaenoic acid (EPA) production by the diatom Phaeodactylum tricornutum is observed at temperatures of 21.5 to 23°C [112]. Unsaturated fatty acid biosynthesis can be stimulated by a number of environmental stresses, including low temperature stress. For example, the yields of PUFA and EPA increase by 120% in Phaeodactylum tricornutum when the temperature is changed from 25°C to 10°C for 12 h [113]. Similarly, the haptophycean Pavlova lutheri increases its relative EPA content from 20.3 to 30.3 M% and Isochrysis galbana has higher levels of α-linolenic acid and docosahexaenoic acid when the culture temperature is reduced to 15°C [114,115]. Cultivation of Porphyridium cruentum at low temperature (18°C) until reaching stationary growth stage results in accumulation of PUFAs (43.7% of total fatty acids), α- and y-tocopherol (vitamin E) in cells [116]. An increase in PUFAs is expected as these fatty acids have good flow properties and are predominately used in the cell membrane to maintain fluidity during low temperatures. With aging however, the proportion of PUFAs in total lipids decreases in the marine haptophyte Isochrysis galbana [117], the green algae Dunaliella salina [118] and Nannochloropsis oculata [119], and some diatoms [110,120]. In Nannochloropsis oculata, α-tocopherol content depends on the nitrogen source and concentration and also on the growth phase [121]. Increased synthesis of α -tocopherol during the life cycle is probably due to anincreased need for antioxidants in the process of cellular aging [122]. Exposure of Dunaliella tertiolecta to high light increases the production of ascorbic acid (Vitamin C) [123], known to have activity against cancer, atherosclerosis and as an immunomodulator. In the dinoflagellate microalga Prorocentrum belizeanum, the synthesis of a cytotoxic okadaic acid (OA) in cells is decoupled from the optimal growth conditions (25°C and 40 µmol m-2 s-1), as OA overproduction is observed at higher temperature (28°C) and when both the temperature and the irradiance are low (18°C and 20 µmol m⁻² s⁻¹) [124].

5. Conclusion

Based on the literature reviewed, the potential and spectra of biological activities of microalgal species differ. The variety and quantity of the synthesized biologically active substances are species-specific, but depend largely on environmental temperature and light, and on age of the culture, being therefore amenable to manipulation by changing growth conditions. The influence of these factors on biological activity is indirect and is a consequence of tightly regulated physiological-biochemical changes that occur in the cells in response to various impacts [51,52,55,83,91,100]. Some species produce maximal amounts of biologically active metabolites under optimal growth temperatures and/or light intensities. However, the highest amounts and/or the widest variety of such metabolites are often produced under stress conditions. This is associated with the role of some bioactive compounds, synthesized by stressaltered metabolic pathways, in providing survival benefits to the cells and their adaptation to adverse and competitive environments [51,64,68,88,93,95,100, 102,108,109,114]. The reduced accumulation of biomass under stress conditions can be overcome by biphasic cultivation - cells are first cultured under conditions optimal for growth and then subjected to the action of an appropriate stressor to induce accumulation of the respective valuable product. This technology is already used for the production of ß-carotene from Dunaliella salina [125], astaxanthin from Haematococcus pluvialis [126] and polyunsaturated fatty acids from different microalgae [127], but it has the potential for obtaining other biologically active substances. Advancements in the accumulation of knowledge of the physiology, biochemistry and molecular biology of the bioactive substance-producing species is undoubtedly useful for the development of microalgae-based processes and technologies. Identification of the appropriate cultivation conditions for any particular strain-producer could be an efficient approach for obtaining larger quantities of biologically active metabolites, as well as for detection and characterization of new substances with high activity and a broader action spectrum.

Acknowledgements

Research that is conducted on biological activities of selected microalgae in the author's and co-author's laboratories is supported by a research grant D002-299/2008 from the National Science Fund, Ministry of Education, Youth and Science, Bulgaria.

References

- [1] Falkowski P.G., Raven J.A., Aquatic Photosynthesis, Blackwell Science, Oxford, 1997
- [2] Al-Wathnani H., Johansen J.R., Cyanobacteria in soils from a Mojave desert ecosystem, Monographs Western North American Naturalist, 2011, 5, 71-89
- [3] Cardozo K.H.M., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., et al., Metabolites from algae with economical impact, Comp. Biochem. Physiol. C, 2007, 146, 60-78
- [4] Borowitzka M., High-value products from microalgae – their development and commercialisation, J. Appl. Phycol., 2013, 25, 743-756
- [5] Abd El Baky H.H., El-Baroty G.S., Healthy Benefit of Microalgal Bioactive Substances, J. Aquat. Sci., 2013, 1, 11-23
- [6] Pratt R., Daniels T.C., Eiler J.B, Gunnison J.B., Kumler W.D., Oneto J.F., et al., Chlorellin, an antibacterial substance from Chlorella, Science, 1944, 99, 351-352
- [7] Jaki B., Orjala J., Heilmann J., Linden A., Vogler B., Sticher O., Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune, J. Nat. Prod., 2000, 63, 339-343
- [8] Volk R.B., Girreser U., Al-Refai M., Laatsch H., Bromoanaindolone, a novel antimicrobial alkaloid from the cyanobacterium Anabaena constricta, Nat. Prod. Res., 2009, 23, 607-612
- [9] Jaki B., Zerbe O., Heilmann J., Sticher O., Two novel cyclic peptides with antifungal activity from the cyanobacterium Tolypothrix byssoidea (EAWAG 195), J. Nat. Prod., 2001, 64, 154-158
- [10] Ghasemi Y., Tabatabaei Yazdi M., Shafiee A., Amini M., Shokravi Sh., Zarrini G., Parsiguine, a novel antimicrobial substance from Fischerella ambigua, Pharm. Biol., 2004, 2, 318-322
- [11] Silva-Stenico M.E., Silva C.S.P., Lorenzia A.S., Shishido T.K., Etchegaray A., Lira S.P., et al., Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity, Microbiol. Res., 2011, 166, 161-175

- [12] Plaza M., Santoyo S., Jaime L., García-Blairsy Reina G., Herrero M., Señoráns F.J., et al., Screening for bioactive compounds from algae, J. Pharm. Biomed. Anal., 2010, 51, 450-455
- [13] Najdenski H., Gigova L., Iliev I., Pilarski P., Lukavský J., Tsvetkova I., et al., Antibacterial and antifungal activity of selected microalgae and cyanobacteria, Int. J. Food Sci. Technol., 2013, 48, 1533-1540
- [14] Sarada D., Kumar S.C., Rengasamy R., Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria, World J. Microbiol. Biotechnol., 2011, 27, 779-783
- [15] Murugan T., Radhamadhavan, Screening for antifungal and antiviral activity of C-phycocyanin from Spirulina platensis, J. Pharm. Res., 2011, 4, 4161-4163
- [16] Roy K.R., Arunasree K.M., Reddy N.P., Dheeraj B., Reddy G.V., Reddanna P., Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicin-resistant human hepatocellularcarcinoma cell line HepG2, Biotechnol. Appl. Biochem., 2007, 47, 159-167
- [17] Chung S., Jeong J.Y., Choi D.E., Na K.R., Lee K.W., Shin Y.T., C-phycocyanin attenuates renal inflammation and fibrosis in UUO Mice, Korean J. Nephrol., 2010, 29, 687-694
- [18] Ou Y., Lin L., Yang X., Pan Q., Cheng X., Antidiabetic potential of phycocyanin: Effects on KKAy mice, Pharm. Biol., 2013, 51, 539-544
- [19] Bhat V.B., Madyastha K.M., C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro, Biochem. Biophys. Res. Commun., 2000, 275, 20-25
- [20] Gigova L., Toshkova R., Gardeva E., Gacheva G., Ivanova N., Yossifova L., et al., Growth inhibitory activity of selected microalgae and cyanobacteria towards human cervical carcinoma cells (HeLa), J. Pharm. Res., 2011, 4, 4702-4707

- [21] Kanekiyo K., Hayashi K., Takenaka H., Lee J.B., Hayashi T., Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme, Biol. Pharm. Bull., 2007, 30, 1573-1575
- [22] Sato Y., Okuyama S., Hori K., Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii, J. Biol. Chem., 2007, 282, 11021-11029
- [23] Teneva I., Stoyanov P., Mladenov R., Dzhambazov B., In vitro and in vivo toxicity evaluation of the freshwater cyanobacterium Heteroleiblenia kuetzingii, Cent. Eur. J. Biol., 2013, 8, 1216-1229
- [24] Tan L.T., Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery, J. Appl. Phycol., 2010, 22, 659-676
- [25] Uzair B., Tabassum S., Rasheed M., Rehman S.F., Exploring marine cyanobacteria for lead compounds of pharmaceutical importance, ScientificWorldJournal, 2012, DOI: 10.1100/2012/179782
- [26] Hong J., Luesch H., Largazole: from discovery to broad-spectrum therapy, Nat. Prod. Rep., 2012, 29, 449-456
- [27] El Semary N.A., Ghazi S.M., Abd El Nabi M.M., Investigating the taxonomy and bioactivity of an Egyptian Chlorococcum isolate, Austr. J. Basic Appl. Sci., 2009, 3, 1540-1551
- [28] Bhagavathy S., Sumathi P., Jancy Sherene Bell I., Green alga Chlorococcum humicola – a new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed., 2011, S1–S7
- [29] Ördög V., Stirk W.A., Lenobel R., Bancířová M., Strnad M., van Staden J., et al., Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites, J. Appl. Phycol., 2004, 16, 309-314
- [30] Santoyo S., Jaime L., Plaza M., Herrero M., Rodriguez-Meizoso I., Ibañez E., et al., Antiviral compounds obtained from microalgae commonly used as carotenoid sources, J. Appl. Phycol., 2012, 24, 731-741
- [31] Palozza P., Torelli C., Boninsegna A., Simone R., Catalano A., Mele M.C., et al., Growthinhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells, Cancer Lett., 2009, 283, 108-117
- [32] Cha K.H., Koo S.Y., Lee D-Un, Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon

- cancer cells, J. Agric. Food Chem., 2008, 56, 10521-10526
- [33] Pasquet V., Morisset P., Ihammouine S., Chepied A., Aumailley L., Berard J-B., et al., Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tetriolecta extracts, Mar. Drugs, 2011, 9, 819-831
- [34] Hasegawa T., Noda K., Kumamoto S., Ando Y., Yamada A., Yoshikai Y., Chlorella vulgaris culture supernatant (CVS) reduces psychological stressinduced apoptosis in thymocytes of mice, Int. J. Immunopharmacol., 2000, 22, 877-885
- [35] Park J.K., Kim Z-H., Lee C.G., Sanytsya A., Jo H.S., Kim S.O., et al., Characterization and immunostimulating activity of a water soluble polysaccharide isolated from Haematococcus lacustris, Biotechnol. Bioprocess Eng., 2011, 16, 1090-1098
- [36] Talyshinsky M.M., Souprun Y.Y., Huleihel M.M., Anti-viral activity of red microalgal polysaccharide against retroviruses, Cancer Cell Int., 2002, 2, 8
- [37] Gardeva E., Toshkova R., Yossifova L., Minkova K., Gigova L., Monitoring the cytotoxic and apoptogenic potential of red microalgal polysaccharides, Biotechnol. Biotechnol. Equip., 2012, 26, 3167-3172
- [38] Huang J., Liu L., Yu Y., Lin W., Chen B., Li M., Reduction in the blood glucose level of exopolysaccharide of Porphyridium cruentum in experimental diabetic mice, J. Fujian Normal Univ., 2006, 22, 77-80
- [39] Matsui M.S., Muizzuddin N., Arad S., Marenus K., Sulfated polysaccharide from red microalgae have anti-inflammatory properties in vitro and in vivo, Appl. Biochem. Biotechnol., 2003, 104, 13-22
- [40] Chen B., You W., Huang J., Yu Y., Chen W., Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata, World J. Microbiol. Biotechnol., 2010, 26, 833-840
- [41] Minkova K.M., Toshkova R.A., Gardeva E.G., Tchorbadjieva M.I., Ivanova N.J., Yossifova L.S., et al., Antitumor activity of B-phycoerythrin from Porphyridium cruentum, J. Pharm. Res., 2011, 4, 1480-1482
- [42] Wen R., Sui Z., Zhang X., Zhang S., Qin S., Expression of the phycoerythrin gene of Gracilaria lemaneiformis (Rhodophyta) in E. coli and evaluation of the bioactivity of recombinant PE, J. Ocean Univ. China, 2007, 6, 373-377
- [43] Desbois A.P., Lebl T., Yan L., Smith V.J., Isolation and structural characterization of two antibacterial free fatty acids from the marine diatom

- Phaeodactylum tricornutun, Appl. Microbiol. Biotechnol., 2008, 81, 755-764
- [44] Desbois A.P., Meams-Spragg A., Smith V.J., A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA), Mar. Biotechnol., 2009, 11, 45-52
- [45] Al-Mola H.F., Antibacterial activity of crude extracts and phlorotannin isolated from the diatom Cymbella spp., J. Pharm. Res., 2009, 2, 304-308
- [46] Carbonnelle D., Pondaven P., Masse M.M., Bosch, G., Jacquot S., et al., Antitumor and antiproliferative effects of an aqueous extract from the marine diatom Haslea ostrearia (Simonsen) against solid tumors: lung carcinoma (NSCLC-N6), kidney carcinoma (E39) and melanoma (M96) cell lines, Anticancer Res., 1999, 19, 621-624
- [47] Gastineau R., Pouvreau J.B., Hellio C., Morançais M., Fleurence J., Gaudin P., et al., Biological activities of purified marennine, the blue pigment responsible for the greening of oysters, J. Agric. Food Chem., 2012, 60, 3599-3605
- [48] Prestegard S.K., Oftedal L., Coyne R.T., Nygaard G., Skjærven K.H., Knutsen G., et al., Marine benthic diatoms contain compounds able to induce leukemia cell death and modulate blood platelet activity, Mar. Drugs, 2009, 7, 605-623
- [49] Lee J.B., Hayashi K., Hirata M., Kuroda E., Suzuki E., Kubo Y., et al., Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay, Biol. Pharm. Bull. 2006, 29, 2135-2139
- [50] Moore R.E., Cyclic peptides and depsipeptides from cyanobacteria: a review, J. Ind. Microbiol., 1996, 16, 134-143
- [51] Guschina I.A., Harwood J.L., Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 2006, 45, 160-186
- [52] Los D.A., Suzuki I., Zinchenko V.V., Murata N., Stress responses in Synechocystis: regulated genes and regulatory systems, In: Herrero A., Flores E. (Eds.), Cyanobacteria: molecular biology, genomics, and evolution, Horizon Scientific Press, Norfolk, 2008
- [53] Richmond A., Cell response to environmental factors, In: Richmond A. (Ed.), Handbook of microalgal mass culture, CRC Press, Boca Raton, Florida, 1986
- [54] DeNicola D.M., Periphyton responses to temperature at different ecological levels, In: Stevenson R.J., Bothwell M.L., Lowe R.L. (Eds.), Algal Ecology: Freshwater Benthic Ecosystems, Academic Press, New York, 1996

- [55] Wada H., Murata N., Temperature-induced changes in the fatty acid composition of the cyanobacterium Synechocystis PCC6803, Plant Physiol., 1990, 92, 1062-1069
- [56] Iliev I., Petkov G., Furnadzieva S., Andreeva R., Lukavsky J., Membrane metabolites of Arthronema africanum strains from extreme habitats, Gen. Appl. Plant Physiol., 2006, 32, 117-123
- [57] Downs C.A., McDougall K.E., Woodley C.M., Fauth J.E., Richmond R.H., Kushmaro A., et al., Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching, PLoS ONE, 2013, 8(12): e77173, DOI:10.1371
- [58] Glatz A., Vass I., Los D.A., Vigh L., The Synechocystis model of stress: from molecular chaperones to membranes, Plant Physiol. Biochem., 1999, 37, 1-12 I, Imre Vass 2, Dmitry
- [59] Rowland J.G., Pang X., Suzuki I., Murata N., Simon W.J., Slabas A.R., Identification of components associated with thermal acclimation of photosystem II in Synechocystis sp. PCC6803, PLoS ONE, 2010, 5(5): e10511, DOI:10.1371, Lfiszl6 Vig
- [60] Davison I.R., Environmental effects on algal photosynthesis: temperature, J. Phycol., 1991, 27, 2-8
- [61] Janssen M., Bathke L., Marquardt J., Krumbein W.E., Rhiel E., Changes in the photosynthetic apparatus of diatoms in response to low and high light intensities, Int. Microbiol., 2001, 4, 27-33
- [62] Dubinsky Z., Matsukawa R., Karube I., Photobiological aspects of algal mass culture, Mar. Biolechnol., 1995, 2, 61-65
- [63] Carvalho A.P., Monteiro C.M., Malcata F.X., Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri, J. Appl. Phycol., 2009, 21, 543-552
- [64] Prasad S.M., Dubey G., Growth, pigments and photosynthetic responses of two cyanobacteria adapted to varying light intensities, Plant Arch., 2011, 11, 621-629
- [65] Schagerl M., Müller B., Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria, J. Plant Physiol., 2006, 163, 709-716
- [66] Rabbani S., Beyer P., Lintig J., Hugueney P., Kleinig H., Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil, Plant Physiol., 1998, 116, 1239-1248

- [67] Sandnes J.M., Kallqvist T., Wenner D., Gislerød H.R., Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production, J. Appl. Phycol., 2005, 17, 515-525
- [68] Trabelsi L., Quada H.B., Bacha H., Ghoul M., Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis, J. Appl. Phycol., 2009, 21, 405-412
- [69] Gigova L., Gacheva G., Ivanova N., Pilarski P., Effects of temperature on Synechocystis sp. R10 (Cyanoprokaryota) at two irradiance levels. I. Effect on growth, biochemical composition and defense enzyme activities, Genetics Plant Physiol., 2012, 2, 24-37
- [70] Juneja A., Ceballos R.M., Murthy G.S., Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review, Energies, 2013, 6, 4607-4638
- [71] Sivonen K., Effects of light, temperature, nitrate, orthophosphate and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains, Appl. Environ. Microbiol., 1990, 56, 2658-2666
- [72] Pavlova V., Furnadzhieva S., Rose J., Andreeva R., Bratanova Zl., Nayak A., Effect of temperature and light intensity on the growth, chlorophyll a concentration and microcystin production by Microcystis aeruginosa, Gen. Appl. Plant Physiol., 2010, 36, 148-158
- [73] Noaman N., Fattah A., Khaleafa M., Zaky S.H., Factors affecting antimicrobial activity of Synechococcus leopoliensis, Microbiol. Res., 2004, 159, 395-402
- [74] Radhakrishnan B., Prasanna R., Jaiswal P., Nayak S., Dureja P., Modulation of biocidal activity of Calothrix sp. and Anabaena sp. by environmental factors, Biologia, 2009, 64, 881-889
- [75] Chaudhary V., Prasanna R., Bhatnagar A.K., Modulation of fungicidal potential of Anabaena strains by light and temperature, Folia Microbiol., 2012, 57, 199-208
- [76] Lehtimäki J., Sivonen K., Luukkainen R., Niemelä S.I., The effects of incubation time, temperature, light, salinity and phosphorous on growth and hepatotoxin production by Nodularia strains, Arch. Hydrobiol., 1994, 130, 269-282
- [77] Watanabe M.F., Oishi S., Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions,

- Appl. Environ. Microbiol., 1985, 49, 1342-1344
- [78] Hifney A.F., Issa A.A., Fawzy M.A., Abiotic stress induced production of ß-carotene, allophycocyanin and total lipids in Spirulina sp., J. Biol. Earth Sci., 2013, 3, B54-B64
- [79] Saker M.L., Griffiths D.J., The effect of temperature on growth and cylindrospermopsin content of seven isolates of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju from water bodies in northern Australia, Phycologia, 2000, 39, 349-354
- [80] Issa A.A., Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina, Environ. Toxicol. Pharmacol., 1999, 8, 33-37
- [81] Gacheva G., Gigova L., Ivanova N., Pilarski P., Lukavský J., Suboptimal growth temperatures enhance the biological activity of cultured cyanobacterium Gloeocapsa sp., J. Appl. Phycol., 2013, 25, 183-194
- [82] Fish S.A., Codd G.A., Bioactive compound production by thermophilic and termotolerant cyanobacteria (blue-green algae), World J. Microbiol. Biotechnol., 1994, 10, 338-341
- [83] Houssen W.E., Koehnke J., Zollman D., Vendome J., Raab A., Smith M.C.M., et al., The discovery of new cyanobactins from Cyanothece PCC 7425 defines a new signature for processing of patellamides, ChemBioChem., 2012, 13, 2683-2689
- [84] Repka S., Koivula M., Harjunpä V., Rouhiainen L., Sivonen K., Effects of phosphate and light on growth of and bioactive peptide production by the cyanobacterium Anabaena strain 90 and its anabaenopeptilide mutant, Appl. Environ. Microbiol., 2004, 70, 4551-4560
- [85] Kurmayer R., The toxic cyanobacterium Nostoc sp. strain 152 produces highest amounts of microcystin and nostophycin under stress conditions, J. Phycol., 2011, 47, 200-207
- [86] Gigova L., Gacheva G., Toshkova R., Yossifova, L., Gardeva E., Ivanova N., et al., Effects of temperature on Synechocystis sp. R10 at two irradiance levels. II. Effect on antibacterial, antifungal and cytotoxic activities, Genetics Plant Physiol., 2012, 2, 38-49
- [87] Chetsumon A., Umeda F., Maeda I., Yagi, K., Mizoguchi T., Miura Y., Broad spectrum and mode of action of an antibiotic produced by Scytonema sp. TISTR 8208 in a seaweed-type bioreactor, Appl. Biochem. Biotechnol., 1998, 70-72, 249-256
- [88] Kumar M., Kulshreshtha J., Singh G.P., Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities

- and temperature, Braz. J. Microbiol., 2011, 42, 1128-1135
- [89] Hobson P., Fallowfield H.J., Effect of irradiance, temperature and salinity on growth and toxin production by Nodularia spumigena, Hydrobiol., 2003, 493, 7-15
- [90] Rapala J., Sivonen K., Lyra C., Niemelä S.I., Variations of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli, Appl. Environ. Microbiol., 1997, 63, 2206-2212
- [91] Srivastava V.C., Inhibitory metabolites production by the cyanobacterium Fischerella muscicola, PhD thesis, Massey University, Massey, New Zealand, 1996
- [92] Gupta V., Prasanna R., Cameotra S.S., Dureja P., Singh R.N., Sharma J., Enhancing the production of an antifungal compound from Anabaena laxa through modulation of environmental conditions and its characterization, Process Biochem., 2013, 48, 768-774
- [93] Volk R.B., Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc insulare, J. Appl. Phycol., 2007, 19, 491-495
- [94] Chakraborty T., Sen A.K., Pal R., Chemical characterization and the stress induced changes of the extracellular polysaccharide of the marine cyanobacterium, Phormidium tenue, J, Algal Biomass Utln., 2012, 3, 11-20
- [95] Karseno, Harada K., Bamba T., Dwi S., Mahakhant A., Yoshikawa T., Hirata K., Extracellular phycoerythrin-like protein released by freshwater cyanobacteria Oscillatoria and Scytonema sp., Biotechnol. Lett., 2009, 31, 999-1003
- [96] Leão P.N., Pereira A.R., Liu W-T., Ng J., Pevzner P.A., Dorrestein P.C., et al., Synergistic allelochemicals from a freshwater cyanobacterium, Proc. Natl. Acad. Sci. USA, 2010, 107, 11183-11188
- [97] Rohrlack T., Utkilen H., Effects of nutrient and light availability on production of bioactive anabaenopeptins and microviridin by the cyanobacterium Planktothrix agardhii, Hydrobiol., 2007, 583, 231-240
- [98] Velea S., Ilie L., Filipescu L., Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate, UPB Sci, Bull. B, 2011, 73, 81-94
- [99] Sarada R., Tripathi U., Ravishankar G.A., Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different

- culture conditions, Process Biochem., 2002, 37, 623-627
- [100] Boussiba S., Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response, Physiol. Plant., 2000, 108, 111-117
- [101] Abu-Rezq T.S., Al-Hooti S., Jacob D., Al-Shamali M., Ahmed A., Ahmed N., Induction and extraction of β-carotene from the locally isolated Dunaliella salina, J. Algal Biomass Utln., 2010, 1, 58-83
- [102] Mendoza H, Del Río M.J., García Reina G., Ramazanov Z., Low-temperature-induced β-carotene and fatty acid synthesis, and ultrastructural reorganization of the chloroplast in Dunaliella salina (Chlorophyta), Eur. J. Phycol., 1996, 31, 329-331
- [103] Del Campo J.A., Moreno J., Rodríguez H., Vargas M.A., Rivas J., Guerrero M.G., Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta), J. Biotechnol., 2000, 76, 51-59
- [104] Sánchez J.F., Fernández J.M., Acién F.G., Rueda A., Pérez-Parra J., Molina E., Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis, Process Biochem., 2008, 43, 398-405
- [105] Del Campo J.A., Rodríguez H., Moreno J., Vargas M.A., Rivas J., Guerrero M.G., Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta), Appl. Microbiol. Biotechnol., 2004, 64, 848-854
- [106] Razaghi A., Godhe A., Albers E., Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum, Cent. Eur. J. Biol., 2014, 9, 156-162
- [107] Cheng-Wu Z., Cohen Z., Khozin-Goldberg I., Richmond A., Characterization of growth and arachidonic acid production of Parietochloris incisa comb. nov (Trebouxiophyceae, Chlorophyta), J. Appl. Phycol., 2002, 14, 453-460
- [108] Solovchenko A.E., Khozin-Goldberg I., Didi-Cohen S., Cohen Z., Merzlyak M.N., Effects of light intensities and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa, J. Appl. Phycol., 2008, 20, 245-251
- [109] Solovchenko A., Khozin-Goldberg I., Didi-Cohen S., Cohen Z., Merzlyak M.N., Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa, Russ. J. Plant Physiol., 2008, 55, 455-462

- [110] Brown M.R., Dunstan G.A., Norwood S.J., Miller K.A., Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana, J. Phycol., 1996, 32, 64-73
- [111] Cepák V., Přibyl P., Kohoutková J., Kaštánek P., Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus, J. Appl. Phycol., 2014, 26, 181-190
- [112] Yongmanitchai W., Ward O.P., Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions, Appl. Environ. Microbiol., 1991, 57, 419-425
- [113] Jiang H., Gao K., Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae), J. Phycol., 2004, 40, 651-654
- [114] Tatsuzawa H., Takizawa E., Changes in lipid and fatty acid composition of Pavlova lutheri, Phytochemistry, 1995, 40, 397-400
- [115] Zhu C., Lee Y., Chao T., Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana tk1, J. Appl. Phycol., 1997, 9, 451-457
- [116] Durmaz Y., Monteiro M., Bandarra N., Gökpinar Ş., Işik O., The effect of low temperature on fatty acid composition and tocopherols of the red microalga, Porphyridium cruentum, J. Appl. Phycol., 2007, 19, 223-227
- [117] Fidalgo J.P., Cid A., Torres E., Sukenik A., Herrero C., Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana, Aquaculture, 1998, 166, 105-116
- [118] Petkov G.D., Klyachko-Gurvich G.L., Furnadzhieva S.T., Andreeva R., Bratanova Zl., Nayak A., Genotypic differences and phenotypic changes of lipid fatty acid composition in strains of Dunaliella salina, Sov. Plant Physiol., 1990, 37, 268-272

- [119] Hodgson P.A., Henderson R.J., Sargent J.R., Leftley J.W., Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture: I. The growth cycle, J. Appl. Phycol., 1991, 3, 169-181
- [120] Liang Y., Mai K., Effect of growth phase on the fatty acid compositions of four species of marine diatoms, J. Ocean Uni. China, 2005, 4, 157-162
- [121] Durmaz Y., Vitamin E (α-tocopherol) production by the marine microalga Nanochloropsis oculata (Eustigmatophyceae) in nitrogen limitation, Aquaculture, 2007, 272, 717-722
- [122] Donato M., Vilela M.H., Bandarra N.M., Fatty acids, sterols, alpha-tocopherol and total carotenoids composition of Diacronema vlkianum, J. Food Lipids, 2003, 10, 267-276
- [123] Barbosa M.J., Zijffers J.W., Nisworo A., Vaes W., van Schoonhoven J., Wijffels R.H., Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique, Biotechnol. Bioeng., 2005, 89, 233-242
- [124] López-Rosales L., Gallardo-Rodríguez J.J., Sánchez-Mirón A., Cerón-García M., Belarbi El H., García-Camacho F., et al., Simultaneous effect of temperature and irradiance on growth and okadaic acid production from the marine dinoflagellate Prorocentrum belizeanum, Toxins, 2014, 6, 229-253
- [125] Hejazi M.A., Holwerda E., Wijffels R.H., Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors, Biotechnol. Bioeng., 2004, 85, 475-481
- [126] Fábregas J., Otero A., Maseda A., Dominguez A., Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis, J. Biotechnol., 2001, 89, 65-71
- [127] Mendoza H., Molina Cedrés C., de la Jara A., Nordström L., Freijanes K., Carmona L., Quantitative and qualitative variation of the fatty acid composition in the dinoflagellate Crypthecodinium cohnii under nitrogen starvation conditions, Grasas y Aceites, 2008, 59, 27-32, (in Spanish)